

COMPUTING
SCIENCE

Modelling and Analysis of Dynamic Reconfiguration in BP-calculus

F. Abouzaid, J. Mullins, M. Mazzara, N. Dragoni

TECHNICAL REPORT SERIES

No. CS-TR-1322 April 2012

TECHNICAL REPORT SERIES

No. CS-TR-1322 April, 2012

Modelling and Analysis of Dynamic Reconfiguration in BP-
calculus

F. Abouzaid, J. Mullins, M. Mazzara, N. Dragoni

Abstract

The BP-calculus is a formalism based on the pi-calculus and encoded in WS-BPEL.
The BP-calculus is intended to specifically model and verify Service Oriented
applications. One important feature of SOA is the ability to compose services that
may dynamically evolve along runtime. Dynamic reconfiguration of services
increases their availability, but puts accordingly heavy demands for validation,
verification, and evaluation. In this paper we formally model and analyse dynamic
reconfigurations and their requirements in BP-calculus and show how reconfigurable
components can be modelled using handlers that are essential parts of WS-BPEL
language.

© 2012 Newcastle University.
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

ABOUZAID, F., MULLINS, J., MAZZARA, M., DRAGONI, N.

Modelling and Analysis of Dynamic Reconfiguration in BP-calculus
[By] F. Abouzaid, J. Mullins, M. Mazzara, N. Dragoni
Newcastle upon Tyne: Newcastle University: Computing Science, 2012.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1322)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1322

Abstract

The BP-calculus is a formalism based on the pi-calculus and encoded in WS-BPEL. The BP-calculus is intended
to specifically model and verify Service Oriented applications. One important feature of SOA is the ability to
compose services that may dynamically evolve along runtime. Dynamic reconfiguration of services increases their
availability, but puts accordingly heavy demands for validation, verification, and evaluation. In this paper we
formally model and analyse dynamic reconfigurations and their requirements in BP-calculus and show how
reconfigurable components can be modelled using handlers that are essential parts of WS-BPEL language.

About the authors

Faisal Abouzaid received a 3rd cycle Doctorate from University of Bordeaux (France) and a Ph.D degree from
Polytechnic School of Montreal (Canada). From 1990 to 2002 he held a Professor of Computing Science position
at University of Casablanca (Morocco) where he also served as the Director of the Computer Science Department.
In 2004 he joined the CRAC laboratory of the Polytechnic School of Montreal as a Research Associate. His
current research interests are: web services, orchestrations, dependability and formal methods.

John Mullins is Professor in the Department of Computer Engineering (DGI) at the Ecole Polytechnique de
Montreal. He is also associate member of the LaCIM (Combinatorics and Mathematical Computer Sciences
Laboratory), a research centre associated with the Mathematics Department, Computer Sciences Department and
the Canada Research Chair in Algebra, Combinatorics and Mathematical Computer Sciences of the Universite du
Quebec Montreal. John Mullins' research expertise includes applications of mathematical logic to analysis of con-
currency and security: Models and calculi for concurrent systems (including object-oriented and mobile systems)
and security systems (e.g. security controllers, security protocols), modal and temporal logics with fixed points
and applications to system verification and description. He has published more than eighty papers in international
journals and conferences in these fields. He has also introduced and successfully used these innovating methods in
industries and government agencies (Defense Research and Development Canada, Bombardier Aerospace, CMC
Electronics). In 2000, he has founded and currently heads the CRAC (Design and Realization of Complex
Systems) laboratory and has succeeded with his team to detect many flaws in cryptographic protocols. Also, he has
been or is currently PC member of several international conferences.

Manuel Mazzara achieved his Masters in 2002 and his Ph.D in 2006 at the University of Bologna. His thesis was
based on Formal Methods for Web Services Composition. During 2000 he was a Technical Assistant at Computer
Science Laboratories (Bologna, Italy). In 2003 he worked as Software Engineer at Microsoft (Redmond, USA). In
2004 and 2005 he worked as a freelance consultant and teacher in Italy. In 2006 he was an assistant professor at
the University of Bolzano (Italy) and in 2007 a researcher and project manager at the Technical University of
Vienna (Austria). Currently he is a Research Associate at the Newcastle University (UK) working on the
DEPLOY project.

Nicola Dragoni obtained a M.Sc. Degree and a Ph.D. in computer science, respectively in 2002 and 2006, both at
University of Bologna, Italy. He visited the Knowledge Media Institute at the Open University (UK) in 2004 and
the MIT Center for Collective Intelligence (USA) in 2006. In 2007 and 2008 he was post-doctoral research fellow
at University of Trento, working on the S3MS project. Between 2005 and 2008 he also worked as freelance IT
consultant. In 2009 he joined Technical University of Denmark (DTU) as assistant professor in security and
distributed systems. Since May 2011 he has been associate professor at the same university.

Suggested keywords

DYNAMIC RECONFIGURATION
PROCESS ALGEBRA
WS-BPEL

Modelling and Analysis of Dynamic
Reconfiguration in BP-calculus.

F. Abouzaid1, J. Mullins1, M. Mazzara2, and N. Dragoni3

1 École Polytechnique de Montréal, Campus of the University of Montreal, Canada
{m.abouzaid, john.mullins}@polymtl.ca

2 Newcastle University, Newcastle upon Tyne, UK and UNU-IIST, Macao
Manuel.Mazzara@ncl.ac.uk

3 Technical University of Denmark (DTU), Copenhagen
ndra@imm.dtu.dk

Abstract The BP-calculus is a formalism based on the π-calculus and
encoded in WS-BPEL. The BP-calculus is intended to specificaly model
and verify Service Oriented Applications. One important feature of SOA
is the ability to compose services that may dynamically evolve along
runtime. Dynamic reconfiguration of services increases their availabil-
ity, but puts accordingly, heavy demands for validation, verification, and
evaluation. In this paper we formally model and analyze dynamic recon-
figurations and their requirements in BP-calculus and show how recon-
figurable components can be modeled using handlers that are essential
parts of WS-BPEL language.

1 Introduction

In service-oriented computing (SOC), the correct composition of basic services is
a key task and remains unsolved. The problem with industry-proposed languages
for orchestration of Web services such as the standard WS-BPEL is their lack of
formal semantics and compositionality. The BP-calculus [3] is a π-calculus based
formalism encoded in WS-BPEL that has been developed with the intention to
provide verification and analysis by mean of model-checking and automatic WS-
BPEL code generation.

We follow this branch of research to study dynamic reconfigurations of BP-
processes representing composable services. Services are self-adaptive and have to
react to changes in the environment they are running in. An adaptive behaviour
of a software or the need for high availability are the main motivations for
dynamic reconfiguration. Dynamic reconfiguration provide a mechanism in order
to meet these business requirements. A key issues for dynamic configuration
requirements is the preservation of application integrity and correctness, e.g.
components involved in reconfiguration must remain mutually consistent and
formal verification must assert that no behavioral invariants get violated through
the structural change. In [15], it has been highlighted that more research is
required on dynamic reconfiguration of dependable services, and especially on
its formal foundations, modelling and verification to cope with the application
integrity and correctness requirement. It is the main motivation of this paper.

Contributions: Although WS-BPEL has not been designed to cope with dynamic
reconfiguration, some of its features such as scopes and termination and event
handlers can be used for this purpose [14]. In this paper, after having provided a
complete formal specification in the BP-calculus (see Section 2) of all WS-BPEL
handlers, we use this approach to model dynamic reconfiguration of complex
applications involving dynamic reconfiguration in order to enable their formal
analysis. Requirements that must be insured in presence of dynamic reconfigu-
ration can then be expressed by mean of the BP-logic (see Section 2.2), opening
the way to a formal verification by using existing model-checker such as the
HAL Toolkit [8]. Once the verification achieved, as BP-processes are encoded in
WS-BPEL, it is easy to proceed to the automatic generation of the WS-BPEL
code implementing the dynamic reconfiguration. We illustrate our approach on
a significant case study drawn from [14].

Related works: The work in [15] motivates the need for a formalism for the mod-
elling and analysis of dynamic reconfiguration of dependable real-time systems.
Capabilities of two home-made calculi Webπ∞ [17] and CCSdp and those of
well-established formalisms namely the asynchronous π-calculus ([10], [4]) and
VDM [6] are evaluated.

In [14] and [2] a case study is described using the BPMN notation [5] and
formalizations by mean of the Webπ∞ and the asynchronous π-calculus are dis-
cussed. Finally a BPMN design of the case study is translated to produce a
WS-BPEL implementation. However the BPMN notation lacks of formal analy-
sis while the Webπ∞ formalism lacks of tools to process automatic verification.
Other works exploring how dynamic configuration may be implemented in BPEL
are [16] or [13]. The present work can be considered as the continuation of the
π-calculus based study, taking advantage of the existence of tools and automatic
generation of the corresponding WS-BPEL code.

Samples of other approaches are presented in [11] and [9]. In [11], the au-
thors use Reo, a channel-based coordination language, to model reconfiguration
as a primitive and analyze it using formal verification techniques. A full imple-
mentation of the approach in a framework that includes tools for the definition,
analysis, and execution of reconfigurations, and is integrated with two execution
engines for Reo, is also provided.

In [9] authors present an architecture-oriented model for dynamic reconfig-
uration that paves the way for the definition of ADLs that are able to address
the specification of dynamic architectural characteristics of service-oriented ap-
plications. A mathematical model that can be used as a semantic domain for
service-oriented architectural description languages is presented.

Organization of the paper: The rest of the article is organized as follows. In
Section 2, we recall the syntax and semantics of the BP-calculus focusing on
handlers and the BP-logic. We use this formalism to model dynamic reconfig-
uration in Section 3. In Section 4 we present the case study and formalize its
functional requirements with the BP-logic to illustrate our approach. Finally,
Section 5 contains conclusions and directions for future work.

Terms:
t ::= x (variables)
| a (names)
| u (value)
| (t1, . . . tk) (tuple)

Correlation Set:
C ::= null | C[x̃← ũ] (correlation set)

Service:
Serv ::= P (service)

| [C : R]c(x̃).P (instance spawn)
R ::= null | R|P (running instances)

Process:
P,Q ::= IG (input guard)

| ct〈M〉.P (annotated output)
| τ.P (silent action)
| P |Q (parallel composition)
| P .c(M) Q (sequential composition)
| if M = N then P else P (conditional)
| S (scope)

Guarded choice :
IG ::= 0 (empty process)

| c(u).P (input)
| IG+ IG′ (guarded choice)
| [x̃← f(M1, ...,Mn)]IG (function evaluation)

Scopes :
S ::= {x̃, P, H} (scope)
H ::=

∏
iWi(Pi1 , · · · , Pini) (handlers)

Table1. BP-calculus Syntax

2 The BP-calculus and the BP-logic

The main motivation behind the BP-calculus is to provide a rigourous framework
for the formal verification and automatic generation of WS-BPEL processes. For
this reason it is very close to WS-BPEL language, providing ways to model most
of BPEL constructs. Its syntax is inspired by the applied π-calculus [1]. It also
allows to model correlation mechanisms that are in the core of WS-BPEL by
mean of a dedicated spawn operator.

We let x̃ = (x1, ..., xn), (resp. ã = (a1, ..., am), ũ = (u1, ..., um)) range over
the infinite set of n-tuples of variables (resp. name, value). We denote x̃← ũ the
assignment of values ũ to variables x̃. The syntax is summarized in Table 1.

We briefly explain the meaning of the most significant operators together
with their intended interpretation.

Serv denotes the whole defined process (service) and P,Q, . . . , processes
(activities) that may occur within the main service. We syntactically distinguish
between them since a whole service may be spawned due to correlation mecha-
nisms while an activity within a process may not. This distinction is conform to
the WS-BPEL specification. However, in the sequel, we often use the word “pro-

cess” for both entities. IG is an input guarded process and IG + IG′ behaves
like a guarded choice and is intended to be translated by the <pick> element of
WS-BPEL language.

P .c(M)Q expresses a sequential composition from process P passing M to Q
(Q can perform actions when P has terminated). M carries binding information
between proccesses P and Q. This construct allows to easily mimic the WS-
BPEL’s element <sequence>.

Concerning the correlation mechanism, one of the most important element is
the definition of correlation set C. It is a set of specific valued variables within a
scope acting as properties and transported by dedicated parts of a message. Its
values, once initiated, can be thought of as an identity of the business process
instance. Intuitively, [C : R]c(x̃).P (Instance spawn) represents an orchestration
service running a process defined as c(x̃).P . A reception of a message M over the
dedicated channel c causes a new service instance (defined as P) to be spawned.
The process R represents the parallel composition of service instances already
spawned, C the correlation set characterizing instances. Note the way the only
admitted recursion is obtained by mean of spawned services. This is to conform
to the BPEL specification.

The other main feature is the definition of scopes. A scope is a wrapper for
variables, a primary activity and handlers represented as contexts.

If S ::= {x̃, P, H} is a scope, with handlers H ::=
n∏
i=0

Wi(Pi1 , · · · , Pini) then,

– x̃ are the local variables of the scope, and P its primary activity,
– H is the parallel composition of handlers Wi. Each handler is a wrapper

for a tuple of processes P̂ = (P1, . . . , Pn) corresponding to the activities the
handler has to run when invoked.

– Wi(Pi1, · · · , Pini) is the process obtained from the multi-hole context
Wi[·]1 · · · [·]ni by replacing each occurrence of [·]j with Pij .

It has also to be noted how expressing handlers in term of primitives, sim-
plifies a lot the specification. They are indeed considered as context where the
designer has only to provide the processes to “fill” the holes and other param-
eters such as the kind of faults or events that are involved. This approach not
only eases the specification of complex processes, but allows for an automatic
mapping to well-formed BPEL-processes with a complete set of handlers.

Interested readers will find a description of operational semantics of the lan-
guage in Appendix A.

2.1 Handlers

The WS-BPEL specification defines four sorts of handlers summarized as follows:

Fault Handler Faults signaled by the <Throw> element are caught by the fault
handler. The <catch> element allows handling a fault specified by a fault
name while the <catchAll> element catches any signaled fault.

Event Handler Event handlers defines the activities relative events such as an
incoming message or a timeout. Event Handlers are invoked concurrently
with the scope, if the corresponding event occurs.

Compensation Handler If defined the compensation handler contains the ac-
tivity to be performed in the case where under certain error conditions; some
previous actions need to be undone.

Termination Handler After terminating the scope’s primary activity and all
running event handler instances, the scope’s (custom or default) termination
handler is executed.

Below, the semantics associated with each of these handlers and with the
whole scope:

Handlers wrappers The following semantics is widely inspired and adapted
from [12]. Note that for all these handlers, throw, eni, disi are bound names to
the whole system. They are communication channels between processes.

Fault Handler Given a tuple of faults (x̃) related to a tuple of processes P̂ =
(P1, . . . , Pn) the code for the fault handler is:

WFH(P̂) ::= enfh().
(∑

i

(
xi(ỹ).(throw

inv〈〉 | Pi)
)
.
(
y1

inv〈〉 | yinv
fh 〈〉

)
+ disfh()

)
A fault handler is enabled using enfh channel. The fault handler uses a guarded

sum to execute an activity Pi, associated with the triggered fault (i). After
executing the associated activity, it then signals its termination to the activating
process on the channel y1 and to the scope on channel yfh. If necessary, the fault
handler is disabled using disfh channel. In WS-BPEL, internal faults are signaled
using the <throw> activity.

Event Handler Given a tuple of events (x̃) related to a tuple of processes P̂ =
(P1, . . . , Pn) the code for the event handler is:

WEH(P̂) ::= (νx̃) eneh().
(∏

i

(
!xi(ỹ).zi〈ỹ〉

)
+ diseh()) |

∏
i

(zi(ũ).Pi)
)

An event handler enables itself using eneh channel, then waits for a set of events
on channels (x̃) each of them associated with an event. When the event occurs,
the associated activity Pi is triggered by a synchronization on channel zi. It is
a typical usage of the pick construct. The event handler is disabled using diseh
channel.

Compensation Handler Let P1 be the scope activity and PC the compensation
activity, the compensation handler is modeled by:

WCH(P1, PC) ::= ench().
(
z(ỹ).(CC(P1, ỹ) | throwinv〈〉)+instch().(z(ỹ).PC | yinv

ch 〈〉)
)

where :
CC(P1, ỹ) =

∏
z′∈Sn(P1)

z′
inv〈ỹ〉

compensate children scopes (through channels in Sn(P1)) of activity P1.
A compensation handler associated with a scope z is first installed at the

beginning of the scope through an input on channel instch (yinvch signals this
installation); it then process its compensation activity PC . If the compensa-
tion handler is invoked but not installed, it signals the termination of the scope
activity through channel throw and performs children compensation (CC). In
WS-BPEL, the compensation handler is invoked using the <compensate> activ-
ity.

Termination Handler To force the termination of a scope, we first disable it’s
event handlers and terminate primary activity and all running event handler
instances. Then the custom or default <terminationHandler> for the scope, is
run [18]. The formal model is as follows:

WTH(PT) ::= term(ũ).
(
dis

inv
eh 〈〉 | oinv〈ỹ〉 | (PT | throw

inv〈〉)
)

A termination handler is invoked by the terminating scope using channel term.
It disables the event handler using channel diseh and terminates scope’s primary
activity using channel o. Then custom or default termination process PT is run.

Scope Finally, putting all this together leads to the following semantics where
the scope is represented by a hole context. Only the scope activity A must be
provided by the designer.
Scope ::= (ν throw, eneh, enfh, ench, disfh, instch, diseh, term)(
WEH(Âeh) | WFH(Âfh) | WCH(P1, PC) | WTH(PT)

| (eneh〈 〉.enfh〈 〉.ench〈 〉)

| (A|t〈 〉)

| c().(diseh〈 〉.disfh〈 〉 | instch〈 〉.term〈 〉) | yeh().yfh().ych()

| (xz().(throw〈 〉 | disfh〈 〉) + t().c〈 〉)
)

– (eneh〈 〉.enfh〈 〉.ench〈 〉): enables handlers
– (A|t〈 〉) indicates normal termination by an output on channel t
– c().(diseh〈 〉.disfh〈 〉 | instch〈 〉.termch〈 〉) : in case of normal termination,

disables event and fault handlers, installs compensation handler and runs
termination handler.

– (xz().(throw〈 〉 | disfh〈 〉) + t().c〈 〉) : scope can receive a termination signal
on xz from its parents, or terminate normally by receiving a signal on t.

– yeh().yfh().ych() : channels used to indicate termination of handlers.
– PT is the termination process.
– PC is the compensation activity.

2.2 The BP-logic

We close these preliminaries by briefly recalling the BP-logic. Its syntax is a slight
variant of the π-logic [7]. Its semantics is interpreted on labelled X-transition
systems and it is given by the following grammar :

φ ::= true | X | ∼ φ | φ & φ′ | EX{µ}φ | EFφ | EF{χ}φ

where µ is a BP -calculus action and χ could be µ, ∼ µ, or
∨
i∈I µi and I is a

finite set. EX{µ}φ is the strong next, while EFφ means that φ must be true
sometimes in a possible future. The meaning of EF{χ}φ is that validity of φ
must be preceded by the occurrence of a sequence of actions χ. Some useful dual
operators are defined as usual: φ∨φ, AX{µ}φ, < µ > φ (weak next), [µ]φ (dual
of weak next), AGφ (AG{χ}) (always).

Explicit interpretation of the termination predicate X is that P satifies X iff
P terminates; which is denoted PX. The formal definition of X is :

PX and P
α−→Q⇒ QX

Additional rules induced by this predicate in the operational semantics are given
in Table 3 of Appendix A.

3 Formalizing dynamic reconfiguration

3.1 Dynamic reconfiguration

Dynamic reconfiguration can easily be coped with using handlers [14]. The re-
gions to be reconfigured have to be represented by scopes so that they could
contain adequate termination and event handlers, and be triggered or finished
in a clean way.

So, each scope (i.e. region) will be associated with appropriate termination
and event handlers. These handlers allow the the transition phase to take place:
The new region has to be triggered by the event handler while the old region will
be then terminated by the termination handler. Event handlers run in parallel
with the scope body; so the old region can be terminated separately while the
event handler brings the new region into play.

This is formalized by modeling the system Workflow as a sequence of an
entering region (Renter), followed by the transition region (TR), itself followed
by the finishing region (Rfinish). Thus,

Workflow = Renter . TR . Rfinish

TR is modeled as a scope with an event handler WEH(PE1
). In case the

change configuration event is triggered, the scope corresponding to the new re-
gion is launched, while the first activity corresponding to the old region is ter-
minated by calling its termination handler. Let Rold and Rnew be respectively
the old and the new region, both in TR. Thus TR is modeled as follows:

TR = {x̃, Rold, H1} where

H1 = WFH(PF1
)|WEH(PE1

)|WCH(PC1
)|WTH(PT1

)

PE1
= change().Rnew

Rnew = {ỹ, Pnew, H2}.
H2 = WFH(PF2

)|WEH(PE2
)|WCH(PC2

)|WTH(PT2
)

PT2
= term().Rold

PFi , PEi , PCi and PTi are activities respectively associated with fault, event,
compensation and termination handlers of the ith scope. The main activity of
the transition region TR is the old region Rold and is processed first, unless the
change event is triggered, in which case the new region is processed. PE1

is the
activity associated with the event handler in charge of triggering Rnew by mean
of channel change. The charge of terminating the old region is devoted to process
WTH(PT1

. Rnew is itself a scope with a main activity Pnew and handlers H2.
This definition acts as a template for any dynamic reconfiguration scheme.

Designers need only to fulfil holes, represented by processes PX in each handler,
to adapt it to their needs.

3.2 Expressing Requirements

Requirements can be expressed as structural and/or behavioral properties that
ensure the system’s consistency. They are invariants of the system and one must
ensure that they are not violated. One must ensure, for instance, that whatever
is the used procedure, the result is the same and the logical processing order
is respected. This is an example of structural and behavioral invariant since it
makes assumptions on the state of the system. We may express this property
by the following generic formula where x and y are channels that respectively
trigger entering and finishing regions:

AG{{x().Renter}true ∧ EF{y().Rfinish}true}

The EF{χ}φ operator of the BP-logic allows us to express precedence prop-
erties. If R1 and R2 are some regions that must be processed in this order, one
can formalize it like this:

EF{{x()R1}true} {y()R2}true

One may be interested in termination of processes. In this case the X operator
is useful: RX.

4 The Case Study

In order to illustrate our approach, we use here the same case study presented
in [14]. This case study describes dynamic reconfiguration of an office workflow
for order processing that is commonly found in large and medium-sized organi-
zations.

4.1 Dynamic reconfiguration of office workflow

A given organisation handles its orders from existing customers using a number
of activities arranged according to the following procedure:

1. Order Receipt: an order for a product is received from a customer.
2. Evaluation: An inventory check on the availability of the product and a

credit check on the customer are performed that use external services. If
both the checks are positive, the order is accepted for processing; otherwise
the order is rejected.

3. Rejection: if the order is rejected, a notification of rejection is sent to the
customer and the workflow terminates.

4. If the order is to be processed, the following two activities are performed
concurrently:
(a) Billing: the customer is billed for the total cost of the goods ordered

plus shipping costs.
(b) Shipping: the goods are shipped to the customer.

5. Archiving: the order is archived for future reference.
6. Confirmation: a notification of successful completion of the order is sent to

the customer.

In addition, for any given order, Order Receipt must precede Evaluation,
which must precede Rejection or Billing and Shipping.

After some time, managers decide to change the order processing procedure,
so that Billing is performed before Shipping (instead of performing the two
activities concurrently). During the transition interval from one procedure to the
other, some requirements (invariants) must be met and are presented in Section
4.3.

4.2 The model in BP-calculus

The Renter region contains order reception and evaluation(Creditcheck and
InventoryCheck operations) and is not detailed here. In the same manner, the
Rfinish region contains Archiving and Confirmation and are not detailed here.
We focus on the transtion region TR.

To model TR, we only need to provide the structure of processes Pnew, Rold,
PT1

and PT2
to complete the template designed in Section 3.1.

Rold = BillShip().(Bill customer, order |Ship customer, order)
PT1 = term1()

Pnew = BillShip().term1 .(Bill customer, order � Ship customer, order)

PT2 = term2()

Regions are invoked using the BillShip channel. In the old region, billing
and shipping are processed concurrently, while in the new region this is done
sequentially. When the new region is invoked, it begins disabling the old region
by invoking its termination Handler using channel term1.

4.3 Formalizing requirements

Key concerns raised from dynamic configuration and discussed in introduction
(Section 1) can be formalized in BP-logic. Concerning the case study some of its
requirements have been pointed out in [14]. They could be stated as follows:

1. The result of the billing and shipping process for any given order should not
be affected by the change in procedure.

2. All orders accepted after the change in procedure must be processed accord-
ing to the new procedure.

The first requirement means that whatever region chosen, an order is billed,
shipped then archived. We can model this as follows:

AG{{Billship()}true ∧ EF{Bill order}true ∧ EF{Ship order}true}

The last requirement means that after a signal has been received on channel
change, the termination handler of the old region is invoked. This may be mod-
eled by the following formula:

AG{{change()}true ∧ EF{term1 }true}

In order to check the terminaison of the whole process the formula is as follows:

WorkflowX

5 Discussion and future work

In this work, we have shown a high-level approach for modeling and verifying
dynamic reconfigurations of WS-BPEL services. We have expressed their re-
quirements in the BP-logic in order to verify them with reliable existing tools
such as Mobility Workbench or the HAL Toolkit.

For the future works, we are currently working on the implementation of a
complete tool for analysis and verification of WS-BPEL specifications by means
of the BP-calculus and the BP-logic. Another long term objective is to formally
prove that our language allows for a sound automatic generation of WS-BPEL
code.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In 28th Symposium on Principles of Programming Languages, page 104115. ACM
Press, 2001.

2. F. Abouzaid, A. Bhattacharyya, N. Dragoni, JS. Fitzgerald, M. Mazzara, and
M. Zhou. A case study of workflow reconfiguration: Design, modelling, analysis
and implementation. School of computing science technical report series, Newcastle
upon Tyne: School of Computing Science, University of Newcastle upon Tyne,
2011.

3. F. Abouzaid and J. Mullins. A calculus for generation, verification and refine-
ment of bpel specifications. Electronic Notes in Theoretical Computer Science,
200(3):43–65, 2008.

4. G. Boudol. Asynchrony and the πcalculus. Technical Report 1702, INRIA Sophi-
aAntipolis, 1992.

5. BPMN. Bpmn - business process modeling notation. ‘http://www.bpmn.org/.
6. D. and C.B. Jones. Lecture Notes in Computer Science, volume 61, chapter The

Vienna Development Method: The Meta-Language. Springer, 1978.
7. G. Ferrari, S. Gnesi, U. Montanari, M. Pistore, and G. Ristori. Verifying mobile

processes in the hal environment,. In Alan J. Hu and Moshe Y. Vardi, editors,
CAV’98, pages 511–515, 1998.

8. G.L. Ferrari, S. Gnesi, U. Montanari, and M. Pistore. A model-checking verification
environment for mobile processes. ACM Trans. Softw. Eng. Methodol., 12(4):440–
473, 2003.

9. J.L. Fiadeiro and A. Lopes. A model for dynamic reconfiguration in service-oriented
architectures. In Proceedings of the 4th European conference on Software architec-
ture, ECSA’10, pages 70–85, Berlin, Heidelberg, 2010. Springer-Verlag.

10. K. Honda and M. Tokoro. An object calculus for asynchronous communication. In
European Conference on ObjectOriented Programming (ECOOP’91), volume 512
of LNCS, pages 133–147. Springer, 1991.

11. C. Krause, Z. Maraikar, A. Lazovik, and F.Arbab. Modeling dynamic reconfigura-
tions in reo using high-level replacement systems. Science of Computer Program-
ming, 76(1):23 – 36, 2011.

12. R. Lucchi and M. Mazzara. A pi-calculus based semantics for ws-bpel. Journal of
Logic and Algebraic Programming, 2007.

13. M. Mazzara, F. Abouzaid, N. Dragoni, and A. Bhattacharyya. Design, modelling
and analysis of a workflow reconfiguration. In PNSE 2011, Petri Nets and Software
Engineering (INVITED TALK), Newcastle, UK, 2011.

14. M. Mazzara, F. Abouzaid, N Dragoni, and A. Bhattacharyya. Toward design,
modelling and analysis of dynamic workflow reconfigurations - a process algebra
perspective. In Proceedings of the 8th International Workshop on Web Services
and Formal Methods (WS-FM’11),, Clermont-Ferrand, France, 2011.

15. M. Mazzara and A. Bhattacharyya. On modelling and analysis of dynamic recon-
figuration of dependable real-time systems. In In Third International Conference
on Dependability (DEPEND 2010), Venice/Mestre, Italy, 2010. IEEE Computer
Society.

16. M. Mazzara, N. Dragoni, and M. Zhou. Implementing workflow reconfiguration in
ws-bpel. Journal of Internet Services and Information Security (JISIS), to appear,
2012.

17. M. Mazzara and I. Lanese. Towards a unifying theory for web services composition.
In WS-FM, pages 257–272, 2006.

18. Oasis. Web service business process execution language version 2.0 specification,
oasis standard. http : //docs.oasis− open.org/wsbpel/2.0/wsbpel− v2.0.pdf , april
2007.

A Operational semantics of the BP-calculus

The operational semantics of the BP-calculus is a labelled transition system
generated by inference rules given in Table 2.

OPEN P
a〈u〉−→P ′ a6=u

{u,P,∅}a〈u〉−→P ′
CLOSE

P
a(u)−→P ′ Q

a〈u〉−→Q′ u6∈fn(P)

P |Q τ−→{u,P ′|Q′,∅}

RES
P
α→P ′ n 6∈fn(α)∪bn(α)
{n,P,∅} α→{n,P ′,∅}

TAU
τ.P

τ→P

OUT
ct〈M〉.P c〈M〉→ P

IN
c(x).P

c(M)→ P{M/x}

PAR
P
α→P ′ bn(α)∩fn(Q)=∅

P |Q α→P ′|Q
SYNC P

α→P ′ Q
α→Q′

P |Q τ→P ′|Q′

CHOICE
IGi

ci
t〈〉
→ Pi i∈{1,2}

IG1+IG2
α→Pi

DEF
P{ỹ/x̃} α→ P ′ A(x̃)=P

A(x̃)
α→ P ′

SCO P
α→P ′

{x,P,H} α→{x,P ′,H}
HAN H

α→H′

{x,P,H} α→{x,P,H′}

SPAR P
α→P ′ Q

α→Q′

{x1,P,H1}|{x2,Q,H2}
τ→{x1,P ′,H1}|{x2,Q′,H2}

IFT-M P
α→P ′ M=N

if(M=N) then P else Q
α→P ′ IFF-M Q

α→Q′ M 6=N
if (M=N) then P else Q

α→ Q′

EVAL
M̃=f(M1,...,Mn) P{M̃/x̃} α→P ′

[x̃←f(M1,...,Mn)]P
α→P ′

SEQ1 P
α→P ′

P�c(M)Q
α→P ′�c(M)Q

SEQ2 P
c〈M〉→ 0 Q

c(M)→ Q′

P�c(M)Q
τ→Q′

C-SP1
Serv0

α→Serv′0 Serv=cA(x̃).A(ỹ)

[C:R|Serv0]cA(x̃).A(ỹ)
α→[C:R|Serv′0]cA(x̃).A(ỹ)

C-SPT
createInstance(M)=true [z̃←ũ]=correlationPart(M)

[null:0]cA(x̃).A(ỹ)
cA(M)
→ [[z̃←ũ]:A(ũ)]cA(x̃).A(ỹ)

C-SPF
createInstance(M)=true [z̃←ũ]=corrPart(M) [z̃←ũ]6∈C Serv=cA(x̃).A(ỹ)

[C:R]cA(x̃).A(ỹ)
cA(M)
→ [C,[z̃←ũ]:R|A(ũ)]cA(x̃).A(ỹ)

Table2. Operational semantics of the BP-calculus.

TER1 0X TER2 PX
τ.PX TER3 PX

c(ũ).PX TER4 PX
ct〈M〉.PX

TER5 PX QX
(P�c(M)Q)X TER6 PX QX

(P | Q)X TER7 PX
{n,P,∅}X TER8 PX

{x̃, P, H}X

Table3. Operational semantics induced by X predicate.

	TRCover1322
	TRAbstract1322
	TECHNICAL REPORT SERIES
	Abstract

	TRBibliography1322
	1322withoutcovers

