Skip to main content

On the Tight Formation for Multi-agent Dynamical Systems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7327))

Abstract

This paper addresses the real-time control of multiple agents in the presence of disturbances and non-convex collision avoidance constraints. The goal is to guarantee the convergence towards a tight formation. A single optimal control problem is solved based on a prediction of the future evolution of the system and the resulting controller is implemented in a centralized way. At the supervision level, it is shown that the decision about which agents should take on what role in the desired tight formation is equivalent with a classical pairing (or task assignment) problem. Furthermore, the pairing is re-evaluated at each iteration. The proposed method exhibits effective performance validated through some illustrative examples.

The research of Ionela Prodan is financially supported by the EADS Corporate Foundation (091-AO09-1006).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch, T., Arkin, R.: Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation 14(6), 926–939 (1998)

    Article  Google Scholar 

  2. Girard, A., de Sousa, J., Hedrick, J.: Coordinated Control of Agent Formations in Uncertain, Dynamic Environments. In: Proceedings of the European Control Conference, Porto, Portugal (2001)

    Google Scholar 

  3. Grundel, D., Murphey, R., P.M., P.: Cooperative systems, Control and optimization, vol. 588. Springer (2007)

    Google Scholar 

  4. Hallefjord Kurt, O.: Solving large scale generalized assignment problems–An aggregation/disaggregation approach. European Journal of Operational Research 64(1), 103–114 (1993)

    Article  MATH  Google Scholar 

  5. Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  6. Jünger, M., Liebling, T., Naddef, D., Nemhauser, G., Pulleyblank, W.: 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art. Springer (2009)

    Google Scholar 

  7. Lafferriere, G., Caughman, J., Williams, A.: Graph theoretic methods in the stability of vehicle formations. In: Proceedings of the 2004 American Control Conference, vol. 4, pp. 3729–3734 (2005)

    Google Scholar 

  8. Loechner, V., Wilde, D.: Parameterized polyhedra and their vertices. International Journal of Parallel Programming 25(6), 525–549 (1997)

    Article  Google Scholar 

  9. Mayne, D., Rawlings, J., Rao, C., Scokaert, P.O.: Constrained model predictive control: Stability and optimality. Automatica 36, 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mayne, D., Seron, M., Raković, S.: Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 41(2), 219–224 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Palekar, U., Karwan, M., Zionts, S.: A branch-and-bound method for the fixed charge transportation problem. Management Science 36(9), 1092–1105 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Prodan, I., Olaru, S., Stoica, C., Niculescu, S.-I.: Predictive control for tight group formation of multi-agent systems. In: Proceedings of the 18th IFAC World Congress, Milano, Italy, pp. 138–143 (2011)

    Google Scholar 

  13. Raković, S., Kerrigan, E., Kouramas, K., Mayne, D.: Invariant approximations of the minimal robust positively invariant set. IEEE Transactions on Automatic Control 50(3), 406–410 (2005)

    Article  Google Scholar 

  14. Richards, A., How, J.: Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In: Proceedings of the 21th American Control Conference, Anchorage, Alaska, USA, pp. 1936–1941 (2002)

    Google Scholar 

  15. Stoican, F., Prodan, I., Olaru, S.: On the hyperplanes arrangements in mixed-integer techniques. In: Proceedings of the 30th American Control Conference, San Francisco, CA, USA, pp. 1898–1903 (2011)

    Google Scholar 

  16. Tanner, H., Jadbabaie, A., Pappas, G.: Flocking in fixed and switching networks. IEEE Transactions on Automatic Control 52(5), 863–868 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prodan, I., Olaru, S., Stoica, C., Niculescu, SI. (2012). On the Tight Formation for Multi-agent Dynamical Systems. In: Jezic, G., Kusek, M., Nguyen, NT., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems. Technologies and Applications. KES-AMSTA 2012. Lecture Notes in Computer Science(), vol 7327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30947-2_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30947-2_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30946-5

  • Online ISBN: 978-3-642-30947-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics