
Event-B Code Generation:
Type Extension with Theories

A. Edmunds1, M. Butler, I. Maamria, R. Silva, and C. Lovell

1University of Southampton, UK
ae2@ecs.soton.ac.uk

Abstract. The Event-B method is a formal modelling approach; our
interest is the final step, of generating code for concurrent programs, from
Event-B. Our Tasking Event-B tool integrates Event-B to facilitate code
generation. The theory plug-in allows mathematical extensions to be
added to an Event-B development. When working at the implementation
level we need to consider how to translate the newly added types and
operators into code. In this paper, we augment the theory plug-in, by
adding a Translation Rules section to the tool. This enables us to define
translation rules that map Event-B formulas to code. We illustrate the
approach using a small case study, where we add a theory of arrays, and
specify translation rules for generating Ada code.

1 Introduction

Using Event-B [1] and Tasking Event-B, we have the ability to model and imple-
ment single and multi-tasking software systems, see [2]. It may be the case that
we need some new mathematical type, and in many cases, the type will need to
be implemented. In this paper we describe, using an example, how new types can
be added to an Event-B Theory. We then describe the tool’s new translation rule
feature, which we use to define translation rules for generating Ada code. The
rules describe the mapping from Event-B types, and mathematical notation, to
implementable code fragments. This work has been undertaken as part of the
EU DEPLOY [4] project.

The basic structural features of Event-B are contexts and machines. Con-
texts describe the static features of a system using sets and constants. Machines
are used to describe the variable features of a system in the form of state vari-
ables and guarded events; system properties are specified using the invariants
clause. Theories for Rodin are described in [3] where we introduce mathematical
extensions; with this, we can add new types, operators, and rules. Rules, such
as rewriting, compare a source against patterns defined in the theory rule-base.
When a pattern matches with the source, the source is replaced by new elements,
as determined by the pattern. In the work described in the paper, we add the
ability to specify translation rules for code. This uses pattern matching, in a
similar way; but, instead of initiating a substitution of new elements in place of
old, we generate text for use in the main code generator. To facilitate the specifi-
cation of new rules one can introduce Type Parameters, and specify Datatypes.



Users can also introduce new operators and theorems. Proof obligations are gen-
erated to verify the soundness of the rules, and the prover is augmented with
the new rules, when the theory is deployed. In our work, we extend the theory
with translator rules.

1.1 An Array Theory

The first step is to create a new theory of arrays, we introduce an array of type T.
The array is a new operator, which takes a powerset of type T as an argument.
The array has the following definition, using set-notation, where n is the length
of the array.

array(s : P(T )) , {n, f ·n ∈ Z ∧ f ∈ 0 .. (n− 1)→ s|f}

Since we have a low-level specification we consider implementation issues: gener-
ally, arrays are fixed-length implementations. We introduce arrayN, parametrized
by n, which fixes the array length by stating card(s) = n.

arrayN(n : Z, s : P(T )) , {a|a ∈ array(s) ∧ card(s) = n}

The array constructor operator newArray has an integer parameter n, represent-
ing the array length; and, additionally a value x, of type T for initialising the
array elements. The array construction operator has the following definition,

newArray(n : Z, x : T ) , (0 .. (n− 1))× {x}

Additonally, newArray requires a well-definedness condition, n ∈ N. For the
array update, we have the definition,

update(a : array(T ), i : Z, x : T ) , aC− {i 7→ x}

update has the well-definedness condition i ∈ 0 .. (card(a)− 1). We can see that
array a is updated with value x at index i. The case study, which we use to
illustrate the extension mechanism and the link to code, omits irrelevant detail.

2 An Event-B Model

In the following model, we make use of the array operator that we have just
introduced. In the invariant, we type cbuf as an array of size maxbuf of integers.
maxbuf is a constant defined in a seen context. The second parameter defines
the element types, which in this case are integers. In the Initialisation event, we
specify the size, and initial value for the array elements in the clause act1. In
our model, we initially set maxbuf elements to be zero.

variables cbuf a b
invariants
@inv1 cbuf ∈ arrayN(maxbuf,Z)
@inv2 . . .

initialisation
@act1 cbuf := newArray(maxbuf, 0)
@act2 . . .



An example of the update to the array can be seen in the following Put event,
which inserts an element into the array in action act2.

event Put ,
any x
where
@grd1 x ∈ Z
@grd2 b ≥ a⇒ b− a < maxbuf

then
@act1 b := (b + 1) mod (maxbuf + 1)
@act2 cbuf := update(cbuf, b mod maxbuf, x)

end

3 Adding Translation Rules

The next step is to add translation rules to the theory that defines arrays. We
add the Ada Translator Target section, shown below, and use this to define the
translation of the newly introduced operators. Metavariables (variable patterns)
are introduced to facilitate type inference, and pattern matching during trans-
lation. Using the rules defined in the Translator Rules section, we match the
patterns in the following way to determine which translation is applicable. We
specify the operator to be matched on the left side of the rule (left of the Z⇒
operator), and the translated text, on the right side. Since there is no formal
link between the pattern on the left side and text output on the right side of the
rule, we use visual inspection to verify that the rule is correct.

Translator Target : Ada
Metavariables
s ∈ P(T), n ∈ Z, a ∈ Z↔ T, i ∈ Z, x ∈ T

Translator Rules
trns1: . . .
trns2: a = update(a, i, x) Z⇒ a(i) := x
trns3: newArray(n, x) Z⇒ (others => x)

Type Rules

typeTrns1: arrayN(n, s) Z⇒array(0 .. n− 1) of s

In the example shown, the array update operator maps to the Ada array assign-
ment a(i) := x. The construction operator newArray provides the initial values
in parameter x, and maps to the Ada clause (others => x) which sets all ele-
ments (using others) of an array to x. In addition to translation rules, we can
add type rules; these are used to map the type, as defined in the theory, to an
implementable type for use in the generated code. In the type rule typetrans1
we specify that the type arrayN(n, s) should be mapped to the Ada type clause
array(0 .. (n− 1)) of s.



Fig. 1. Generated Ada Code

4 Conclusion

We used the our tool [5] to generate the code shown in Fig. 1. The rules allow
translation of operators, and type definitions, to implementation constructs. We
can now see how the Event-B relates to the generated code. In line 3 of the code,
on the left hand side of the figure, we see an Ada type declaration statement.
This results from applying typeTrns1 to the invariant inv1. The translation of
the type s, i.e. the mapping of the Event-B Z, to the Ada Integer type, is handled
by the pre-defined Ada theory, and not shown here. In Ada, we must ’instanti-
ate’ the cbuf array type, so in line 9 we declare cbuf to be of type cbuf array,
and initialise the values. The translator makes use of the translation rule trns3,
matching the pattern arrayN(n, s) with the assignment of the initialisation ac-
tion act1. The update rule has also been translated in line 11 on the right side
of Fig. 1, which uses trns2 applied to act2 of the Put event.

References

1. J. R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. A. Edmunds and M. Butler. Tasking Event-B: An Extension to Event-B for Gen-
erating Concurrent Code. In PLACES 2011, February 2011.

3. I. Maamria, M. Butler, A. Edmunds, and A. Rezazadeh. On an Extensible Rule-
based Prover for Event-B. In ABZ2010, February 2010.

4. The DEPLOY Project Team. Project Website. at http://www.deploy-project.eu/.
5. The Deploy Wiki Website - Code Generation Activity. at http://wiki.event-

b.org/index.php/Code Generation Activity.

http://www.deploy-project.eu/
http://wiki.event-b.org/index.php/Code_Generation_Activity
http://wiki.event-b.org/index.php/Code_Generation_Activity

	Event-B Code Generation: Type Extension with Theories
	A. Edmunds, M. Butler, I. Maamria, R. Silva, and C. Lovell
	Introduction
	An Array Theory

	An Event-B Model
	Adding Translation Rules
	Conclusion



