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Abstract

In algorithmic randomness, when one wants to define a randomness
notion with respect to some non-computable measure λ, a choice needs
to be made. One approach is to allow randomness tests to access the
measure λ as an oracle (which we call the “classical approach”). The other
approach is the opposite one, where the randomness tests are completely
effective and do not have access to the information contained in λ (we
call this approach “Hippocratic”). While the Hippocratic approach is in
general much more restrictive, there are cases where the two coincide. The
first author showed in 2010 that in the particular case where the notion
of randomness considered is Martin-Löf randomness and the measure λ

is a Bernoulli measure, classical randomness and Hippocratic randomness
coincide. In this paper, we prove that this result no longer holds for other
notions of randomness, namely computable randomness and stochasticity.

1 Introduction

In algorithmic randomness theory we are interested in which almost sure prop-
erties of an infinite sequence of bits are effective or computable in some sense.
Martin-Löf defined randomness with respect to the uniform fair-coin measure µ
on 2ω as follows.

A sequence X ∈ 2ω is Martin-Löf random if we have X 6∈
⋂

n∈N
Un

for every sequence of uniformly Σ0
1 (or effectively open) subsets of

2ω such that µ(Un) ≤ 2−n.

Now if we wish to consider Martin-Löf randomness for a Bernoulli mea-
sure µp (that is, a measure such that the ith bit is the result of a Bernoulli trial
with parameter p ∈ [0, 1]), we have two possible ways to extend the previous
definition.

The first option is to consider p as an oracle (with an oracle p we can
compute µp) and relativize everything to this oracle. Then X is µp-Martin-
Löf random if for every sequence (Un)n∈N

of uniformly Σ0
1[p] sets such that
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µp(Un) ≤ 2−n we have X 6∈
⋂

n∈N
Un. We will call this approach the classical1

notion of Martin-Löf randomness relative to µp.
Another option is to keep the measure µp “hidden” from the process which

describes the sequence (Un). One can merely replace µ by µp in Martin-Löf’s
definition but still require (Un) to be uniformly Σ0

1 in the unrelativized sense.
This notion of randomness was introduced by Kjos-Hanssen [7] who called it
Hippocratic randomness ; Bienvenu, Doty and Stephan [2] used the term blind
randomness.

Kjos-Hanssen showed that for Bernoulli measures, Hippocratic and classical
randomness coincide in the case of Martin-Löf randomness. Bienvenu, Gács,
Hoyrup, Rojas and Shen [3] extended Kjos-Hanssen’s result to other classes of
measures. Here we go in a different direction and consider weaker randomness
notions, such as computable randomness and stochasticity. We discover the
contours of a dividing line for the type of betting strategy that is needed in order
to render the probability distribution superfluous as a computational resource.

We view statistics as the discipline concerned with determining the under-
lying probability distribution µp by looking at the bits of a random sequence.
In the case of Martin-Löf randomness it is possible to determine p ([7]), and
therefore Hippocratic randomness and classical randomness coincide. In this
sense, Martin-Löf randomness is sufficient for statistics to be possible, and it
is natural to ask whether smaller amounts of randomness, such as computable
randomness, are also sufficient.

Notation Our notation generally follows Nies’ monograph [13]. We write 2n

for {0, 1}
n
, and for sequences σ ∈ 2≤ω we will also use σ to denote the real with

binary expansion 0.σ, that is, the real
∑∞

i=1 σ(i)2
−i. We use ε to denote the

empty word, σ(n) for the nth element of a sequence and σ ↾ n for the sequence
formed by the first n elements. For sequences ρ, σ we write σ ≺ ρ if σ is a
proper prefix of ρ and denote the concatenation of σ and ρ by σ.ρ or simply σρ.
Throughout the paper we set n′ = n(n− 1)/2.

1.1 Hippocratic martingales

Formally a martingale is a function M : 2<ω → R≥0 satisfying

M(σ) =
M(σ0) +M(σ1)

2
.

Intuitively, such a function arises from a betting strategy for a fair game played
with an unbiased coin (a sequence of Bernoulli trials with parameter 1/2). In

1 The classical approach has actually two approaches. Reimann and Slaman [14,
arXiv:0802.2705, Definition 3.2.] defined a real x to be µ-random if, for some oracle z comput-
ing µ, the real x is µ-random relative to z. Levin [9] and Gács [6] use a uniform test, which is
a left-c.e. function u : 2ω ×M(2ω) → [0,∞] such that

∫
u(x, µ)dµ ≤ 1 for all µ where M(2ω)

is the space of probability measures on 2ω . Since there is a universal uniform test u0, define
x to be µ-random if u0(x, µ) < ∞. Day and Miller [4] showed that these approaches actually
coincide.
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each round of the game we can choose our stake, that is, how much of our capital
we will bet, and whether we bet on heads (1) or tails (0). A coin is tossed, and
if we bet correctly we win back twice our stake.

Suppose that our betting strategy is given by some fixed function S of the
history σ of the game up to that point. Then it is easy to see that the function
M(σ) giving our capital after a play σ satisfies the above equation. On the
other hand, from any M satisfying the equation we can recover a corresponding
strategy S.

More generally, consider a biased coin which comes up heads with probability
p ∈ (0, 1). In a fair game played with this coin, we would expect to win back
1/p times our stake if we bet correctly on heads, and 1/(1− p) times our stake
if we bet correctly on tails. Hence we define a p-martingale to be a function
satisfying

M(σ) = pM(σ1) + (1− p)M(σ0).

We can generalize this further, and for any probability measure µ on 2ω define
a µ-martingale to be a function satisfying

µ(σ)M(σ) = µ(σ1)M(σ1) + µ(σ0)M(σ0).

For the Bernoulli measure with parameter p, we say that a sequence X ∈ 2ω

is p-computably random if for every total, p-computable p-martingale M, the
sequence (M(X ↾ n))n is bounded.

This is the classical approach to p-computable randomness. Under the Hip-
pocratic approach, the bits of the parameter p should not be available as a com-
putational resource. The obvious change to the definition would be to restrict
to p-martingales M that are computable without an oracle for p. However this
does not give a useful definition, as p can easily be recovered from any non-trivial
p-martingale. Instead we will define µp-Hippocratic computable martingales in
terms of their stake function (or strategy) S.

We formalize S as a function 2<ω → [−1, 1]∩Q.2 The absolute value |S(σ)|
gives the fraction of our capital we put up as our stake, and we bet on 1 if
S(σ) ≥ 0 and on 0 if S(σ) < 0. Given α ∈ (0, 1), the α-martingale Mα arising
from S is then defined inductively by

Mα(ε) = 1

Mα(σ1) = Mα(σ)
(
1− |S(σ)| +

|S(σ)|

α
1{S(σ)≥0}

)

Mα(σ0) = Mα(σ)
(
1− |S(σ)| +

|S(σ)|

1− α
1{S(σ)<0}

)

where, for a formula T , we use the notation 1{T} to mean the function which
takes the value 1 if T is true and 0 if T is false.

We define a µp-Hippocratic computable martingale to be a p-martingale Mp

arising from some total computable (without access to p) stake function S.

2 The restriction to Q is justified by the fact that we can restrict to Q in the definition of
computable randomness.
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We say that a sequence X ∈ 2ω is µp-Hippocratic computably random if for
every µp-Hippocratic computable martingale M, the sequence (M(X ↾ n))n is
bounded.

In Section 2 below we show that for all p ∈ MLR the set of µp-Hippocratic
computably random sequences is strictly bigger than the set of p-computably
random sequences. More precisely, we show that we can compute a sequence
Q ∈ 2ω from p such that Q is µp-Hippocratic computably random. In a nutshell,
the proof works as follows. We use the number p in two ways. To compute the
ith bit of Q, the first i bits of p are treated as a parameter r = 0.p1 . . . pi, and
we pick the ith bit of Q to look like it has been chosen at random in a Bernoulli
trial with bias r. To do this, we use some fresh bits of p (which have not been
used so far in the construction of Q) and compare them to r, to simulate the
trial. Since these bits of p were never used before, if we know only the first i− 1
bits of Q they appear random, and thus the ith bit of Q indeed appears to be
chosen at random with bias r. Since r = 0.p1p2 . . . pi converges quickly to p, 3

we are able to show that Q overall looks p-random as long as we do not have
access to p, in other words, that Q is µp-Hippocratic computably random.

1.2 Hippocratic stochasticity and KL randomness

In Section 3 we consider another approach to algorithmic randomness, known
as stochasticity. It is reasonable to require that a random sequence satisfies the
law of large numbers, that is, that the proportion of 1s in the sequence converges
to the bias p. But, for an unbiased coin, the string

010101010 . . .

satisfies this law but is clearly not random. Following this idea, we say that a
sequence X is p-Kolmogorov–Loveland stochastic (or µp-KL stochastic) if there
is no p-computable way to select infinitely many bits from X , where we are
not allowed to know the value of a bit before we select it, without the selected
sequence satisfying the law of large numbers (see Definition 7 for a formal ap-
proach).

For this paradigm the Hippocratic approach is clear: we consider only se-
lection functions which are computable without an oracle for p. We show in
Theorem 12 that for p ∈ ∆0

2 ∩ MLR there exists a sequence Q which is µp-
Hippocratic KL stochastic but not µp-KL stochastic. Again we use p as a ran-
dom bit generator and create a sequence Q that appears random for a sequence
of Bernoulli trials, where the bias of the ith trial is qi for a certain sequence (qi)i
converging to p. Intuitively, the convergence is so slow that it is impossible to
do (computable) statistics with Q to recover p, and we are able to show that
without access to p the sequence Q is µp-KL stochastic.

At the end of Section 3 we consider another notion, Kolmogorov–Loveland
randomness. We give a simple argument to show that if we can compute p from

3By the Law of the Iterated Logarithm and since 2−n = o(1/
√
n log logn), this convergence

is faster than the deviations created by statistical noise in a real sequence of Bernoulli trials
with parameter p.
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every µp-Hippocratic KL random sequence, then the µp-Hippocratic KL random
sequences and the µp-KL random sequences are the same (and vice versa).

2 Computable randomness

In this section we show that for any Martin-Löf random bias p, p-computable
randomness is a stronger notion than µp-Hippocratic computable randomness.

Theorem 1. Let α ∈ MLR. There exists a sequence Q ∈ 2ω, computable in
polynomial time from α, such that Q is µα-Hippocratic computably random.

Before giving the proof, we remark that a stronger version of the theorem
is true: the sequence Q is in fact α-Hippocratic partial computably random
(meaning that we allow the martingale to be a partial computable function; see
[5, Definition 7.4.3]).

Also, a sceptic could (reasonably) complain that it is not really natural for
us to make bets without any idea about our current capital. However if we
add an oracle to give the integer part of our capital at each step (or even an
approximation with accuracy 2−n when we bet on the nth bit), Theorem 1
remains true and the proof is the same. In the same spirit we could object that
it is more natural to have a stake function giving the amount of our bet (to be
placed only if we have a capital large enough) and not the proportion of our
capital. For this definition of a Hippocratic computable martingale, similarly
the theorem remains true and the proof is the same.

Proof. Let α ∈ MLR. Then α is not rational and cannot be represented by
a finite binary sequence and we can suppose that 0 < α < 1/2. Recall that
n′ = n(n−1)/2 and that we freely identify a sequence X (finite or infinite) with
the real number with the binary expansion 0.X .

The proof has the following structure. First, we describe an algorithm to
compute a sequence Q from α. To compute each bit Qn of Q we will use a
finite initial segment of α as an approximation of α, and we will compare this
with some other fresh bits of α which we treat as though they are produced
by a random bit generator. In this way Qn will approximate the outcome of a
Bernoulli trial with bias α.

Second, we will suppose for a contradiction that there is an α-Hippocratic
computable martingale (that is, a martingale that arises from a stake function
computable without α) such that the capital of this martingale is not bounded
on Q. We will show that we can use this stake function to construct a Martin
Löf test (Un)n such that α does not pass this test.

So let Q = Q1Q2 . . . be defined by the condition that:

Qn =

{
0 if 0.αn′+1 . . . αn′+n ≥ 0.α1 . . . αn,
1 otherwise.

We can compute Q in polynomial time from α, as we can compute each bit Qn

in time O(n2).
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Now let S : 2<ω → Q∩ [−1, 1] be a computable stake function. We will write
MX for the X-martingale arising from S. Suppose for a contradiction that

lim sup
n→∞

Mα(Q ↾ n) = ∞.

Our goal is to use this to define a Martin-Löf test which α fails. The classical
argument (see [5, Theorem 6.3.4]) would be to consider the sequence of sets

Vj = {X ∈ 2ω|∃n Mα(X ↾ n) > 2j},

but without oracle access to α this is not Σ0
1, and does not define a Martin-

Löf test. However it turns out that we can use a similar sequence of sets,
based on the idea that, although we cannot compute Mα precisely, we can
approximate it using the approximation α1 . . . αn′ of α. For this we will use the
following lemma, giving, roughly speaking, a modulus of continuity for the map
(α,X) 7→ Mα(X). The proof is rather technical and we postpone it to later in
this section.

Lemma 2. For 0 < α < 1, there exists m ∈ N such that 2−m < α ↾ m′, and
such that if σ < (α ↾ m′) and τ < (α ↾ m′) then for all η ∈ 2<ω and all n ≥ m
we have:

if 0 < τ − σ < 2−n′

and |η| ≤ n+ 1 then |Mσ(η)−Mτ (η)| ≤ 2−n.

Let m be given by Lemma 2 and let ρ be α ↾ m′, so 2−m < ρ. Let Γ :
2≤ω → 2≤ω be the operator which converts α1 . . . αn′ into Q1 . . . Qn. That is,
Γ(α1 . . . αk) = Q1 . . . Qn where n is the biggest integer such that n′ ≤ k. This
notation naturally extends to infinite sequences so we may write Γ(α) = Q. We
consider the uniform sequence of Σ0

1 sets

U ′
j = {X1 . . . Xk′ |ρ 4 X1 . . . Xk′ and MX1...Xk′ (Γ(X1 . . . Xk′)) > 2j}.

We let Uj denote the set of infinite sequences with a prefix in U ′
j. By Lemma 2,

|Mα(Γ(α1 . . . αk′))−Mα1...αk′ (Γ(α1 . . . αk′ ))| < 2−k ≤ 1

for all sufficiently large k. Since Mα increases unboundedly on Q = Γ(α) it
follows that α ∈ Uj for all j.

To show that (Uj) is a Martin-Löf test, it remains to show that the measure
of Uj is small. Since σ 7→ Mσ(σ) is almost a α-martingale, where σ runs over
the prefixes of α, we will use a lemma similar to the Kolmogorov inequality (see
[5, Theorem 6.3.3]). Again we postpone the proof to later in this section.

Lemma 3. For any number n ≥ m, any extension σ < ρ of length n′ and any

prefix-free set Z ⊆
⋃

k∈N
{0, 1}

k′

of extensions of σ, we have

∑

τ∈Z

2−|τ |Mτ (Γ(τ)) ≤ 2−|σ|e2 [1 +Mσ(Γ(σ))] .

6



Now fix j and let Wj be a prefix-free subset of U ′
j with the property that

the set of infinite sequences with a prefix in Wj is exactly Uj . Then by the
definition of U ′

j , if τ ∈ Wj then Mτ (Γ(τ)) ≥ 2j. Hence by Lemma 3 we have:

µ(Uj) =
∑

τ∈Wj

2−|τ | ≤
∑

τ∈Wj

Mτ (Γ(τ))

2j
2−|τ | ≤

2−|ρ|e2 (1 +Mρ(Γ(ρ)))

2j
.

Since 2−|ρ| (1 +Mρ(Γ(ρ))) is constant, this shows that (Uj) is a Martin-Löf test.
As α ∈

⋂
j Uj it follows that α 6∈ MLR. This is a contradiction. �

Notice that this proof makes use of the fact that in our betting strategy we
have to proceed monotonically from left to right through the string, making a
decision for each bit in turn as we come to it. This is why our construction is
able to use α as a random bit generator, because at each step it can use bits
that were not used to compute the previous bits of Q. Following this idea the
question naturally arises: if we are allowed to use a non-monotone strategy, then
are the classical and Hippocratic random sequences the same? We explore this
question in Section 3.

We now return to the postponed proofs. We will need a couple of technical
lemmas, the first one is aiding Lemma 2 in giving (roughly speaking) a modulus
of continuity for the map (α,X) 7→ Mα(X).

Lemma 4. Let ǫ > 0. Then there exists r ∈ N such that for all k with 2−kǫ−2 <
1, for all α, β ∈ 2≤ω with ǫ < α < β < 1− ǫ and for all non-empty σ ∈ 2<ω,

0 < β − α < 2−k =⇒ |Mα(σ)−Mβ(σ)| < 2−k+r|σ|.

Proof. Since 0 < ǫ < α < β < α+ 2−k,

1

α+ 2−k
<

1

β
<

1

α
<

1

ǫ
,

and hence

0 <
1

α
−

1

β
<

1

α
−

1

α+ 2−k
=

2−k

α(α+ 2−k)
<

2−k

α2
<

2−k

ǫ2
.

It follows, since |S(X)| ≤ 1, that

0≤
(
1− |S(σ)|+

|S(σ)|

α
1{S(σ)≥0}

)
−
(
1− |S(σ)|+

|S(σ)|

β
1{S(σ)≥0}

)
≤ 2−kǫ−2

and symmetrically, since 0 < ǫ < 1− β < 1− α < (1− β) + 2−k, also that

0≤
(
1− |S(σ)|+

|S(σ)|

1 − β
1{S(σ)<0}

)
−
(
1− |S(σ)|+

|S(σ)|

1 − α
1{S(σ)<0}

)
≤ 2−kǫ−2.

Hence if we write RX
i for MX(σ↾i)

MX (σ↾(i−1)) (with the convention 0/0 = 0) we have

for all i ≤ |σ| that |Rα
i − Rβ

i | < 2−kǫ−2. Furthermore, take s to be a positive

7



integer such that 2s > 1+ 1/ǫ. Then we know that Rα
i and Rβ

i are both always
smaller than 2s.

We can now bound |Mα(σ) − Mβ(σ)|. Consider the case when
Mα(σ) ≥ Mβ(σ) (the other case is symmetrical). Then, writing n for |σ|,

Mα(σ) −Mβ(σ) =

n∏

i=1

Rα
i −

n∏

i=1

Rβ
i

≤

n∏

i=1

(Rβ
i + 2−kǫ−2)−

n∏

i=1

Rβ
i

=

[
n∏

i=1

Rβ
i +

∑

Z⊆[1,n]
|Z|<n

(2−kǫ−2)n−|Z|
∏

i∈Z

Rβ
i

]
−

n∏

i=1

Rβ
i

≤ 2n(2−kǫ−2)(2s)n,

where for the last inequality we are assuming that k is large enough that
2−kǫ−2 < 1. The result follows. �

Lemma 5. For s ∈ R, s > 0 we have
∏∞

n=1(1 + s2−n) < es.

Proof. It is enough to show that

∞∑

n=1

ln

(
2n + s

2n

)
=

∞∑

n=1

[ln(2n + s)− ln(2n)] < s.

The derivative of ln is the decreasing function x 7→ 1/x so by the Mean Value
Theorem we have that ln(2n+s)− ln(2n) < s/2n, which gives the inequality. �

We are now able to prove the lemmas used in the proof of Theorem 1.

Restatement of Lemma 2. For 0 < α < 1, there exists m ∈ N such that
2−m < α ↾ m′, and such that if σ < (α ↾ m′) and τ < (α ↾ m′) then for all
η ∈ 2<ω and all n ≥ m we have:

if 0 < τ − σ < 2−n′

and |η| ≤ n+ 1 then |Mσ(η)−Mτ (η)| ≤ 2−n.

Proof. Since 0 < α < 1, there is an ǫ > 0 and an m0 such that for all n ≥ m0,

ǫ < α ↾ n′ < (α ↾ n′) + 2−n′

< 1− ǫ.

Let r be as in Lemma 4 for this ǫ. It is clear that we can find m1 ∈ N such that
for all n ≥ m1,

r(n+ 1)− n′ = r(n+ 1)−
n(n− 1)

2
< −n.

8



Moreover we can find an m2 such that for all n ≥ m2,

2−n′

ǫ−2 < 1.

And, since α > 0, we can find an m3 such that for all n ≥ m3, 2
−n < α ↾ n′.

Let m = max{m0,m1,m2,m3}. Let τ , σ, η and n satisfy the assumptions of
the Lemma. We must have ǫ < σ < τ < 1− ǫ, hence by Lemma 4 with k := n′,

|Mσ(η)−Mτ (η)| ≤ 2−n′+r|η| ≤ 2−n′+r(n+1) < 2−n.

�

Remark 6. As pointed out by an anonymous referee and as is clear from the
proof, the function that maps α ∈ MLR to m in Lemma 2 is layerwise com-
putable, i.e., from the randomness deficiency of α we can compute an m that
works.

Now we suppose α ∈ MLR, α < 1/2 and let m be as given by Lemma 2. We
write ρ for α ↾ m′, so that 2−m < ρ.

Restatement of Lemma 3. For any number n ≥ m, any extension σ < ρ of

length n′ and any prefix-free set Z ⊆
⋃

k∈N
{0, 1}k

′

of extensions of σ, we have

∑

τ∈Z

2−|τ |Mτ (Γ(τ)) ≤ 2−|σ|e2 [1 +Mσ(Γ(σ))] .

Proof. It is enough to show this for every finite Z. We will use induction on
the size p of Z, with our inductive hypothesis that for all n ≥ m, all extensions
σ < ρ of length n′ and all suitable sets Z of size p,

∑

τ∈Z

2−|τ |Mτ (Γ(τ)) ≤ 2−|σ|

[
∞∑

i=n

2e22−i +Mσ(Γ(σ))

∞∏

i=n

(
1 + 2·2−i

)
]
.

Note that by Lemma 5 the right hand side is bounded by 2−|σ|e2[1+Mσ(Γ(σ))]
(as long as n ≥ 2).

The base case |Z| = 0 is trivial. Now suppose that the hypothesis is true for
all sets of size less than or equal to p and suppose that |Z| = p + 1. Let ν be
the longest extension of σ which has length of the form k′ for some k ∈ N and
which is such that all strings in Z are extensions of ν. Then for each string θ
of length k there are fewer than p + 1 strings in Z beginning with νθ. Recall
that |νθ| = k′ + k = (k + 1)′ and that Γ(ν) and Γ(νθ) are strings of length

9



respectively k and k + 1. Applying the inductive hypothesis, we have
∑

τ∈Z

2−|τ |Mτ (Γ(τ)) ≤
∑

θ∈{0,1}k

∑

τ∈Z
τ<νθ

2−|τ |Mτ (Γ(τ))

≤
∑

θ∈{0,1}k

2−|νθ|

[
∞∑

i=k+1

2e22−i +Mνθ(Γ(νθ))

∞∏

i=k+1

(
1+2·2−i

)
]

≤
∑

θ∈{0,1}k

2−|νθ|

[
∞∑

i=k+1

2e22−i + e22−k +Mν(Γ(νθ))
∞∏

i=k+1

(
1+2·2−i

)
]

where for the last inequality we are using that, by Lemma 2, Mνθ(Γ(νθ)) ≤
Mν(Γ(νθ)) + 2−k. Rearranging the last line, we get

2−|ν|




∞∑

i=k+1

2e22−i + e22−k +




∑

θ∈{0,1}k

2−kMν(Γ(νθ))




∞∏

i=k+1

(
1 + 2·2−i

)

 .

Now we will find an upper bound for the term in round brackets.
We will write ν̂ for ν ↾ k and S for S(Γ(ν)). By the definition of Γ, if θ ≤ ν̂

(as real numbers) then Γ(νθ) = Γ(ν).1. Hence, by the definition of M and the

fact that ν ≥ ν̂, summing only over θ ∈ {0, 1}
k
we have

∑

θ≤ν̂

2−kMν(Γ(νθ)) = ν̂Mν(Γ(ν))
(
1− |S|+

1

ν
|S| · 1{S≥0}

)

≤ Mν(Γ(ν))
(
ν̂
(
1− |S|

)
+ |S| · 1{S≥0}

)
.

Observing that ν ≤ ν̂ + 2−k and 1− ν ≥ 1/2 and that hence

1− ν̂

1− ν
≤

1− ν + 2−k

1− ν
≤ 1 + 2 · 2−k,

we similarly get that

∑

θ>ν̂

2−kMν(Γ(νθ)) = (1− ν̂)Mν(Γ(ν))
(
1− |S|+

1

1− ν
|S| · 1{S<0}

)

≤ Mν(Γ(ν))
(
(1− ν̂)

(
1− |S|

)
+ |S| · 1{S<0} + 2 · 2−k

)
.

Summing these gives
∑

θ∈{0,1}k

2−kMν(Γ(νθ)) ≤ Mν(Γ(ν))
(
1− |S|+ |S|·1{S≥0} + |S|·1{S<0} + 2 · 2−k

)

= Mν(Γ(ν))(1 + 2 · 2−k).

Combining this with our earlier bound, we now have

∑

τ∈Z

2−|τ |Mτ (Γ(τ)) ≤ 2−|ν|

[
∞∑

i=k+1

2e22−i + e22−k +Mν(Γ(ν))

∞∏

i=k

(
1 + 2·2−i

)
]
.
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Finally, let r = k−n so that |ν| = k′ = (n+ r)′ ≥ n′ +nr = |σ|+nr. Recall
that 1 − ν > ν < ρ > 2−n, which means that a ν-martingale can multiply its
capital by at most 2n in one round. Hence, also using Lemma 2,

2−|ν|Mν(Γ(ν)) ≤ 2−|σ|−nr(2n)
r
Mν(Γ(σ)) ≤ 2−|σ|

(
2−n +Mσ(Γ(σ))

)
.

This gives us the bound

2−|σ|

[
∞∑

i=k+1

2e22−i + e22−k + e22−n +Mσ(Γ(σ))
∞∏

i=k

(
1 + 2·2−i

)
]
,

which is less than or equal to

2−|σ|

[
∞∑

i=n

2e22−i +Mσ(Γ(σ))

∞∏

i=n

(
1 + 2·2−i

)
]
.

This completes the induction. �

3 Kolmogorov–Loveland stochasticity and ran-

domness

We define Kolmogorov–Loveland stochasticity and show that, in this setting,
the Hippocratic and classical approaches give different sets. We also consider
whether this is true for Kolmogorov–Loveland randomness, and relate this to a
statistical question.

Kolmogorov–Loveland randomness and stochasticity has been studied by,
among others, Merkle [10], Merkle et al. [11], and Bienvenu [1].

3.1 Definitions

For a finite string σ ∈ {0, 1}
n
, we write #0(σ) for |{k < n|σ(k) = 0}| and #1(σ)

for |{k < n|σ(k) = 1}|. We write Φ(σ) for #1(σ)/n, the frequency of 1s in σ.

Definition 7 (Selection function). A KL selection function is a partial function

f : 2<ω → {scan, select} × N.

We write f(σ) as a pair (s(σ), n(σ)) and in this paper we insist that for all σ
and ρ ≻ σ we have n(ρ) 6= n(σ), so that each bit is read at most once.

Given input X, we write (V X
f ) for the sequence of strings seen (with bits

either scanned or selected) by f , so that

V X
f (0) = X(n(ε))

V X
f (k + 1) = V X

f (k).X(n(V X
f (k))).

11



We write UX
f for the subsequence of bits selected by f . Formally UX

f is the limit

of the monotone sequence of strings (TX
f ) where

TX
f (0) = ε

TX
f (k + 1) =

{
TX
f (k) if s(V X

f (k)) = scan

TX
f (k).n(V X

f (k)) if s(V X
f (k)) = select.

Informally, the function is used to select bits from X in a non-monotone
way. If V is the string of bits we have read so far, n(V ) gives the location of
the next bit of X to be read. Then “s(V ) = scan” means that we will just read
this bit, whereas “s(V ) = select” means that we will add it to our string T of
selected bits.

Definition 8 (µp-KL stochastic sequence). A sequence X is µp-KL stochastic
if for all p-computable KL selection functions f (notice that f can be a partial
function) such that the limit UX

f of (TX
f ) is infinite, we have

lim
k→∞

Φ(TX
f (k)) = p.

A sequence X is µp-Hippocratic KL stochastic if for all KL selection functions f ,
computable without an oracle p, such that UX

f is infinite, we have

lim
k→∞

Φ(TX
f (k)) = p.

Definition 9 (Generalized Bernoulli measure). A generalized Bernoulli mea-
sure λ on 2ω is determined by a sequence (bλi ) of real numbers in (0, 1). For
each i, the event {X1X2 . . . |Xi = 1} has probability bλi , and these events are
all independent. In other words, for all finite strings w the set [w] of strings
beginning with w has measure

λ([w]) =
∏

i<|w|
wi=1

bλi
∏

i<|w|
wi=0

(1− bλi ).

We say the measure is computable if the sequence (bλi ) is uniformly computable.

In some sense a generalized Bernoulli measure treats sequences as though
they arise from a sequences of independent Bernoulli trials with parameter bλi
for the ith bit.

Recall that for a measure λ, a λ-martingale is a function M : 2ω → R

satisfying
λ(σ)M(σ) = λ(σ1)M(σ1) + λ(σ0)M(σ0).

We now define the notion of a KL martingale, which will be able to select which
bit it will bet on next, in a generalized Bernoulli measure. We use the notation
from Definition 7.

12



Definition 10 (λ-KL randomness). Let λ be a generalized Bernoulli measure.
A λ-KL martingale is a pair (f,M) where f is a selection function (δ, n) and
M is a function 2<ω → R such that, for every sequence X ∈ 2ω for which f
select infinitely many bits of X,

M
(
TX
f (k)

)
= bλi M

(
TX
f (k).1

)
+ (1− bλi )M

(
TX
f (k).0

)

for all k ∈ N, where i = n(V X
f (k)).

We say that X is λ-KL random if, for every λ-KL martingale computable
with oracle (bλi ), the sequence (M(TX

f (k))) is bounded. For a sequence Y , we

say that X is λ-KLY random if this is true even when the λ-KL martingale is
also given oracle access to Y .

3.2 Hippocratic stochasticity is not stochasticity

We will show that, despite the fact that we now allow non-monotone strategies,
once again there exist sequences computable from α which are α-Hippocratic
KL stochastic, for α ∈ MLR ∩ ∆0

2 (recall that Chaitin’s constant Ω is the
prototypical example of such an α).

We remark that our proof shows also that for α ∈ MLR∩∆0
2 the Hippocratic

and classical versions of von Mises–Wald–Church stochasticity are different (see
[5, Definition 7.4.1] for a formal definition).

We first need a lemma:

Lemma 11 ([12], [5] p.311). If X is Martin-Löf random for a computable
generalized Bernoulli measure λ, then X is λ-KL random.

see [5]. Consider the set of sequences in which the player achieves capital greater
than j when he started with capital 1. For obvious reasons, this is an effective
open set of measure less than 1/j. �

Theorem 12. Let α ∈ MLR∩∆0
2. There exists a sequence Q ∈ 2ω, computable

from α, such that Q is α-Hippocratic KL stochastic.

Proof. We will first define the sequence Q, and then show that Q is λ-KL ran-
dom for a certain generalized Bernoulli measure λ for which the parameters
(bλi ) converge to α. Finally we will show that it follows that Q is actually
α-Hippocratic KL stochastic.

Since α ∈ ∆2
0, by Shoenfield’s Limit Lemma α is the limit of a computable

sequence of real numbers (although the convergence must be extremely slow,
since α is not computable). In particular there exists a computable sequence of

finite strings (βk) such that βk ∈ {0, 1}
k
and

lim
k→∞

βk = α.

We define Qk by

Qk =

{
1 if 0.βk ≥ 0.αk′+1 . . . αk′+k

0 otherwise.
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We set Q = Q1Q2 . . . . Intuitively, as in the proof of Theorem 1, we are using
α as a random bit generator to simulate a sequence of Bernoulli trials with
parameter βk.

Notice that the transformation mapping α to Q is a total computable func-
tion. We know that in general if g is total computable, and X is (Martin-Löf)
random for the uniform measure µ, then g(X) is random for the measure µ◦g−1

(see [15] for a proof of this fact). Since α ∈ MLR, in our case this tell us that
Q is random for exactly the generalized Bernoulli measure λ given by bλi = βi.

It follows from Lemma 11 that Q is λ-KL random. Finally by Lemma 13
below we can conclude that Q is α-Hippocratic KL stochastic, completing the
argument. �

Lemma 13. Let λ be a computable generalized Bernoulli measure and suppose

lim
i→∞

bλi = p.

Then every λ-KL random sequence is µp-Hippocratic KL stochastic.

Proof. We prove the contrapositive. Without loss of generality we assume that
0 < p < 1/2. Suppose that the sequence X is not µp-Hippocratic KL stochastic.
Then there is a selection function f , computed without an oracle for p, for which
the selected sequence UX

f is infinite and Φ(TX
f (k)) does not tend to the limit p.

We will define a λ-KL martingale which wins on X .
Without loss of generality, there is a rational number τ > 0 such that

p+ 2τ < 1 and
lim sup
k→∞

Φ(TA
f (k)) ≥ p+ 2τ.

Since (bλk) converges to p, by changing the selection function if necessary, we
may assume without loss of generality that bλk < p + τ for all locations k read
by the selection function. We let

γ =
p+ 2τ

p+ τ
− 1 > 0.

We let δ be a rational in (0, 1) satisfying both

δ
(1 − p− τ)

2

(p+ τ)
2 ≤ τ and log(1 − δ) > −

δ

ln 2
(1 + γ/2)

(where log is to base 2). Such a δ exists because log(1 − δ)/δ converges to
−1/ ln 2 as δ > 0 tends to 0. Note that δ(1− p− τ)/(p+ τ) < 1.

Let M be the λ-KL martingale which begins with capital 1 and then, using
selection function f , bets every turn a fraction δ of its current capital on the
next bit being 1. Formally, writing Tk for TX

f (k) and i for n(V X
f (k)), we put

M(ε) = 1 and for each k

M(Tk.0) = M(Tk)
(
1− δ

)
,

M(Tk.1) = M(Tk)

(
1− δ +

δ

bλi

)
≥ M(Tk)

(
1 + δ

(
1

p+ τ
− 1

))
.
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We do not care how M is defined elsewhere.
By induction,

M(Tk) ≥

(
1 + δ

1− p− τ

p+ τ

)#1(Tk)

(1− δ)#0(Tk)

and thus

log(M(Tk))

k
≥

#1(Tk)

k
log

(
1 + δ

1− p− τ

p+ τ

)
+

#0(Tk)

k
log (1− δ) .

In the following we use standard properties of the logarithm together with
our definitions of τ , δ and γ. In particular, note that if we let x = δ(1 − p −
τ)/(p+ τ) then 0 < x < 1 so we have ln(1 + x) > x− x2/2 > x− x2. We have

lim sup
k→∞

logM(Tk)

k
≥ (p+ 2τ) log

(
1 + δ

1− p− τ

p+ τ

)
+ (1 − p− 2τ) log (1− δ)

≥
p+ 2τ

ln 2

(
δ
1− p− τ

p+ τ
− δ2

(1 − p− τ)2

(p+ τ)2

)
−

δ(1 + γ/2)

ln 2
(1− p− 2τ)

≥
δ

ln 2

(
(1− p− τ)(1 + γ)− δ

(1− p− τ)2

(p+ τ)2
− (1 + γ/2)(1− p− 2τ)

)

≥
δ

ln 2

(
τ +

γ

2
(1− p− τ) − δ

(1− p− τ)2

(p+ τ)2

)

≥
δγ (1− p− τ)

2 ln 2
> 0.

Hence log(M(Tk)) ≥ ck infinitely often, for some strictly positive constant c.
Therefore our martingale is unbounded on UX

f . �

3.3 Kolmogorov–Loveland randomness

We have shown that, for computable randomness and non-monotone stochas-
ticity, whether a string is random can depend on whether or not we have access
to the actual bias of the coin. It is natural to ask if this remains true for
Kolmogorov–Loveland randomness.

Lemma 14 ([11]). For sequences X,Y ∈ 2ω, X ⊕ Y is µp-KL random if and
only if both X is µp-KLY -random and Y is µp-KLX-random, and this remains
true in the Hippocratic setting (that is, where the KL martingales do not have
oracle access to p). �

The proof is a straightforward adaptation of the proof given in [11, Propo-
sition 11]. Using Lemma 14 we can show an equivalence between our question
and a statistical question.

Theorem 15. The following two sentences are equivalent.
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1. The µp-Hippocratic KL random and µp-KL random sequences are the
same.

2. From every µp-Hippocratic KL random sequence X, we can compute p.

Proof. For (1) ⇒ (2), we know that if X is µp-KL random then it must satisfy
the law of the iterated logarithm (see [16] for this result). Hence we know how
quickly Φ(X ↾ k) converges to p and using this we can (non-uniformly) compute
p from X .

For (2) ⇒ (1), suppose that X is µp-Hippocratic KL random but not µp-KL
random. Let X = Y ⊕ Z. Then by Lemma 14, Y (say) is not µp-KLZ random,
meaning that there is a KL martingale (M, f) which, given oracle access to p
and Z, wins on Y . On the other hand, both Y and Z remain µp-Hippocratic KL
random, so in particular by (2) if we have oracle access to Z then we can compute
p. But this means that we can easily convert (M, f) into a µp-Hippocratic KL
martingale which wins on X , since to answer oracle queries to either Z or p it
is enough to scan Z and do some computation. �

Remark 16. We do not know what the shared truth value of the two sentences
in Theorem 15 is. We also do not know whether there is a µp-Hippocratic com-
putably random sequence to which p is not Turing reducible. As an anonymous
referee pointed out, this would give a stronger answer to our question “How
much randomness is needed for statistics?”
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Stephan. Kolmogorov-Loveland randomness and stochasticity. Ann. Pure
Appl. Logic, 138(1-3):183–210, 2006.

[12] Andrei A. Muchnik, Alexei L. Semenov, and Vladimir A. Uspensky. Math-
ematical metaphysics of randomness. Theoret. Comput. Sci., 207(2):263–
317, 1998.

[13] André Nies. Computability and randomness, volume 51 of Oxford Logic
Guides. Oxford University Press, Oxford, 2009.

[14] Jan Reimann and Theodore A. Slaman. Measures and their random reals.
Transaction of the American Mathematical Society. to appear.

[15] Alexander Shen. One more definition of random sequence with respect
to computable measure. In Proceedings of the First World Congress of
the Bernoulli Society on Mathematical Statistics and Probability theory,
Tashkent, 1987. VNU Science Press, Utrecht, 1987.

[16] Yongge Wang. Resource bounded randomness and computational complex-
ity. Theoret. Comput. Sci., 237(1-2):33–55, 2000.

17


	1 Introduction
	1.1 Hippocratic martingales
	1.2 Hippocratic stochasticity and KL randomness

	2 Computable randomness
	3 Kolmogorov–Loveland stochasticity and randomness
	3.1 Definitions
	3.2 Hippocratic stochasticity is not stochasticity
	3.3 Kolmogorov–Loveland randomness


