Skip to main content

Effective Strong Nullness and Effectively Closed Sets

  • Conference paper
How the World Computes (CiE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7318))

Included in the following conference series:

  • 1658 Accesses

Abstract

The strongly null sets of reals have been widely studied in the context of set theory of the real line. We introduce an effectivization of strong nullness. A set of reals is said to be effectively strongly null if, for any computable sequence {ε n } n ∈ ω of positive rationals, a sequence of intervals I n of diameter ε n covers the set. We show that for \(\Pi^0_1\) subsets of 2ω effective strong nullness is equivalent to another well studied notion called diminutiveness: the property of not having a computably perfect subset. In addition, we also investigate the Muchnik degrees of effectively strongly null \(\Pi^0_1\) subsets of 2ω. Let MLR and DNC be the sets of all Martin-Löf random reals and diagonally noncomputable functions, respectively. We prove that neither the Muchnik degree of MLR nor that of DNC is comparable with the Muchnik degree of a nonempty effectively strongly null \(\Pi^0_1\) subsets of 2ω with no computable element.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barmpalias, G., Vlek, C.S.: Kolmogorov complexity of initial segments of sequences and arithmetical definability. Theor. Comput. Sci. 412(41), 5656–5667 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Binns, S.: Small \(\Pi^0_1\) classes. Arch. Math. Log. 45(4), 393–410 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Binns, S.: Hyperimmunity in 2. Notre Dame Journal of Formal Logic 48(2), 293–316 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Binns, S.: \(\Pi^0_1\) classes with complex elements. J. Symb. Log. 73(4), 1341–1353 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cenzer, D., Kihara, T., Weber, R., Wu, G.: Immunity and non-cupping for closed sets. Tbilisi Math. J. 2, 77–94 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Demuth, O.: A notion of semigenericity. Comment. Math. Univ. Carolinae 28, 71–84 (1987)

    MathSciNet  MATH  Google Scholar 

  7. Demuth, O., Kučera, A.: Remarks on 1-genericity, semigenericity and related concepts. Comment. Math. Univ. Carolinae 28, 85–94 (1987)

    MATH  Google Scholar 

  8. Downey, R.G., Hirschfeldt, D.R.: Algorithmic randomness and complexity. Theory and Applications of Computability, 883 pages. Springer (2010)

    Google Scholar 

  9. Giusto, M., Simpson, S.G.: Located sets and reverse mathematics. J. Symb. Log. 65(3), 1451–1480 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hertling, P.: Surjective functions on computably growing Cantor sets. J. UCS 3(11), 1226–1240 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Kjos-Hanssen, B., Merkle, W., Stephan, F.: Kolmogorov complexity and the recursion theorem. Trans. Amer. Math. Soc. 363(10), 5465–5480 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Laver, R.: On the consistency of Borel’s conjecture. Acta Math. 137(1), 151–169 (1976)

    Article  MathSciNet  Google Scholar 

  13. Nies, A.: Computability and Randomness. Oxford Logic Guides. Oxford University Press (2009)

    Google Scholar 

  14. Simpson, S.G.: Mass problems and randomness. Bull. Symb. Log. 11(1), 1–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Soare, R.I.: Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic. Springer, Heidelberg (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Higuchi, K., Kihara, T. (2012). Effective Strong Nullness and Effectively Closed Sets. In: Cooper, S.B., Dawar, A., Löwe, B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30870-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30870-3_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30869-7

  • Online ISBN: 978-3-642-30870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics