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Abstract

We provide some examples showing how game-theoretic arguments (the approach that
goes back to Lachlan and was developed by An. Muchnik) can be used in computability
theory and algorithmic information theory. To illustrate this technique, we start with a
proof of a classical result, the unique numbering theorem ofFriedberg, translated to the
game language. Then we provide game-theoretic proofs for three other results: (1) the
gap between conditional complexity and total conditional complexity; (2) Epstein–Levin
theorem relating a priori and prefix complexity for a stochastic set (for which we provide a
new game-theoretic proof) and (3) some result about information distances in algorithmic
information theory (obtained by two of the authors [A.M. andM.V.] several years ago but
not yet published). An extended abstract of this paper appeared in [14].

It often happens that some result in computability theory oralgorithmic information the-
ory is essentially about the existence of a winning strategyin some game. This approach
was considered by A. Lachlan for enumerable sets1; later it was (in different forms) used by
An.A. Muchnik [9, 10, 11]. In Section 1 we illustrate this approach by showing how a clas-
sical result of recursion theory (Friedberg’s theorem on unique numberings) can be translated
into this language. In Section 2 we use game approach to relate total conditional complexity
CT(x|y) (the minimal complexity of atotal program that maps a conditiony to some object
x) and standard conditional complexity (where the program isnot necessarily total). Then in
Section 3 we provide a new game-theoretic proof of a recent result of Epstein and Levin [4].
Finally, in Section 4 we generalize the result of [16] and show that for every natural numbers
m,n and for every stringx0 of sufficiently high complexity one can find stringsx1, . . . ,xm such
that all the conditional complexitiesC(xi|x j) (for all i, j in {0,1,2, . . . ,m} such thati 6= j; note
that 0 is allowed) are equal ton+O(1) where the constant inO(1) depends only onm (but not
on n).
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1As Lachlan writes in [8], “our reason for studying basic games [the kind of games he defined] is that every
theorem ofT(R) [elementary theory of enumerable sets] known at the presenttime can be proved by constructing
an effective winning strategy for a suitable basic game.”
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1 Friedberg’s unique numbering

Our first example is a classical result of R. Friedberg [5]: the existence of unique numberings.

Theorem 1(Friedberg). There exists a partial computable function F(·, ·) of two natural vari-
ables such that:

(1) F is universal, i.e., every computable function f(·) of one variable appears among the
functions Fn : x 7→ F(n,x);

(2) all the functions Fn are different.

Proof. The proof can be decomposed in two parts. First, we describe some game and explain
why the existence of a (computable) winning strategy for oneof the players makes the statement
of Friedberg’s theorem true. In the second part we constructa winning strategy and therefore
finish the proof.

1.1 Game

The game is infinite and is played on two boards. Each board is atable with an infinite number
of columns (numbered 0,1,2. . . from left to right) and rows (numbered 0,1,2, . . . starting from
the top). Each player (we call themAlice andBob, as usual) plays on its own board. The
players alternate. At each move player can fill finitely many cells at her/his choice with any
natural numbers (s)he wishes. Once a cell is filled, it keeps this number forever (it cannot be
erased).

The game is infinite, so in the limit we have two tablesA (filled by Alice) andB (filled by
Bob). Some cells in the limit tables may remain empty; other contain natural numbers (one in
each cell). The winner is determined by the following rule: Bob wins if

• for each row inA-table there exists an identical row inB-table;

• all the rows inB-table are different.

Lemma 1. Assume that Bob has a computable winning strategy in this game. Then the state-
ment of Theorem 1 is true.

Proof. A table represents a partial function of two arguments in a natural way: the number in
ith row andjth column is the value of the function on(i, j); if the cell is not filled, the value is
undefined.

Let Alice fill A-table with the values of some universal function (so thejth cell in theith row
is the output ofith program on inputj). Alice does this at her own pace simulating in parallel
all the programs (and ignoring Bob’s moves). Let Bob apply his computable winning strategy
against the described strategy of Alice. Then his table alsocorresponds to some computable
functionB (since the entire process is algorithmic). This function satisfies both requirements
of Theorem 1: sinceA-function is universal, every computable function appearsin some row
of A-table and therefore (due to the winning condition) also in some row ofB-table. SoB is
universal. On the other hand, allBn are different since the rows ofB-table (containingBn) are
different.
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Remark 1. If Alice had a computable winning strategy in our game, the statement of Theo-
rem 1 would be false. Indeed, let Bob fill his table with the values of a universal function that
satisfies the requirements of the theorem(ignoring Alice’s moves). Then Alice fills her table in a
computable way and wins. This means that some row of Alice’s table does not appear in Bob’s
table(so his function is not universal) or two rows in Bob’s table coincide(so his function does
not satisfy the uniqueness requirement).

So we can try the game approach even not knowing for sure who wins in the game; finding
out who wins in the game would tell us whether the statement ofthe theorem is true or false
(assuming that the winning strategy is computable).

1.2 Winning strategy

Lemma 2. Bob has a computable winning strategy in the game described.

Proving this lemma we may completely forget about computability and just describe the
winning strategy explicitly (this is the main advantage of the game approach). We do this in
two steps: first we consider a simplified version of the game and explain how Bob can win in
this simplified version. Then we explain what he should do in the full version of the game.

In the simplified version of the game Bob, except for fillingB-table, maykill some rows
in it. The rows that were killed are not taken into account when the winner is determined. So
Bob wins if the final (limit) contents of the tables satisfies two requirements: (1) for each row
in A-table there exists an identical valid (non-killed) row inB-table, and (2) all the valid rows
in B-table are different. (According to this definition, after the row is killed its content does not
matter.)

To win the game, Bob hires a countable number of assistants and makesith assistant re-
sponsible forith row in A-table. The assistants start their work one by one; let us agree thatith
assistant starts working at movei, so at every moment only finitely many assistants are active.
Assistant starts her work byreservingsome row inB-table not reserved by other assistants, and
then continues by copying the current contents ofith row ofA-table (for which she is responsi-
ble) into this reserved row. Also at some point the assistantmay decide to kill the current row
reserved by her, reserve a new row, and start copying the current content ofith row into the new
reserved row. Later in the game she may kill the reserved row again, etc.

The instructions for the assistant determine when to kill the reserved row. They should
guarantee that

• if ith row in the final (limit) state ofA-table coincides with some previous row, then
ith assistant kills her reserved row infinitely many times (sonone of her reserved rows
remain active);

• if it is not the case, i.e., ifith row is different from all previous rows in the finalA-table,
then ith assistant kills her row only finitely many times (and afterthat faithfully copies
ith row ofA-table into that row).

If this is arranged, the valid rows ofB-table correspond to the first occurences of rows with
given contents inA-table, so they are all different, and contain all the rows ofA-table.

The instruction forith assistant:keep track of the number of rows that you have already
killed in some counter k; if in the current state of A-table the first k positions in i-th row are
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identical to the first k positions of some previous row, kill the current reserved row in B-table
(and increase the counter); if not, continue copying i-th row into the current row.

Let us see why these instructions indeed have the required properties. Imagine that in the
limit state ofA-table the rowi is the first row with given content, i.e., is different from all the
previous rows. For each of the previous rows let us select andfix some position (column) where
the rows differ, and consider the momentT when these positions reach their final states. Let
N be the maximum of the selected columns (in all previous rows). After stepT the ith row in
A-table differs from all previous rows in one of the firstN positions, so if the counter of killed
rows exceedsN, no more killings are possible (for this assistant).

On the other hand, assume thatith assistant kills her row finitely many times andN is the
maximal value of her counter. AfterN is reached, the contents ofith row in A-table is always
different from the previous rows in one of the firstN positions, and the same is true in the limit
(since this rectangle reaches its limit state at some moment).

So Bob can win in the simplified game, and to finish the proof of Lemma 2 we need to
explain how Bob can refrain from killing and still win the game.

Let us say that a row isodd if it contains a finite odd number of non-empty cells. Bob will
now ignore odd rows ofA-table and at the same time guarantee that all possible odd rows (there
are countably many possibilities) appear inB-table exactly once. We may assume now without
loss of generality that odd rows never appear inA-table: if Alice adds some element in a row
making this row odd, this element is ignored by Bob until Alice wants to add another element
in this row, and then the pair is added. This makes theA-table that Bob sees slightly different
from what Alice actually does, but all the rows in the limitA-table that are not odd (i.e., are
infinite or have even number of filled cells) will get through —and Bob separately takes care
of odd rows.

Now the instructions for assistants change: instead of killing some row, she should fill some
cells in this row making it odd, and ensure that this odd row isnew (different from all other odd
rows of the currentB-table). After that, this row is considered like if it were killed (no more
changes). This guarantees that all non-odd rows ofA-table appear inB-table exactly once.

Also Bob hires an additional assistant who ensures that all possible odd rows appear in
B-table: she looks at all the possibilities one by one; if someodd row has not appeared yet,
she reserves some row and puts the desired content there. (Unlike other assistants, she reserves
more and more rows.) This behavior guarantees that all possible odd rows appear inB-table
exactly once. (Recall that other assistants also avoid repetitions among odd rows.) Lemma 2
and Theorem 1 are proven.

Remark 2. Martin Kummer in his note[6] observes that the property “i-th enumerable set is
different from all preceding ones” is0′-enumerable and therefore the set of minimal indices can
be represented as the range of a limit-computable function.This remark can be used instead of
explicit construction, though it is less adapted to the gameversion.

2 Total conditional complexity

In this section we switch from the general computability theory to the algorithmic information
theory and compare the conditional complexityC(x|y) and the minimal length of the program
of a total function that mapsy to x. The latter quantity may be called “total conditional com-
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plexity” (see, e.g., [1].) It turns out that total conditional complexityCT(x|y) can be much
bigger thanC(x|y). But let us recall first the definitions.

The conditional complexityof a binary stringx relative to a binary stringy (a condition)
is defined as the length of the shortest program that mapsy to x. The definition depends on
the choice of the programming language, and one should select an optimal one that makes the
complexity minimal (up toO(1) additive term). When the conditiony is empty, we get (uncon-
ditional plain) complexity ofx. See, e.g., [13] for more details. The conditional complexity of
x relative toy is denoted byC(x|y); the unconditional complexity ofx is denoted byC(x).

It is easy to see thatC(x|y) can also be defined as the minimalcomplexityof a program
that mapsy to x. (This definition coincides with the previous one up toO(1) additive term; any
programming language that allows effective translations from other programming languages
can be used.) But in some applications (e.g., in algorithmicstatistics, see [15]) we are interested
in total programs, i.e. programs that terminate on every input. Let us defineCT(x|y) as the
minimal complexity of atotal program that mapsy to x. In general, this restriction could
increase complexity, but how significant could be this increase? It turns out that these two
quantities may differ drastically, as the following simpletheorem shows (this observation was
made by several people independently; the first publicationis probably [1, Section 6.1]).

Theorem 2. For every n there exist two strings xn and yn of length n such that C(xn|yn) = O(1)
but CT(xn|yn)≥ n.

Proof. To prove this theorem, consider a gameGn (for eachn). In this game Alice constructs a
partial functionA from B

n to B
n, i.e., a function defined on (some)n-bit strings, whose values

are alson-bit strings. Bob constructs a listB1, . . . ,Bk of total functions of typeBn → B
n. (Here

B= {0,1}.)
The players alternate; at each move Alice can add several strings to the domain ofA and

choose some values forA on these strings; the existing values cannot be changed. Bobcan
add some total functions to the list, but the total length of the list should remain less than
2n. The players can also leave their data unchanged; the game, though infinite by definition,
is essentially finite since only finite number of nontrivial moves is possible. The winner is
determined as follows: Alice wins if in the limit state thereexists an-bit stringy such thatA(y)
is defined and is different from allB1(y), . . . ,Bk(y).

Lemma 3. Alice has a computable(uniformly in n) winning strategy in this game.2

Before proving this lemma, let us explain why it proves Theorem 2. Let (for everyn) Alice
play against the following strategy of Bob: he just enumerates all the total functions of type
B

n → B
n that have complexity less thann, and adds them to the list when they appear. (As

in the previous section, Bob does not really care about Alice’s moves.) The behavior of Alice
is then also computable since she plays a computable strategy againt a computable opponent.
Let yn be the string where Alice wins, and letxn be equal toA(yn) whereA is the function
constructed by Alice.

It is easy to see thatC(xn|yn) = O(1); indeed, knowingyn, we known, can simulate the
game, and findxn during this simulation. On the other hand, if there were a total function of
complexity less thann that mapsyn to xn, then this function would be in the list and Bob would
win.

2Since the game is effectively finite, in fact the existence ofa winning strategy implies the existence of a
computable one. But it is easy to describe the computable strategy explicitly.
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So it remains to prove the lemma by showing the strategy for Alice. This strategy is straight-
forward: first Alice selects somey and says thatA(y) is equal to somex. (This choice can be
done in arbitrary way, if Bob has not selected any functions yet; we may always assume it is
the case by postponing the first move of Bob; the timing is not important in this game.) Then
Alice waits until one of Bob’s functions mapsy to x. This may never happen; in this case
Alice does nothing else and wins withx andy. But if this happens, Alice selects anothery and
choosesx that is different fromB1(y), . . . ,Bk(y) for all total functionsB1, . . . ,Bk that are cur-
rently in Bob’s list. Since there are less than 2n total functions in the list, it is always possible.
Also, since Bob can make at most 2n−1 nontrivial moves, Alice will not run out of stringsy.
Lemma 3 and theorem 2 are proven.

A well-known result of Bennett, Gács, Li, Vitányi and Zurek [2] says that ifC(x|y) and
C(y|x) are small (do not exceed somek), there exists a program of complexity at mostk+
O(logk) that mapsx to y and at the same time mapsy to x (given an additional advice bit that
says which of these two tasks it should perform). The naturalquestion arises: is a similar state-
ment true for total conditional complexities and computable bijections? The (partly negative)
answer is provided by the following theorem (a sketch of its proof is given in [10], but some
important details are missing there):

Theorem 3. Let x and y be two binary strings of length at most n. Then thereexists a program
t that computes a permutation of the set of all binary strings, maps x to y and

C(t)≤ CT(x|y)+CT(y|x)+O(logn).

This bound cannot be improved significantly: for every k and nsuch that n> 2k there exist two
strings x and y of length n such that C(x),C(y)≤ k+O(logn) but any program for a bijection
that maps x to y has complexity at least2k−O(1).

Note the difference with non-total result mentioned earlier: now instead ofmaximumof
C(x|y) andC(y|x) we need theirsum.

Proof. The first part is simple. Having two total programsp (mappingx to y) andq (mapping
y to x) and knowingn, we compute a one-to-one correspondence between two sets ofstrings
of length at mostn: stringu corresponds tov if p(u) = v andq(v) = u at the same time. (This
correspondence can be effectively computed as a finite object, since bothp and q are total
according to our assumption.) Then we extend this correspondence to a permutation of the set
of all strings of length at mostn; one more extension gives a computable permutation of the set
of all binary strings (we may assume, for example, that all longer strings are mapped to itself).
The progamt obtained in this way can be effectively constructed givenp, q andn, so we get
the required bound. (Note that bothCT(x|y) andCT(y|x) do not exceedn, therefore forming a
pair from p andq can be done withO(logn)-overhead.)

For the second part, we again consider a game. LetX andY be sets that contain 2n elements
(recall thatn > 2k). Alice canmark some elements inX or Y, not more than 2k elements in
each set. Bob can list (sequentially) some bijections betweenX andY, at most 22k−2 bijections.
Winning condition: Bob wins if for every marked elementx∈ X and for every marked element
y∈Y there exists a bijection in the list that mapsx to y.

It is easy to see that Bob can win if 22k−2 is replaced by 22k: when Alice marks new ele-
ments, he forms a bijection for every new pair of marked elements, and adds all these bijections
to the list; in total there are at most 2k ·2k such pairs. But 22k−2 bijections are not enough:
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Lemma 4. Alice has a winning strategy in this game.

Let us explain why this is enough to prove the theorem. LetX = Y = B
n (the set ofn-bit

strings). Let Alice play against Bob who generates all programs of complexity less than 2k−2
and runs them (in parallel) on all elements ofX; when he finds that some program computes a
bijection betweenX andY, this bijection is added to the list. Since Alice wins, thereare some
marked elementsx andy that are not connected by any bijection in the list. These elements are
determined byn, k, and their ordinal number in the enumeration; the latter canbe encoded byk
bits since there is at most 2k marked elements in each set (so we getO(logn)+k bits in total).

This argument assumes that Alice’s strategy is computable givenn andk; as before, we may
note that existence of some strategy implies the existence of a computable one, or look at the
actual strategy below.

It remains to show a (computable) winning strategy for Alice. She starts by marking arbi-
trary elementsx1 ∈ X andy1 ∈ Y and then waits until Bob provides a bijection that connects
them. After that, Alice chooses (again arbitrarily) some elementx2 6= x1 and waits untilx2 is
connected withy1 (Bob needs a new bijection for that, since the old one connects x1 andy1).
Then Alice switches toY and chooses a new elementy2 not connected tox1, x2 by existing
bijections, and waits until Bob adds two new bijections connectingy2 to x1 andx2. Then she
continues in the same way, alternating betweenX andY. At each step she takes an element
not connected by existing bijections to existing elements on the other side. If Alice is able to
continue this process, then for each new pair of marked elements a new bijection is needed, so
the total number of bijections should be at least 22k.

Things are not so simple, however: it may happen that all elements ofX (or Y) are already
connected to some marked elements3, so Alice cannot choosex ∈ X that is not connected to
any marked element ofY by any listed bijection. However, Alice can get at least halfof new
pairs each time. Indeed, assume that she selects an element in X; let us show that she can select
an element that is connected to less than half of marked elements inY. Each marked element
in Y is connected to at most 22k−2 elements inX, so the probability that a (uniformly) random
element inX is connected to random marked element inY is at most 1/4. Therefore, for some
element inX only 1/4 (or less) marked elements inY are connected to it, and Alice may choose
this element. This argument saves at least half of the pairs,so the total number of bijections
needed to cover all pairs is at least 22k−1, more than Bob has. Lemma is proven.

3 Epstein–Levin theorem

In this section we discuss a game-theoretic interpretationof an important recent result of Ep-
stein and Levin [4]. This result can be considered as an extension of some previous observa-
tions made by Vereshchagin (see [15]). Let us first recall some notions from the algorithmic
information theory.

For a finite objectx one may consider two quantities. The first one, thecomplexityof x,
shows how many bits we need to describex (using an optimal description method). The second
one,a priori probability of x, measures how probable is the appearance ofx in a (universal)
algorithmic random process. The first approach goes back to Kolmogorov while the second

3There are 22k bijections and 2k marked elements, so at most 23k elements can be connected; we know only
thatn is greater than 2k, not 3k.
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one was suggested earlier by Solomonoff.4 The relation between these two notions in a most
clean form was established by Levin and later by Chaitin (see[3] for more details).

For that purpose Levin modified the notion of complexity and introducedprefix complexity
K(x) where programs (descriptions) satisfy an additional property: if p is a program that out-
putsx, then every extension ofp (every string having prefixp) also outputsx. (Chaitin used
another restriction: the set of programs should be prefix-free, i.e., none of the programs is a
prefix of another one; though it is a significantly different restriction, it leads to the same notion
of complexity up toO(1) additive term.)

The notion of a priori probability can be formally defined in the following way. Consider
a randomized algorithmM without input that outputs some natural number and stops. The
output number depends on the internal random bits (fair cointosses) byM. For everyx there
is some probabilitymx to getx as output. The sum∑mx does not exceed 1; it can be less if
the machineM performs a non-terminating computation with positive probability. In this way
every machineM corresponds to some functionx 7→ mx. There exists auniversalmachineM
of this type, i.e., the machine for which functionx 7→ mx is maximal up to a constant factor.
For example,M can start by choosing a random machine in such a way that everychoice has
positive probability, and then simulate the chosen machine. We now fix some universal machine
M and call the probabilitymx to getx on its outputa priori probability of x.

The relation between prefix complexity and a priory probability is quite close: Levin and
Chaitin have shown thatK(x) =− log2mx+O(1). However, the situation changes if we extend
prefix complexity and a priori probability to sets. LetX be a set of natural numbers. Then we
can consider two quantities that measure the difficulty of a task “produce some element ofX”:

• complexityof X, defined as the minimal length of a program that produces someelement
in X;

• a priori probability of X, the probability to get some element ofX as an output of the
universal machineM.

As we have mentioned, for singletons the complexity coincides with the minus logarithm of a
priori probability up toO(1) additive term. For an arbitrary set of integers this is no more the
case: complexity can differ significantly from the minus logarithm of a priori probability. In
other words, for an arbitrary setX the quantities

max
x∈X

mx and ∑
x∈X

mx

(the first one corresponds to the complexity ofX, the second one is a priori probability ofX)
could be very different. For example, ifX is the set of strings of lengthn that have complexity
close ton, the first quantity is rather small (since allmx are close to 2−n by construction) while
the second one is quite big (a string chosen randomly with respect to the uniform distribution
on n-bit strings, has complexity close ton with high probability).

Epstein–Levin theorem says that such a big difference isnotpossible if the setX is stochas-
tic. The notion of a stochastic object was introduced in the algorithmic statistics. A finite object
X (in our case, a finite set of strings) is calledstochasticif, informally speaking,X is a “typ-
ical” representative of some “simple” probability distribution. This means that there exist a
probability distributionP with finite domain (containingX) and rational probabilities such that

4Solomonoff also mentioned complexity as a technical tool somewhere in his paper.
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(1) P has small complexity, and (2) the randomness deficiency ofX with respect toP, defined as
− logP(X)−K(X|P), is small. (Note that here we speak about complexity ofX andP, where
X is a finite set of strings, andP is a distribution on finite sets of strings. These notions arewell
defined, since the complexity of a finite object does not depend on the choice of its computable
encoding, up toO(1) additive term.) HereK(X|P) stands forconditionalprefix complexity of
X givenP, see [13] for details.

Epstein–Levin theorem is essentially a result about some type of games (we call them
Epstein–Levin games). To define such a game, fix a finite bipartite graphE ⊂ L ×R with
left partL and right partR. A probability distributionP on R with rational values is also fixed,
as well as three parameters: some natural numberk, some natural numberl and some positive
rational numberδ . After all these objects are fixed, we consider the followinggame.

Alice assigns some rationalweightsto vertices inL. Initially all the weights are zeros, but
Alice can increase them during the game. The total weight ofL (the sum of weights) should
never exceed 1. Bob canmarksome vertices on the left and some vertices on the right. After
a vertex is marked, it remains marked forever. The restrictions for Bob: he can mark at most
l vertices on the left, and the totalP-probability of marked vertices on the right should be at
mostδ . The winner is determined as follows: Bob wins if every vertex y on the right for which
the (limit) total weight of all itsL-neighbors exceeds 2−k, either is marked itself (at some point),
or has a marked (at some point) neighbor.

Evidently, the task of Bob becomes harder ifl or δ decrease (he has less freedom in marking
vertices), and becomes easier ifk decreases (he cares about less vertices). So the greaterk and
the smallerδ is, the biggerl is needed by Bob to win. The following lemma gives a bound
(with some absolute constant inO-notation):

Lemma 5. For l = O(2k log(1/δ ) Bob has a computable winning strategy in the described
game.

Before proving this lemma, let us explain the connection between this game and the state-
ment of Epstein–Levin theorem. Vertices inR are finite sets of integers; vertices inL are
integers, and the edges correspond to∈-relation. Alice’s weights are a priori probabilities of
integers (more precisely, increasing approximations to them). The distributionP on R is a
simple distribution (on a finite familyR of finite sets) that is assumed to makeX (from Levin–
Epstein theorem) stochastic. Bob may markX, but this would make it non-random with respect
to P (marked vertices form aP-small subset and therefore all have big randomness deficiency),
so Epstein and Levin do not need to care aboutX any more. IfX is not marked and has big
total weight (= the total a priori probability),X is guaranteed to have a marked neighbor. This
means that some element ofX is marked and therefore has small complexity (since there are
only few marked elements); this is what Epstein–Levin theorem says. (Of course, one needs to
use some specific bounds instead of “small” and “large” etc.,we provide the exact statements
after the proof of the lemma.)

Proof. To prove the existence of a winning strategy for Bob, we use the following (quite un-
usual) type of argument: we exhibit a simpleprobabilistic strategy for Bob that guarantees
some positive probability of winning against any strategy of Alice. Since the game is essen-
tially a finite game with full information (see the comments at the end of the proof about how
to make it really finite), either Alice or Bob have a winning strategy. And if Alice had one, no
probabilistic strategy for Bob could have a positive probability of winning.
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Let us describe this strategy for Bob. It is rather simple: ifAlice increases weight of some
vertex x in L by an additionalε > 0, Bob responds by tossing a coin and markingx with
probabilityc2kε, while c> 1 is some constant to be chosen later. We need also to specify what
Bob does ifc2kε > 1 (this always happens ifε is 2−k or more). In this case Bob marksx for
sure. Note also that without loss of generality we may assumethat Alice increases weights one
at a time, since we can split her move into a sequence of moves.

We have explained how Bob marksL-vertices; if at some point this does not help for some
R-vertex, i.e., this vertex has total weight at least 2−k but no marked neighbors, Bob immedi-
ately marks thisR-vertex (as well as all other vertices with this property).

The probabilistic strategy for Bob is described, and we needto consider some (determinis-
tic) strategyα for Alice and show that the probability of winning the game for Bob (for suitable
c, see below about the choice ofc) is positive when playing againstα. By construction, there
are two reasons why Bob could lose the game:

• the total measure of markedR-vertices exceedsδ ;

• the number of markedL-vertices exceedsl .

To show that with positive probability none of this events happen, we ensure that probability of
each event is less than 1/2. For that we show that the expectedP-measure of markedR-vertices
is less thanδ/2 and the expected number of markedL-vertices is less thanl/2.

Let us fix somey and estimate the probability fory to be marked by Bob (= to have no
marked neighbors when the sum of weights ofy’s neighbors achieves 2−k). Assume that the
weights of neighbors ofy were increased byε1, . . . ,εu during the game, and now∑εi ≥ 2−k.
After each increase the corresponding neighbor ofy was marked with probabilityc2kεi , so the
probability that all the neighbors remain not marked, does not exceed

(1−c2kε1) · . . . · (1−c2kεu)≤ e−c2k(ε1+...+εu) ≤ e−c

(recall that(1− t)≤ e−t and that∑εi ≥ 2−k). Therefore for every measureP the expectedP-
measure of marked vertices on the right (the weighted average of numbers not exceedinge−c)
does not exceede−c. So it is enough to letc be ln(1/δ )+O(1).

In fact, this picture is oversimplified: the estimate for probability should be done more care-
fully, since the values ofε1, . . . ,εu may depend on Bob’s moves. The situation can be described
as follows: our opponent (following some probabilistic strategy) tells us some numbers in[0,1]
(one by one). After the opponent names someε, we perform random coin tossing with proba-
bility of successε. Then for everyt the probability of the event “at the moment when the sum
of numbers exceedst, we still have no successful trials” does not exceede−t . (To prove this
statement formally, we need a backward induction in the treeof possibilities.)

The expected number of markedL-vertices can be estimated in the same way. Here the
opponent also gives us some numbers whose sum is guaranteed not to exceed somet (t = c2k in
our case), and we use them as probabilities of success for random coin tosses. Similar argument
shows that the expected number of successes does not exceedt. We needt = c2k < l/2, so we
takel = c2k+2 = 2k+2(ln(1/δ )+O(1)) = O(2k log(1/δ )).

To finish the proof of the lemma, one last remark is needed. To make our arguments (a
transition from a probabilistic strategy to a deterministic one) correct, we need to make the
game finite. One may assume that current weights of vertices on the left all have the form 2−m

for some integerm (replacing weights by approximations from below, we can compensate for
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an additional factor of 2 by changingk by 1). Still the game is not finite, since Alice can start
with very small weights. However, this is not important: thegraph is finite, and all very small
weights can be replaced by some 2−m. If 2−m ·#L < 1, then the sum of weights still does not
exceed 2, and this again is a constant factor.

Now we can apply this Lemma to prove Epstein–Levin theorem. Let us first give exact def-
initions. A finite objectX is calledα-β -stochasticif there exists a finite probability distribution
P (with finite support and rational values, so it is a finite object) such that

• K(P) does not exceedα;

• the deficiencyd(X|P), defined as− logP(X)−K(X|P), does not exceedβ .

Theorem 4(Epstein–Levin). If a finite set X isα-β -stochastic, and its total a priori probability
∑x∈X mx exceeds2−k, then X contains some element x such that

K(x)≤ k+K(k)+ logK(k)+α +O(logβ )+O(1).

The sum∑x∈X mX can be calleda priori probability of the problem “produce some el-
ement ofX”, and minx∈X K(x) can be called prefix complexity of the same problem. The
Epstein–Levin theorem guarantees that forα-β -stochastic setsX with smallα andβ the prefix
complexity is logarithmically close to the minus logarithmof a priori probability.

Proof. We follow the plan outlined above. LetPbe the finite probability distribution that makes
X stochastic. This means thatK(P) ≤ α andd(X|P) = − logP(X)−K(X|P) ≤ β . Consider
Epstein–Levin game whereR is the support ofP, the left-hand sideL is the union of all sets inR
and edges connect each setU ∈ R to all its elements. To describe the game completely, we need
to specify parametersk, l , andδ . The parameterk is taken from the statement of our theorem;
δ = 2−d whered will be chosen later, andl = O(2k log(1/δ )) = O(d2k) is determined byk
andd as described in Lemma 5. (This guarantees that Bob has a winning strategy in the game.)
Then we let Bob play in this game against Alice who assigns (inthe limit) weightmx to every
elementx∈ L.

We will choosed in such a way that all marked elements inR have deficiency greater that
β ; our assumptions then guarantee thatX is not marked. Lemma 5 then guarantees thatX has a
marked neighbor, i.e., that some element ofX is marked. It remains to estimate the complexity
of marked elements inL.

Why marked elements inRhave high deficiency? We know that the total measure of marked
elements inR does not exceed 2−d. Consider the semimeasureP′ that equals 2dP on marked
elements and 0 otherwise;P′ can be enumerated ifP, d, andk are given, so

K(U |P,d,k)≤− logP′(U)+O(1)

for everyU in R. If U is not marked, this is trivial (the right hand side is infinite); for marked
U we have

K(U |P,d,k)≤− logP(U)−d+O(1)

and therefore
K(U |P)≤− logP(U)−d+K(d)+K(k)+O(1),
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so
d(U |P)≥ d−K(d)−K(k)−O(1)

for all markedU in R. So wee need the inequality

d−K(d)−K(k)−O(1)> β

to ensure thatX is not marked. This is guaranteed for sure if

d = 2(β +K(k))+O(1)

(we do not care about constant factor ind since only logd will be used in the complexity bound
below).

After d is chosen, we need to estimate the complexity of marked elements inL. They can
be enumerated givenP, k, d and there is at mostO(2kd) of them, so for every markedx∈ L we
have

K(x|P,k,d)≤ k+ logd+O(1)

and
K(x)≤ K(P)+K(k,d)+k+ logd+O(1).

Recalling thatK(P)≤ α andd = 2(β +K(k))+O(1), we get

K(x)≤ α +K(k,K(k),β )+k+ logβ + logK(k)+O(1)≤

≤ α +K(k,K(k))+K(β )+k+ logβ + logK(k)+O(1);

it remains to note thatK(k,K(k)) = K(k) and thatK(β ) = O(logβ ).

4 Information distance

Consider the following problem. Letm be some constant. Given a stringx0 and integern,
we want to find stringsx1, . . . ,xm such thatC(xi |x j) = n+O(1) for all pairs of differenti, j in
the range 0, . . . ,m. (Note that bothi and j can be equal to 0). This is possible only ifx0 has
high enough complexity, at leastn, sinceC(x0|x j) is bounded byC(x0). It turns out that such
x1, . . . ,xm indeed exist ifC(x0) is high enough (though the required complexity ofx0 is greater
thann), and the constant hidden inO(1)-notation does not depend onn (but depends onm).

This statement is non-trivial even forn= 1: it says that for everyn and for every stringx
of high enough complexity there exists a stringy such that bothC(x|y) andC(y|x) are equal to
n+O(1). This special case was considered in [16], the condition there isC(x0) > 2n (which
is better than provided by our general result). Later [12] a different technique (using some
topological arguments) was used to improve this result and show thatC(x0) > n+O(logn) is
enough.

Here is the exact statement that specifies also the dependence ofO(1)-constant onm:

Theorem 5. For every m and n and for every binary string x0 such that

C(x0)> n(m2+m+1)+O(logm)

there exist strings x1, . . . ,xm such that

n≤C(xi|x j)≤ n+O(logm)

for every two different i, j ∈ {0, . . . ,m}.
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Note that the high precision is what makes this theorem non-trivial (if an additional term
O(logC(x0)) were allowed, one could take the shortest program forx0 and replace firstn bits
in it by m independent random strings).

Proof. Let us explain the game that corresponds to this statement. It is played on graph with
(m+1) partsX0, . . . ,Xm. There are countably many vertices in each partXi (representing possi-
ble values ofxi); we will assume that allXi are disjoint copies of the setB∗ of all binary strings.
As usual, there are two players: Alice and Bob. Alice may connect vertices from different parts
by undirectededges, while Bob can connect them bydirectededges. Alice and Bob make al-
ternating moves; at each move they can add any finite set of edges. Alice can alsomarkvertices
x0 in X0. The restrictions are:

• Alice may mark at mostm2n+1+nm(m+1) vertices (inX0);

• for each vertexxi ∈ Xi and for eachj 6= i, Alice may have at mostm(m+1)2n undirected
edges connectingxi with vertices inXj ;

• for each vertexxi ∈ Xi and for eachj 6= i, Bob should have less than 2n outgoingedges
from xi to vertices inXj . (Note that the number ofincomingedges is not bounded.)

The game is infinite. Alice wins if (in the limit) for every non-marked vertexx0 ∈ X0 there
exist verticesx1, . . . ,xm from X1, . . . ,Xm such that every two verticesxi ,x j (where i 6= j) are
connected by an undirected (Alice’s) edge, but not connected by a directed (Bob’s) edge.

Lemma 6. Alice has a computable winning strategy in this game.

It is easy to see how this lemma can be used to prove the statement. Imagine that Bob draws
an edgexi → x j when he discovers thatC(x j |xi) < n. Then he never violates the restriction.
Alice can computably win against this strategy; every marked vertex then has small complexity,
since a marked vertex can be described by its ordinal number in the enumeration order. This
ordinal number requires

log(m2n+1+mn(m+1)) = logm+O(1)+n+m2n+nm

bits, and to describe the game we need additionalO(logn)+O(logm) bits to specifym andn,
so we get

C(x0)≤ n(1+m+m2)+O(logm)+O(logn).

We want to conclude thatx0 is not marked (since it has high complexity), but the bound we
have is slightly weaker than needed, it has additional termO(logn). To get rid of this term,
we note that (for givenm) the bounds for the number of marked vertices grow exponentially
with n, so we can describe all marked vertices (for givenm and for alln) simultaneously, and
the overhead in the complexity caused by marked vertices forsmaller values ofn is bounded
by O(1).

For every non-marked vertexx0 there existx1, . . . ,xm that satisfy the winning conditions.
For themC(x j |xi)≥ n (otherwise Bob would connect them by a directed edge), andC(x j |xi)≤
n+O(logm), sincex j can be obtained fromxi if we know i, j, and the ordinal number of
undirected edgexi–x j among all the edges that connectxi to Xj , in the order of appearance of
those edges in the game.
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So it remains to prove the lemma. To make clear the idea of the proof, let us first consider
the casem= 1. In this case we deal with two countable setsX0 and X1, Alice’s degree is
bounded by 2n+1 and the total number of marked vertices should not exceed 23n+1. To explain
Alice’s strategy, let us tell a story first.

Imagine a “marriage agency” whose business is to form pairs(x0,x1) of elementsx0 ∈ X0

andx1 ∈ X1. After a pair is formed (or at some later moment), each of the “partners” (elements
of the pair) may “complain” about the other one. Then the pairis dissolved and both elements
become free. Later agency can try them with new partners.

The mission of the agency is to provide stable pairs for everybody or almost everybody. Of
course, this is not always possible: imagine that some element complains about all partners.
Moreover, even if additionally require that each element makes less thanM complaints, it may
happen that for somex all its partners complain aboutx (still making less thanM complaints
each), and the agency cannot do much forx.

However, by clever planning the agency can control the damage and ensure that

• agency makes at most 2M attempts to find a partner for any given element (never trying
the same partnership twice);

• all elements ofX0, except for at most 2M3 “hopeless” ones, ultimately get a stable part-
nership, and hopeless elements are explicitly marked.

(Note that the last requirement treatsX0 andX1 in a non-symmetrical way.)
The agency can achieve its goals using the following strategy. First it chooses an arbitrary

bijection betweenX0 andX1 and creates all corresponding pairs. Then it treats complaints one
by one: if somex0 complains about its current partnerx1 or vice versa, the pair(x0,x1) is
dissolved. Then agency tries to find a new partner forx0 among elements ofX1 with matching
experience.

The last requirement is the crucial point of our argument: itmeans that in the new pair
the number of complaints made by one partner should be equal to the number of complaints
received by the other one.In this way an unlucky element who was rejectedM−1 times will
get a partner who madeM−1 complaints and therefore is unable to complain again. So nobody
will be rejectedM or more times.

The bad news is that sometimes for an elementx0 from a dissolved pair there is no partner
with matching experience; in this casex0 is declared “hopeless” and never considered again.
We should estimate the maximal number of hopeless elements.We can encode “experience” as
a pair of two integers in range[0,M), so there are at mostM2 possible values of this parameter,
and hopeless elements can be divided intoM2 classes. Let us show that in each class there are at
most 2M elements. Since elements inX0 andX1 change their experience simultaneously (when
a complaint is made), and newly formed pairs are made of matching elements, free elements in
X1 also formM2 classes of the same cardinalities. If there are already 2M hopeless elements
in some class, there are also 2M matching free elements. New hopeless element in this class
cannot appear since one of there matching free elements can be used to form a new pair. (Recall
that each element can send less thanM complaints and receive less thanM complaints, so one
of the 2M free elements of matching experience was not tried yet.)

One last remark about the agency’s strategy: we started withmaking infinitely many pairs
(using some bijection betweenX0 andX1) at once. It is not important, since actual implemen-
tation of this decision can be made gradually (we think aboutsome pairs as existing, but they
are not yet informed about that).
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Now we explain how this story can be transformed into Alice’sstrategy in the game de-
scribed. The parameterM (bound for the number of complaints) is 2n; then 2M equals 2n+1

and 2M3 equals 23n+1, as the lemma requires form= 1. When agency makes a pair, Alice
draws an (undirected) edge between elements of the pair. When the pair is dissolved, an edge
(of course) does not disappear, but Alice does not care aboutit any more, considering only
“active” edges (that correspond to currently existing pairs). When Bob draws a (directed) edge
x→ y that is parallel to one of the active edges (the undirected edgex–y), the agency sees thatx
complains abouty (and, according to this complaint, dissolves the pairx–y). When Bob draws
an edge that is not parallel to an active edge, this edge is ignored until parallel active edge
appears (corresponding pair is established); then this oldedge becomes a complaint and the
newly formed pair is dissolved. (If Bob draws an edge that is parallel to an old inactive edge of
Alice, this edge never will change anything.) Finally, agency’s declaration that somex0 ∈ X0 is
hopeless means that Alice marksx0.

It is easy to see that the agency’s behavior described above can be transformed into Alice’s
strategy, so Alice indeed has a (computable) winning strategy for the casem= 1.

After these preparations let us consider the general case. The idea remains the same, but
instead of two setsX0 andX1 we now havem+1 componentsX0,X1, . . . ,Xm. Instead of pairs,
we have now cliques made ofm+1 elements, one per component. A participant of a clique
may complain about some other participant, and in this case the clique is dissolved (and an
attempt to create a new clique for theX0-element of the dissolved one is performed — againX0
gets a preferential treatment).

The clique is represented by Alice’s edges between all its elements,m(m+1)/2 edges in
total. A directed Bob’s edgexi → x j that connects two elementsxi andx j of one of the currently
active cliques, is understood as a “complaint” ofxi againtsx j . (Other edges created by Bob are
delayed complaints, as before).

The important change is how the “experience” is defined. Eachvertex remembersm(m+1)
non-negative integers corresponding to ordered pairs(i, j). This tupleI = {Ip,q} (wherep,q∈
{0,1, . . . ,m} andp 6= q) is called an “index” of a vertex. Whenxi complains aboutx j (both are
elements of the same clique(x0, . . . ,xm)), all participants of this clique note this and increase
(i, j)-component of their index (initially filled with zeros) before the clique is dissolved. Note
the difference: now each elementxi knows not only how many complaints it made (Ii j is the
number of complaints aboutXj-elements) or received (I ji is the number of complaints received
from Xj-elements), but also the number of complaints between othercomponents (wherexi is
only a witness).

After one elements of a clique complains about another one, all elements of the clique up-
date their indices, and the clique is dissolved. To find the new clique for the elementx0 ∈ X
from the dissolved clique, we search for free elements with the same index in all the compo-
nents. Moreover, it is needed that these elements never havesent complaints about each other
(but it is OK if some of them were in the same clique, later dissolved because of some other
complaint). If this is possible, a new clique is formed; if not, x0 becomes marked (“hopeless”)
and other elements of the dissolved clique remain free (outside the cliques).

Since only elements with the same index are combined into cliques, and the indices are
updated synchronously, the number of free elements (that donot belong to active clique) is
the same for all components (in general and for each value of the index). Note also that all
the numbers in the indices are less than 2n (since each of them is a number of complaints sent
by somexi to someXj). When element changes the clique, its index increases along some
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coordinate, so the number of changes is at mostm(m+1)2n, and each change createsm new
edges adjacent to this element (one per component). So for every elementxi and for eachj
there are at mostm(m+1)2n undirected edges that connectxi to vertices inXj .

To finish the proof of Lemma 6, it remains to prove the bound forthe number of marked
vertices (= hopeless elements inX0). For that we estimate the number of marked vertices of each
index (recall that the number of possible indices is boundedby 2nm(m+1) since its components
are less than 2n). The idea here is simple: if we have many (at least 2m2n) free vertices of some
index, we can always find a clique (made of them) for every vertex x0 ∈ X0 of that index that
lost its old clique. Indeed, we find clique elements sequentially in X1, . . . ,Xm; at every step we
can find a vertex that has no complaints about already selected vertices and vice versa, since the
number of complaints in both directions is less than 2·2n for each of the components (less than
2n for each direction), and in total less than 2m2n elements in the next component are unusable
due to previous ones.
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