arxiv:1204.0198v4 [math.LO] 10 Sep 2012

Game arguments in computability theory and
algorithmic information theory

Andrej Muchnik Alexander Sheh Mikhail Vyugin
September 11, 2012

Abstract

We provide some examples showing how game-theoretic angisnihe approach that
goes back to Lachlan and was developed by An. Muchnik) carsbd in computability
theory and algorithmic information theory. To illustratést technique, we start with a
proof of a classical result, the unique numbering theorerfragdberg, translated to the
game language. Then we provide game-theoretic proofs feethther results: (1) the
gap between conditional complexity and total conditior@hplexity; (2) Epstein—Levin
theorem relating a priori and prefix complexity for a stodltaset (for which we provide a
new game-theoretic proof) and (3) some result about infoomalistances in algorithmic
information theory (obtained by two of the authors [A.M. afidV.] several years ago but
not yet published). An extended abstract of this paper apdea [14].

It often happens that some result in computability theorglgorithmic information the-
ory is essentially about the existence of a winning straieggome game. This approach
was considered by A. Lachlan for enumerablefsdater it was (in different forms) used by
An.A. Muchnik [9,[10,11]. In Sectiohl1 we illustrate this appch by showing how a clas-
sical result of recursion theory (Friedberg’'s theorem oigu& numberings) can be translated
into this language. In Sectidn 2 we use game approach teretl conditional complexity
CT(x]y) (the minimal complexity of d@otal program that maps a conditignto some object
X) and standard conditional complexity (where the programotsnecessarily total). Then in
Sectior B we provide a new game-theoretic proof of a recentitref Epstein and Leviri [4].
Finally, in Sectiori ¥4 we generalize the result(of|[16] andvsliieat for every natural numbers
m, n and for every stringg of sufficiently high complexity one can find strings . .., xm such
that all the conditional complexitigS(x;|x;) (for all i, j in {0,1,2,...,m} such thai # j; note
that O is allowed) are equal to+ O(1) where the constant i@(1) depends only om (but not
onn).

*1958-2007

TLIRMM, CNRS & Université Montpellier 2, on leave from [ITPAS, Moscow.
alexander.shen@lirmm.fr, sasha.shen@gmail.com. Supported in part by NAFIT EMER-008-01 grant
and RFBR 09-01-00709-a grant

LAs Lachlan writes in[[B], “our reason for studying basic garftbe kind of games he defined)] is that every
theorem ofT (%) [elementary theory of enumerable sets] known at the preseatcan be proved by constructing
an effective winning strategy for a suitable basic game.”

1

http://arxiv.org/abs/1204.0198v4

1 Friedberg’s unique numbering

Our first example is a classical result of R. Friedberg [5 eéistence of unique numberings.

Theorem 1(Friedberg) There exists a partial computable functiof-F) of two natural vari-
ables such that:

(1) F is universal, i.e., every computable functiofi)fof one variable appears among the
functions F : x — F(n,x);

(2) all the functions F are different.

Proof. The proof can be decomposed in two parts. First, we desooilme game and explain
why the existence of a (computable) winning strategy forafrike players makes the statement
of Friedberg’s theorem true. In the second part we cons&rwginning strategy and therefore
finish the proof.

1.1 Game

The game is infinite and is played on two boards. Each boarthisla with an infinite number
of columns (numbered,@, 2. .. from left to right) and rows (numberedD 2, . .. starting from
the top). Each player (we call theAlice andBob, as usual) plays on its own board. The
players alternate. At each move player can fill finitely maalfscat her/his choice with any
natural numbers (s)he wishes. Once a cell is filled, it kebjgsnumber forever (it cannot be
erased).

The game is infinite, so in the limit we have two tabkeffilled by Alice) andB (filled by
Bob). Some cells in the limit tables may remain empty; otleertain natural numbers (one in
each cell). The winner is determined by the following rulebBwvins if

e for each row inA-table there exists an identical rowBatable;
e all the rows inB-table are different.

Lemma 1. Assume that Bob has a computable winning strategy in thisegdinen the state-
ment of Theorem 1 is true.

Proof. A table represents a partial function of two arguments intanahway: the number in
ith row andjth column is the value of the function @n j); if the cell is not filled, the value is
undefined.

Let Alice fill A-table with the values of some universal function (sojtinecell in theith row
is the output ofth program on inpuf). Alice does this at her own pace simulating in parallel
all the programs (and ignoring Bob’s moves). Let Bob apps/dimputable winning strategy
against the described strategy of Alice. Then his table edstesponds to some computable
function B (since the entire process is algorithmic). This functiotisfias both requirements
of Theorenil: sincé-function is universal, every computable function appéaisome row
of A-table and therefore (due to the winning condition) alsodme row ofB-table. SoB is
universal. On the other hand, &}, are different since the rows &-table (containind3,) are
different. O

Remark 1. If Alice had a computable winning strategy in our game, tlaeshent of Theo-
rem[1 would be false. Indeed, let Bob fill his table with thauealof a universal function that
satisfies the requirements of the theofggnoring Alice’s moves Then Alice fills her table in a
computable way and wins. This means that some row of Aligble tloes not appear in Bob’s
table(so his function is not universabr two rows in Bob’s table coincidgso his function does
not satisfy the uniqueness requirement

So we can try the game approach even not knowing for sure wiiwihe game; finding
out who wins in the game would tell us whether the statemethiteotheorem is true or false
(assuming that the winning strategy is computable

1.2 Winning strategy

Lemma 2. Bob has a computable winning strategy in the game described.

Proving this lemma we may completely forget about complitatand just describe the
winning strategy explicitly (this is the main advantage leé game approach). We do this in
two steps: first we consider a simplified version of the ganteexplain how Bob can win in
this simplified version. Then we explain what he should ddafull version of the game.

In the simplified version of the game Bob, except for filliBgable, maykill some rows
in it. The rows that were killed are not taken into account witee winner is determined. So
Bob wins if the final (limit) contents of the tables satisfia@trequirements: (1) for each row
in A-table there exists an identical valid (non-killed) ronBrtable, and (2) all the valid rows
in B-table are different. (According to this definition, afteetrow is killed its content does not
matter.)

To win the game, Bob hires a countable number of assistadtsrakesith assistant re-
sponsible foiith row in A-table. The assistants start their work one by one; let useaiiraith
assistant starts working at momeso at every moment only finitely many assistants are active.
Assistant starts her work brgservingsome row irB-table not reserved by other assistants, and
then continues by copying the current contentglofow of A-table (for which she is responsi-
ble) into this reserved row. Also at some point the assistay decide to kill the current row
reserved by her, reserve a new row, and start copying therdLgontent ofth row into the new
reserved row. Later in the game she may kill the reserved gainaetc.

The instructions for the assistant determine when to kél thserved row. They should
guarantee that

e if ith row in the final (limit) state ofA-table coincides with some previous row, then
ith assistant kills her reserved row infinitely many timesrisoe of her reserved rows
remain active);

e ifitis not the case, i.e., iith row is different from all previous rows in the finAltable,
thenith assistant kills her row only finitely many times (and afteat faithfully copies
ith row of A-table into that row).

If this is arranged, the valid rows d-table correspond to the first occurences of rows with
given contents iA-table, so they are all different, and contain all the rows-¢éble.

The instruction forith assistantkeep track of the number of rows that you have already
killed in some counter k; if in the current state of A-table first k positions in i-th row are

identical to the first k positions of some previous row, ki turrent reserved row in B-table
(and increase the countgif not, continue copying i-th row into the current row.

Let us see why these instructions indeed have the requimgzbgres. Imagine that in the
limit state ofA-table the rowi is the first row with given content, i.e., is different from tide
previous rows. For each of the previous rows let us selectimsdme position (column) where
the rows differ, and consider the momdnivhen these positions reach their final states. Let
N be the maximum of the selected columns (in all previous ro#er stepT theith row in
A-table differs from all previous rows in one of the fifdtpositions, so if the counter of killed
rows exceedsl, no more killings are possible (for this assistant).

On the other hand, assume tix assistant kills her row finitely many times aNds the
maximal value of her counter. Aftét is reached, the contents ith row in A-table is always
different from the previous rows in one of the firétpositions, and the same is true in the limit
(since this rectangle reaches its limit state at some mgment

So Bob can win in the simplified game, and to finish the proof emima 2 we need to
explain how Bob can refrain from killing and still win the gam

Let us say that a row isddif it contains a finite odd number of non-empty cells. Bob will
now ignore odd rows of-table and at the same time guarantee that all possible og(tbere
are countably many possibilities) appeaBhtable exactly once. We may assume now without
loss of generality that odd rows never appeafitable: if Alice adds some element in a row
making this row odd, this element is ignored by Bob until &liwants to add another element
in this row, and then the pair is added. This makesAHable that Bob sees slightly different
from what Alice actually does, but all the rows in the limtable that are not odd (i.e., are
infinite or have even number of filled cells) will get throughard Bob separately takes care
of odd rows.

Now the instructions for assistants change: instead ahgiBome row, she should fill some
cells in this row making it odd, and ensure that this odd romeiw (different from all other odd
rows of the currenB-table). After that, this row is considered like if it werdl&d (no more
changes). This guarantees that all non-odd row&-tatble appear iB-table exactly once.

Also Bob hires an additional assistant who ensures thataasiple odd rows appear in
B-table: she looks at all the possibilities one by one; if smdd row has not appeared yet,
she reserves some row and puts the desired content thelé&e(Other assistants, she reserves
more and more rows.) This behavior guarantees that all lplessdd rows appear iB-table
exactly once. (Recall that other assistants also avoiditipes among odd rows.) Lemnia 2
and Theorernl1 are proven. O

Remark 2. Martin Kummer in his not¢6] observes that the property “i-th enumerable set is
different from all preceding ones” &-enumerable and therefore the set of minimal indices can
be represented as the range of a limit-computable funcfitws remark can be used instead of
explicit construction, though it is less adapted to the gaersion.

2 Total conditional complexity

In this section we switch from the general computabilityatyeto the algorithmic information
theory and compare the conditional complexitgx|y) and the minimal length of the program
of atotal function that mapy to x. The latter quantity may be called “total conditional com-

plexity” (see, e.g.,[[1].) It turns out that total conditalrcomplexityCT(x|y) can be much
bigger thanC(x]y). But let us recall first the definitions.

The conditional complexityf a binary stringx relative to a binary string (a condition
is defined as the length of the shortest program that mdapx. The definition depends on
the choice of the programming language, and one shouldtsalaaptimal one that makes the
complexity minimal (up td(1) additive term). When the conditignis empty, we get (uncon-
ditional plain) complexity ok. See, e.g./[13] for more details. The conditional compeaf
x relative toy is denoted byC (x|y); the unconditional complexity ofis denoted byC (x).

It is easy to see thaf (x|y) can also be defined as the minincalmplexityof a program
that mapg to x. (This definition coincides with the previous one upgd(l) additive term; any
programming language that allows effective translationsfother programming languages
can be used.) Butin some applications (e.g., in algorittstaitistics, see [15]) we are interested
in total programs, i.e. programs that terminate on every input. kedefineCT(x|y) as the
minimal complexity of atotal program that mapg to x. In general, this restriction could
increase complexity, but how significant could be this iase® It turns out that these two
guantities may differ drastically, as the following simptheorem shows (this observation was
made by several people independently; the first publicasigmobably [1, Section 6.1]).

Theorem 2. For every n there exist two stringg &nd y, of length n such that G,|yn) = O(1)
but CT(Xn|yn) > n.

Proof. To prove this theorem, consider a ga@e(for eachn). In this game Alice constructs a
partial functionA from B" to B", i.e., a function defined on (some)it strings, whose values
are alsan-bit strings. Bob constructs a liB, . . ., B of total functions of typéB" — B". (Here
B ={0,1}.)

The players alternate; at each move Alice can add sevenagstio the domain of and
choose some values fér on these strings; the existing values cannot be changed.c&ob
add some total functions to the list, but the total lengthha list should remain less than
2", The players can also leave their data unchanged; the ghmggtt infinite by definition,
is essentially finite since only finite number of nontriviabwes is possible. The winner is
determined as follows: Alice wins if in the limit state thepests an-bit stringy such that\(y)
is defined and is different from &y (y), ..., Bk(y).

Lemma 3. Alice has a computabl@iniformly in) winning strategy in this gan%.

Before proving this lemma, let us explain why it proves Theeal2. Let (for eveny) Alice
play against the following strategy of Bob: he just enumesatll the total functions of type
B" — B" that have complexity less than and adds them to the list when they appear. (As
in the previous section, Bob does not really care about Aliceves.) The behavior of Alice
is then also computable since she plays a computable stratggnt a computable opponent.
Let y, be the string where Alice wins, and Igt be equal toA(y,) whereA is the function
constructed by Alice.

It is easy to see thal (xn|yn) = O(1); indeed, knowingy,, we known, can simulate the
game, and finck, during this simulation. On the other hand, if there were altfinction of
complexity less than that mapgy, to x,, then this function would be in the list and Bob would
win.

2Since the game is effectively finite, in fact the existenceaafinning strategy implies the existence of a
computable one. But it is easy to describe the computalaeegly explicitly.

5

So itremains to prove the lemma by showing the strategy fmeAlT his strategy is straight-
forward: first Alice selects somgand says tha#\(y) is equal to some. (This choice can be
done in arbitrary way, if Bob has not selected any functiogis we may always assume it is
the case by postponing the first move of Bob; the timing is mgtdrtant in this game.) Then
Alice waits until one of Bob’s functions mapsto x. This may never happen; in this case
Alice does nothing else and wins witrandy. But if this happens, Alice selects anotlyaand
choosex that is different fromB4(y),...,Bk(y) for all total functionsBs, ..., By that are cur-
rently in Bob's list. Since there are less thdht@tal functions in the list, it is always possible.
Also, since Bob can make at most-2 1 nontrivial moves, Alice will not run out of strings
Lemmad3 and theorem 2 are proven. O

A well-known result of Bennett, Gacs, Li, Vitanyi and Zurf2] says that ifC(x|y) and
C(y|x) are small (do not exceed sorkg there exists a program of complexity at mést
O(logk) that maps<toy and at the same time mapso x (given an additional advice bit that
says which of these two tasks it should perform). The nagyuaktion arises: is a similar state-
ment true for total conditional complexities and compugdtijections? The (partly negative)
answer is provided by the following theorem (a sketch of itsopis given in [10], but some
important details are missing there):

Theorem 3. Let x and y be two binary strings of length at most n. Then thrigts a program
t that computes a permutation of the set of all binary strjmgaps x to y and

C(t) < CT(x]y) + CT(y|x) + O(logn).

This bound cannot be improved significantly: for every k asdeh that > 2k there exist two
strings x and y of length n such tha{x,C(y) < k+ O(logn) but any program for a bijection
that maps x to y has complexity at le@kt— O(1).

Note the difference with non-total result mentioned earlimow instead ofmaximumof
C(x|y) andC(y|x) we need theisum

Proof. The first part is simple. Having two total programpgmappingx to y) andq (mapping

y to X) and knowingn, we compute a one-to-one correspondence between two s&tisngfs

of length at mosh: stringu corresponds t@ if p(u) = v andq(v) = u at the same time. (This
correspondence can be effectively computed as a finite plgewe bothp and g are total
according to our assumption.) Then we extend this corredgrure to a permutation of the set
of all strings of length at most, one more extension gives a computable permutation of the se
of all binary strings (we may assume, for example, that alfjkr strings are mapped to itself).
The progant obtained in this way can be effectively constructed gipeq andn, so we get

the required bound. (Note that bd®iT (x|y) andCT(y|x) do not exceed, therefore forming a
pair from p andq can be done witl®(logn)-overhead.)

For the second part, we again consider a gameXlaetdY be sets that contaif'2lements
(recall thatn > 2k). Alice canmark some elements iX or Y, not more than ®elements in
each set. Bob can list (sequentially) some bijections beteandY, at most 22 bijections.
Winning condition: Bob wins if for every marked elemerd X and for every marked element
y € Y there exists a bijection in the list that mapt y.

It is easy to see that Bob can win 22 is replaced by 2: when Alice marks new ele-
ments, he forms a bijection for every new pair of marked elgsyend adds all these bijections
to the list; in total there are at most-2X such pairs. But %2 bijections are not enough:

6

Lemma 4. Alice has a winning strategy in this game.

Let us explain why this is enough to prove the theorem. X et Y = B" (the set ofn-bit
strings). Let Alice play against Bob who generates all prows of complexity less thark2- 2
and runs them (in parallel) on all elementsxgfwhen he finds that some program computes a
bijection betweerX andY, this bijection is added to the list. Since Alice wins, thare some
marked elementsandy that are not connected by any bijection in the list. Thesmetds are
determined by, k, and their ordinal number in the enumeration; the latteramancoded bi
bits since there is at most tnarked elements in each set (so we@@bgn) +k bits in total).

This argument assumes that Alice’s strategy is computabdée g andk; as before, we may
note that existence of some strategy implies the existehaecomputable one, or look at the
actual strategy below.

It remains to show a (computable) winning strategy for Ali&he starts by marking arbi-
trary elementsx; € X andy; € Y and then waits until Bob provides a bijection that connects
them. After that, Alice chooses (again arbitrarily) somenakntx, £ x; and waits untilx, is
connected witly; (Bob needs a new bijection for that, since the old one cosnecndy;).
Then Alice switches t&¢ and chooses a new elemegtnot connected txy, xo by existing
bijections, and waits until Bob adds two new bijections axtimgy, to x; andx,. Then she
continues in the same way, alternating betweandY. At each step she takes an element
not connected by existing bijections to existing elememntshe other side. If Alice is able to
continue this process, then for each new pair of marked eles@enew bijection is needed, so
the total number of bijections should be at le&t 2

Things are not so simple, however: it may happen that all efgsnofX (orY) are already
connected to some marked elemBni Alice cannot choosec X that is not connected to
any marked element of by any listed bijection. However, Alice can get at least lndlhew
pairs each time. Indeed, assume that she selects an elemxern¢t us show that she can select
an element that is connected to less than half of marked elsneY. Each marked element
in'Y is connected to at mos€9 2 elements ifX, so the probability that a (uniformly) random
element inX is connected to random marked elemerY iis at most 4. Therefore, for some
element inX only 1/4 (or less) marked elementsYnare connected to it, and Alice may choose
this element. This argument saves at least half of the psor#he total number of bijections
needed to cover all pairs is at leadf 2, more than Bob has. Lemma is proven. O

3 Epstein—Levin theorem

In this section we discuss a game-theoretic interpretatfan important recent result of Ep-
stein and Levin[[4]. This result can be considered as an siirrof some previous observa-
tions made by Vereshchagin (s€el[15]). Let us first recallesaotions from the algorithmic
information theory.

For a finite objectx one may consider two quantities. The first one, ¢benplexityof X,
shows how many bits we need to descritesing an optimal description method). The second
one,a priori probability of x, measures how probable is the appearanceinfa (universal)
algorithmic random process. The first approach goes baclotmégorov while the second

3There are & bijections and ® marked elements, so at most2lements can be connected; we know only
thatn is greater thank not .

one was suggested earlier by Solomofofihe relation between these two notions in a most
clean form was established by Levin and later by Chaitin [8ff®r more details).

For that purpose Levin modified the notion of complexity amaidducedprefix complexity
K (x) where programs (descriptions) satisfy an additional pitgp& p is a program that out-
putsx, then every extension gf (every string having prefiy) also outputx. (Chaitin used
another restriction: the set of programs should be preég;fi.e., none of the programs is a
prefix of another one; though it is a significantly differesstriction, it leads to the same notion
of complexity up toO(1) additive term.)

The notion of a priori probability can be formally defined hretfollowing way. Consider
a randomized algorithnvl without input that outputs some natural number and stopse Th
output number depends on the internal random bits (fair tamees) byM. For everyx there
is some probabilitymy to getx as output. The sur my does not exceed 1, it can be less if
the machineM performs a non-terminating computation with positive doility. In this way
every machinéM corresponds to some function— my. There exists ainiversalmachineM
of this type, i.e., the machine for which functian— my is maximal up to a constant factor.
For exampleM can start by choosing a random machine in such a way that eherge has
positive probability, and then simulate the chosen machivenow fix some universal machine
M and call the probabilityny to getx on its outpuia priori probability of x.

The relation between prefix complexity and a priory prolbgbis quite close: Levin and
Chaitin have shown th#t (x) = —log, my+ O(1). However, the situation changes if we extend
prefix complexity and a priori probability to sets. L¢tbe a set of natural numbers. Then we
can consider two quantities that measure the difficulty afsk tproduce some elementXf:

e complexityof X, defined as the minimal length of a program that produces stemeent
in X;

e a priori probability of X, the probability to get some element ¥fas an output of the
universal machin/.

As we have mentioned, for singletons the complexity coiesigith the minus logarithm of a
priori probability up toO(1) additive term. For an arbitrary set of integers this is noertbe
case: complexity can differ significantly from the minusadoighm of a priori probability. In
other words, for an arbitrary s&tthe quantities

maxmy and Z(My
Xe

XeX

(the first one corresponds to the complexityXgfthe second one is a priori probability X
could be very different. For example Xfis the set of strings of lengtithat have complexity
close ton, the first quantity is rather small (since ai} are close to 2" by construction) while
the second one is quite big (a string chosen randomly withe@so the uniform distribution
onn-bit strings, has complexity close towith high probability).

Epstein—Levin theorem says that such a big differenoetpossible if the seX is stochas-
tic. The notion of a stochastic object was introduced in therélguoic statistics. A finite object
X (in our case, a finite set of strings) is callswchastiaf, informally speaking X is a “typ-
ical” representative of some “simple” probability disuition. This means that there exist a
probability distributionP with finite domain (containing() and rational probabilities such that

4Solomonoff also mentioned complexity as a technical tooiewhere in his paper.

8

() P has small complexity, and (2) the randomness deficienéywith respect td°, defined as
—logP(X) — K(X]|P), is small. (Note that here we speak about complexitX @ndP, where
X is a finite set of strings, arfédis a distribution on finite sets of strings. These notionsnk
defined, since the complexity of a finite object does not demerthe choice of its computable
encoding, up t@(1) additive term.) Herd (X|P) stands forconditionalprefix complexity of
X givenP, see([13] for details.

Epstein—Levin theorem is essentially a result about sompe tf games (we call them
Epstein—Levin gamégs To define such a game, fix a finite bipartite grdpht L x R with
left partL and right parR. A probability distributionP on R with rational values is also fixed,
as well as three parameters: some natural nuikbgme natural numbérand some positive
rational numbeb. After all these objects are fixed, we consider the follongagne.

Alice assigns some rationeleightsto vertices inL. Initially all the weights are zeros, but
Alice can increase them during the game. The total weight @he sum of weights) should
never exceed 1. Bob canarksome vertices on the left and some vertices on the right.r Afte
a vertex is marked, it remains marked forever. The resbrstifor Bob: he can mark at most
| vertices on the left, and the totBtprobability of marked vertices on the right should be at
mostd. The winner is determined as follows: Bob wins if every veg®n the right for which
the (limit) total weight of all itd_-neighbors exceeds, either is marked itself (at some point),
or has a marked (at some point) neighbor.

Evidently, the task of Bob becomes harddraf é decrease (he has less freedom in marking
vertices), and becomes easiek ilecreases (he cares about less vertices). So the gkeatdr
the smallerd is, the biggel is needed by Bob to win. The following lemma gives a bound
(with some absolute constant@notation):

Lemma 5. For | = O(2¥log(1/6) Bob has a computable winning strategy in the described
game.

Before proving this lemma, let us explain the connectionveen this game and the state-
ment of Epstein—Levin theorem. Vertices khare finite sets of integers; vertices linare
integers, and the edges correspondieelation. Alice’s weights are a priori probabilities of
integers (more precisely, increasing approximations &mth The distributior on R is a
simple distribution (on a finite familR of finite sets) that is assumed to makdfrom Levin—
Epstein theorem) stochastic. Bob may markbut this would make it non-random with respect
to P (marked vertices form B-small subset and therefore all have big randomness defigien
so Epstein and Levin do not need to care ab¢wany more. IfX is not marked and has big
total weight (= the total a priori probability) is guaranteed to have a marked neighbor. This
means that some elementXfis marked and therefore has small complexity (since thexe ar
only few marked elements); this is what Epstein—Levin teaosays. (Of course, one needs to
use some specific bounds instead of “small” and “large” &te.provide the exact statements
after the proof of the lemma.)

Proof. To prove the existence of a winning strategy for Bob, we usefdlowing (quite un-
usual) type of argument: we exhibit a simgebabilistic strategy for Bob that guarantees
some positive probability of winning against any strate§yAlice. Since the game is essen-
tially a finite game with full information (see the commentstee end of the proof about how
to make it really finite), either Alice or Bob have a winningageégy. And if Alice had one, no
probabilistic strategy for Bob could have a positive praligiof winning.

9

Let us describe this strategy for Bob. It is rather simpléili€e increases weight of some
vertexx in L by an additionale > 0, Bob responds by tossing a coin and markingith
probabilityc2ke, while ¢ > 1 is some constant to be chosen later. We need also to spduiy w
Bob does ifc2ke > 1 (this always happens i is 2K or more). In this case Bob marksfor
sure. Note also that without loss of generality we may asdhateAlice increases weights one
at a time, since we can split her move into a sequence of moves.

We have explained how Bob marksvertices; if at some point this does not help for some
R-vertex, i.e., this vertex has total weight at leasf But no marked neighbors, Bob immedi-
ately marks thigR-vertex (as well as all other vertices with this property).

The probabilistic strategy for Bob is described, and we rieansider some (determinis-
tic) strategyr for Alice and show that the probability of winning the gameBwb (for suitable
c, see below about the choice dfis positive when playing against. By construction, there
are two reasons why Bob could lose the game:

e the total measure of marké&¥vertices exceeds;
o the number of markeb-vertices exceeds

To show that with positive probability none of this eventpp@n, we ensure that probability of
each eventis less tharfd. For that we show that the expectedneasure of markeRB-vertices
is less thard /2 and the expected number of markedertices is less thaly 2.

Let us fix somey and estimate the probability fgrto be marked by Bob (= to have no
marked neighbors when the sum of weights/sfneighbors achieves®). Assume that the
weights of neighbors of were increased by, ..., & during the game, and noywe; > 2k
After each increase the corresponding neighborwés marked with probabilitg2¥e;, so the
probability that all the neighbors remain not marked, dasserceed

(1—cep) ... (1—cXey) < e P (Etta) < gc

(recall that(1—t) < e ' and thaty & > 2-K). Therefore for every measuRethe expectedp-
measure of marked vertices on the right (the weighted aeesbgumbers not exceedimg®)
does not exceed °. So it is enough to let be In(1/0) + O(1).

In fact, this picture is oversimplified: the estimate forlpability should be done more care-
fully, since the values ofy, . . ., &, may depend on Bob’s moves. The situation can be described
as follows: our opponent (following some probabilisti@ségy) tells us some numbersih1]

(one by one). After the opponent names sanee perform random coin tossing with proba-
bility of success. Then for everyt the probability of the event “at the moment when the sum
of numbers exceeds we still have no successful trials” does not exceeld (To prove this
statement formally, we need a backward induction in thedfgmssibilities.)

The expected number of markéevertices can be estimated in the same way. Here the
opponent also gives us some numbers whose sum is guaraotdedrceed some(t = c2X in
our case), and we use them as probabilities of success fdomanoin tosses. Similar argument
shows that the expected number of successes does not éxddemeed = c2¢ < 1/2, so we
takel = c2€t2 = 2¢+2(In(1/8) 4+ 0O(1)) = O(2log(1/9)).

To finish the proof of the lemma, one last remark is needed. @kenour arguments (a
transition from a probabilistic strategy to a determimigine) correct, we need to make the
game finite. One may assume that current weights of verticéseleft all have the form2"
for some integem (replacing weights by approximations from below, we can pensate for

10

an additional factor of 2 by changirgby 1). Still the game is not finite, since Alice can start
with very small weights. However, this is not important: tvaph is finite, and all very small
weights can be replaced by some® If 2=™M.#_ < 1, then the sum of weights still does not
exceed 2, and this again is a constant factor.

O

Now we can apply this Lemma to prove Epstein—Levin theoreet uss first give exact def-
initions. A finite objectX is calleda-B-stochastidf there exists a finite probability distribution
P (with finite support and rational values, so it is a finite abjesuch that

e K(P) does not exceed;
e the deficiencyd(X|P), defined as-logP(X) — K(X|P), does not exceefl.

Theorem 4(Epstein—Levin) If a finite set X isx-f-stochastic, and its total a priori probability
Y xex My exceed® X, then X contains some element x such that

K(x) < k+K(Kk)+logK (k) +a +0O(logB) + O(1).

The sumy,.x mx can be callech priori probability of the problem “produce some el-
ement ofX”, and minex K(X) can be called prefix complexity of the same problem. The
Epstein—Levin theorem guarantees thatdeB-stochastic setX with smalla andf the prefix
complexity is logarithmically close to the minus logaritloina priori probability.

Proof. We follow the plan outlined above. LEBtbe the finite probability distribution that makes
X stochastic. This means thigtP) < a andd(X|P) = —logP(X) — K(X|P) < 8. Consider
Epstein—Levin game wheRis the support oP, the left-hand sidg is the union of all sets iR
and edges connect each et Rto all its elements. To describe the game completely, we need
to specify parametels |, andd. The parametek is taken from the statement of our theorem,;
5 = 2-9 whered will be chosen later, and= O(2Xlog(1/5)) = O(d2¥) is determined by
andd as described in Lemna 5. (This guarantees that Bob has angistrategy in the game.)
Then we let Bob play in this game against Alice who assigngh@limit) weightmy to every
elementx € L.

We will choosed in such a way that all marked elementsRihave deficiency greater that
B; our assumptions then guarantee tKas$ not marked. Lemnid 5 then guarantees ¥hts a
marked neighbor, i.e., that some elemenXa$ marked. It remains to estimate the complexity
of marked elements ih.

Why marked elements iR have high deficiency? We know that the total measure of marked
elements irR does not exceed 3. Consider the semimeasuPéthat equals 9P on marked
elements and 0 otherwise’ can be enumeratedH, d, andk are given, so

K(U|P,d,k) < —logP'(U) +O(1)

for everyU in R. If U is not marked, this is trivial (the right hand side is infipjteor marked
U we have
KU|Pd,k) < —logP(U)—-d+0(1)

and therefore
K(UI|P) < —logP(U) —d+K(d) +K(k)+0O(1),

11

SO
d(U[P) > d — K (d) — K (k) — O(1)

for all markedU in R. So wee need the inequality
d—K(d)-K(k) —0O(1) >
to ensure thaX is not marked. This is guaranteed for sure if
d=2(B+K(k))+0O(1)

(we do not care about constant factodisince only logl will be used in the complexity bound
below).

After d is chosen, we need to estimate the complexity of marked elenireL.. They can
be enumerated give®, k, d and there is at mo€(2*d) of them, so for every markede L we
have

K(x|P,k,d) <k+logd+0O(1)
and
K(X) <K(P)+K(k,d)+k+logd+0O(1).
Recalling thaK (P) < o andd = 2(B + K (k)) + O(1), we get

K(x) <a+K(kK(k),B)+k+logB +logK (k) +O(1) <
<a+K(k K(K)+K(B)+k+logB +IlogK (k) +O(1);
it remains to note tha (k, K (k)) = K (k) and thatk () = O(logf3). O

4 Information distance

Consider the following problem. Leh be some constant. Given a strirg and integem,
we want to find stringy, ..., xm such thatC (x;|xj) = n+ O(1) for all pairs of different, j in
the range 0O...,m. (Note that both andj can be equal to 0). This is possible onlyif has
high enough complexity, at least sinceC (xg|x;) is bounded bYC(Xo). It turns out that such
X1,...,Xm indeed exist ifC(Xp) is high enough (though the required complexitygfs greater
thann), and the constant hidden @(1)-notation does not depend ar{but depends om).

This statement is non-trivial even far= 1: it says that for every and for every string
of high enough complexity there exists a stringuch that botlC (x|y) andC(y|x) are equal to
n+ O(1). This special case was considered in [16], the conditioretieeC (xg) > 2n (which
is better than provided by our general result). Later [12]feeent technique (using some
topological arguments) was used to improve this result &wgevghatC (xg) > n+ O(logn) is
enough.

Here is the exact statement that specifies also the dependé®¢l)-constant omm:

Theorem 5. For every m and n and for every binary stringsuch that
C (%) > n(m? +m-+ 1) + O(logm)
there exist strings. . ., Xm such that
n < C(xi|xj) < n+0O(logm)

for every two differentij € {0,...,m}.

12

Note that the high precision is what makes this theorem nuialt (if an additional term
O(logC(xp)) were allowed, one could take the shortest programxdand replace firsh bits
in it by mindependent random strings).

Proof. Let us explain the game that corresponds to this statemieistplayed on graph with
(m-+1) partsXo, ..., Xm. There are countably many vertices in each paftepresenting possi-
ble values ok;); we will assume that alX; are disjoint copies of the s&t of all binary strings.
As usual, there are two players: Alice and Bob. Alice may emtnertices from different parts
by undirectededges, while Bob can connect themdiyectededges. Alice and Bob make al-
ternating moves; at each move they can add any finite set eseddice can alsmarkvertices
Xg in Xo. The restrictions are:

e Alice may mark at most2"t1+nmm+1) yertices (inXo):;

e for each vertex; € X; and for eachj # i, Alice may have at most(m-+ 1)2" undirected
edges connecting with vertices inX;

e for each vertex; € X; and for eachj # i, Bob should have less thafi @utgoingedges
from x; to vertices inXj. (Note that the number aficomingedges is not bounded.)

The game is infinite. Alice wins if (in the limit) for every nemarked vertexg € Xg there
exist verticesxy, ..., Xm from Xg,..., Xm such that every two verticeg, x; (wherei #) are
connected by an undirected (Alice’s) edge, but not conadayea directed (Bob’s) edge.

Lemma 6. Alice has a computable winning strategy in this game.

It is easy to see how this lemma can be used to prove the stateimagine that Bob draws
an edgex, — x; when he discovers th& (x;j|x;) < n. Then he never violates the restriction.
Alice can computably win against this strategy; every mdnkertex then has small complexity,
since a marked vertex can be described by its ordinal nunnbiiyxei enumeration order. This
ordinal number requires

log(m2MHMNMEL)) — jogm+ O(1) + n+ mPn+nm

bits, and to describe the game we need additi@iidgn) + O(logm) bits to specifym andn,
so we get
C(xo) < n(1+m-+n?) 4+ O(logm) +O(logn).

We want to conclude thag is not marked (since it has high complexity), but the bound we
have is slightly weaker than needed, it has additional t&(togn). To get rid of this term,
we note that (for giverm) the bounds for the number of marked vertices grow expoaknti
with n, so we can describe all marked vertices (for giveand for alln) simultaneously, and
the overhead in the complexity caused by marked verticesrfaller values oh is bounded

by O(1).

For every non-marked verteg there exisixs, ..., Xy that satisfy the winning conditions.
For themC (x;|x;) > n (otherwise Bob would connect them by a directed edge) Gaixgl|x;) <
n+ O(logm), sincex; can be obtained fror if we know i, j, and the ordinal number of
undirected edg&—x; among all the edges that connecto X|, in the order of appearance of
those edges in the game.

13

So it remains to prove the lemma. To make clear the idea ofribef det us first consider
the casan = 1. In this case we deal with two countable sK¥gsand X;, Alice’s degree is
bounded by 21 and the total number of marked vertices should not excé&d 2To explain
Alice’s strategy, let us tell a story first.

Imagine a “marriage agency” whose business is to form gai;s;) of elements € Xg
andx; € X;. After a pair is formed (or at some later moment), each of gathers” (elements
of the pair) may “complain” about the other one. Then the ailissolved and both elements
become free. Later agency can try them with new partners.

The mission of the agency is to provide stable pairs for dx@aly or almost everybody. Of
course, this is not always possible: imagine that some elesmnplains about all partners.
Moreover, even if additionally require that each elemenkesdess thaM complaints, it may
happen that for someall its partners complain abowut(still making less thatM complaints
each), and the agency cannot do muchxfor

However, by clever planning the agency can control the damaagd ensure that

e agency makes at moskRattempts to find a partner for any given element (never trying
the same partnership twice);

e all elements oy, except for at mosti@3 “hopeless” ones, ultimately get a stable part-
nership, and hopeless elements are explicitly marked.

(Note that the last requirement tredisandX; in a non-symmetrical way.)

The agency can achieve its goals using the following styatégst it chooses an arbitrary
bijection betweerXy andX; and creates all corresponding pairs. Then it treats comiglane
by one: if somexy complains about its current partney or vice versa, the paifxo,x1) is
dissolved. Then agency tries to find a new partnexgcmong elements of; with matching
experience

The last requirement is the crucial point of our argumentndéans that in the new pair
the number of complaints made by one partner should be equaktnumber of complaints
received by the other onén this way an unlucky element who was rejectd- 1 times will
get a partner who madé — 1 complaints and therefore is unable to complain again. $oayp
will be rejectedM or more times.

The bad news is that sometimes for an elenxgritom a dissolved pair there is no partner
with matching experience; in this caggis declared “hopeless” and never considered again.
We should estimate the maximal number of hopeless elem@fetsan encode “experience” as
a pair of two integers in rang®, M), so there are at mobt? possible values of this parameter,
and hopeless elements can be divided Mfaclasses. Let us show that in each class there are at
most 2V elements. Since elementsXg andX; change their experience simultaneously (when
a complaint is made), and newly formed pairs are made of nmgg@tements, free elements in
X1 also formM? classes of the same cardinalities. If there are alreAdyh@peless elements
in some class, there are alsM 2natching free elements. New hopeless element in this class
cannot appear since one of there matching free elementsassel to form a new pair. (Recall
that each element can send less taonomplaints and receive less thehcomplaints, so one
of the 2V free elements of matching experience was not tried yet.)

One last remark about the agency’s strategy: we startedmatting infinitely many pairs
(using some bijection betweefy andX;) at once. It is not important, since actual implemen-
tation of this decision can be made gradually (we think alsoate pairs as existing, but they
are not yet informed about that).

14

Now we explain how this story can be transformed into Alicgtiategy in the game de-
scribed. The parametd (bound for the number of complaints) i§;2hen M equals 21
and M3 equals 3"1, as the lemma requires fon= 1. When agency makes a pair, Alice
draws an (undirected) edge between elements of the pairn\tiieepair is dissolved, an edge
(of course) does not disappear, but Alice does not care abaay more, considering only
“active” edges (that correspond to currently existing @aivwhen Bob draws a (directed) edge
x — ythat is parallel to one of the active edges (the undirectge edy), the agency sees that
complains abouwy (and, according to this complaint, dissolves the gay). When Bob draws
an edge that is not parallel to an active edge, this edge maghuntil parallel active edge
appears (corresponding pair is established); then thieddgt becomes a complaint and the
newly formed pair is dissolved. (If Bob draws an edge thatisfel to an old inactive edge of
Alice, this edge never will change anything.) Finally, aggs declaration that some € Xg is
hopeless means that Alice marks

It is easy to see that the agency’s behavior described alaovbectransformed into Alice’s
strategy, so Alice indeed has a (computable) winning gyafier the casen= 1.

After these preparations let us consider the general case.idea remains the same, but
instead of two setXy andX; we now havan-+ 1 componentXg, X1, ..., Xm. Instead of pairs,
we have now cliques made of+ 1 elements, one per component. A participant of a clique
may complain about some other participant, and in this daselique is dissolved (and an
attempt to create a new clique for thg-element of the dissolved one is performed — ag&n
gets a preferential treatment).

The clique is represented by Alice’s edges between all @nehtsm(m+1)/2 edges in
total. A directed Bob’s edge — x; that connects two elementsandx; of one of the currently
active cliques, is understood as a “complaintkoagaintsx;. (Other edges created by Bob are
delayed complaints, as before).

The important change is how the “experience” is defined. Eadex remembens(m+ 1)
non-negative integers corresponding to ordered gaij$. This tuplel = {lpq} (wherep,q e
{0,1,...,m} andp # q) is called an “index” of a vertex. Whex complains about; (both are
elements of the same cliqugy, ..., xm)), all participants of this cliqgue note this and increase
(i, j)-component of their index (initially filled with zeros) beéothe clique is dissolved. Note
the difference: now each elemeqtknows not only how many complaints it madg (s the
number of complaints aboi;-elements) or receivedi(is the number of complaints received
from Xj-elements), but also the number of complaints between etreponents (wherg is
only a witness).

After one elements of a clique complains about another dhelesnents of the clique up-
date their indices, and the clique is dissolved. To find the degue for the elementy € X
from the dissolved clique, we search for free elements wighsame index in all the compo-
nents. Moreover, it is needed that these elements neverseawveomplaints about each other
(but it is OK if some of them were in the same clique, later aligsd because of some other
complaint). If this is possible, a new clique is formed; iftyxg becomes marked (“hopeless”)
and other elements of the dissolved clique remain freei@aitbe cliques).

Since only elements with the same index are combined intues, and the indices are
updated synchronously, the number of free elements (thatotibelong to active clique) is
the same for all components (in general and for each valukeoindex). Note also that all
the numbers in the indices are less thadrfstnce each of them is a number of complaints sent
by somex; to someX;j). When element changes the clique, its index increaseg aome

15

coordinate, so the number of changes is at mgsh+ 1)2", and each change crearesnew
edges adjacent to this element (one per component). So éoy element; and for eachj
there are at mosh(m+-1)2" undirected edges that connegto vertices inX;.

To finish the proof of LemmAl6, it remains to prove the boundtiier number of marked
vertices (= hopeless elements4g). For that we estimate the number of marked vertices of each
index (recall that the number of possible indices is bourte®™ ™D since its components
are less than™. The idea here is simple: if we have many (at leas®2? free vertices of some
index, we can always find a clique (made of them) for everyaxety € Xy of that index that
lost its old clique. Indeed, we find clique elements seqadgtin X;,..., Xy, at every step we
can find a vertex that has no complaints about already sdleetéices and vice versa, since the
number of complaints in both directions is less tha@™Xor each of the components (less than
2" for each direction), and in total less tham2' elements in the next component are unusable
due to previous ones. O

Acknowledgments

Authors are grateful to Leonid Levin, Peter Gacs, BrunovBens, the participants of Kol-
mogorov seminar (Moscow) and all their colleagues in LIRMMoftpellier) and LIAFA
(Paris); special thanks to Rupert Holzl for explaininggiberg’s argument. Robert Soare in-
formed us (at CiE2012, where the preliminary version of gaper [14] was presented) about
A.H. Lachlan’s paper [8] where Lachlan initiated the gamprapch to computability theory
(in slightly different context related to enumerable setgf also[[7]. Lance Fortnow showed
us a proof of Friedberg theorem due to Kummer [6].

References

[1] Bruno BauwensComputability in statistical hypotheses testing, and eletgrizations of
independence and directed influences in time series usitgd{mrov complexityPhD
thesis, Ugent, May 2010.

[2] Charles H. Bennett, Péter Gacs, Ming Li, Paul M.B.aviyi, Wojciech H. Zurek, Ther-
modynamics of computation and information distaremceedings of 25th ACM STQC
p. 21-30 (1993).

[3] Laurent Bienvenu, Alexander Shewlgorithmic information theory and martingales
preprint, arXiv:0906.2614v1 (2009).

[4] Samuel Epstein, Leonid A. Levitgets Have Simple Members
preprint, arXiv:1107.1458v5 (2011).

[5] R. Friedberg, Three theorems on recursive numberihgs, Symbolic Logic23, 309-316
(1958).

[6] Martin Kummer, An easy priority-free proof of a theorermkriedberg,Theoretical Com-
puter Sciencer4, 249-251 (1990).

16

http://arxiv.org/abs/0906.2614
http://arxiv.org/abs/1107.1458

[7] Martin Kummer, The complexity of recursion theoretiongeas, Transactions of the Ameri-
can Mathematical Societ581), 59-86 (2005)

[8] A.H. Lachlan, On some games which are relevant to therthebrecursively enumerable
sets,Annals of Mathemati¢c91(2), 291-310 (1970)

[9] Andrej A. Muchnik, On the basic structures of the destivgptheory of algorithmsSoviet
Math. Dokl, 32, 671-674 (1985).

[10] Andrej A. Muchnik, Ilya Mezhirov, Alexander Shen, Nilay VereshchaginGGame inter-
pretation of Kolmogorov complexitpreprint arXiv:1003.4712v1 (2010).

[11] Nikolay Vereshchagin, Kolmogorov complexity and GanBulletin of the European
Association for Theoretical Computer Sciengé Feb. 2008, 51-83.

[12] Andrei Romashchenko, Alexander Shen, Topologicaliargnts for Kolmogorov com-
plexity, Proceedings of AUTOMATA and JAC 2012 confered&TCS, v. 90, p. 127-132
(2012).

[13] Alexander Shermlgorithmic Information Theory and Kolmogorov Complexifgchnical
Report, Uppsala University, TR2000-034
(www.it.uu.se/research/publications/reports/2008/3

[14] Alexander Shen, Game arguments in computability themd algorithmic information
theory, In: Barry Cooper, Anuj Dawar, and Benedikt Loweit@d, Computability in Eu-
rope 2012 Proceedingsolume 7318 of Lecture Notes in Computer Science, pages 655
666. Springer, 2012

[15] Nikolai K. Vereshchagin, Paul M.B. Vitanyi, Rate Distion and Denoising of Individual
Data Using Kolmogorov ComplexityEEE Transactions on Information Theory6(7),
3438-3454 (July 2010).

[16] Mikhail Vyugin, Information distance and conditionebmplexities,Theoretical Com-
puter Sciencev. 271, no. 1-2, p. 145-150 (2002)

17

http://arxiv.org/abs/1003.4712

	1 Friedberg's unique numbering
	1.1 Game
	1.2 Winning strategy

	2 Total conditional complexity
	3 Epstein–Levin theorem
	4 Information distance

