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Abstract. Annotation graph datasets are a natural representation of
scientific knowledge. They are common in the life sciences where con-
cepts such as genes and proteins are annotated with controlled vocabu-
lary terms from ontologies. Scientists are interested in analyzing or min-
ing these annotations, in synergy with the literature, to discover pat-
terns. Further, annotated datasets provide an avenue for scientists to
explore shared annotations across genomes to support cross genome dis-
covery. We present a tool, PAnG (Patterns in Annotation Graphs), that
is based on a complementary methodology of graph summarization and
dense subgraphs. The elements of a graph summary correspond to a pat-
tern and its visualization can provide an explanation of the underlying
knowledge. We present and analyze two distance metrics to identify re-
lated concepts in ontologies. We present preliminary results using groups
of Arabidopsis and C. elegans genes to illustrate the potential benefits
of cross genome pattern discovery.

1 Introduction

Arabidopsis thaliana is a flowering plant that is widely used as a model organism
and whose genome was completely sequenced in the year 2000. The Arabidopsis
Information Resource (TAIR) is a well curated and heavily used portal for ac-
cessing Arabidopsis genome information [6,19,21]. TAIR provides a rich synopsis
of each gene through links to a variety of data including Gene Ontology (GO)
[2,7] and Plant Ontology (PO) [26].

We illustrate annotation datasets using a study of genes involved in photo-
morphogenesis. The GO-PO annotation graph for gene CRY2 is in Figure 1. The
PO annotations for CRY2 are on the left side and the GO annotations are on
the right. We label this a tri-partite annotation graph or TAG. Each node of the
TAG includes the identifier and the label for the Controlled Vocabulary (CV)
term. As of September 2011, there were 17 GO and 37 PO annotations for CRY2.
The figure illustrates partial annotations. On the right of Figure 1 is a fragment
of the relevant GO ontology.



Fig. 1. GO and PO annotations for gene CRY2 (middle); GO fragment (right); Graph
Summary(GS) for genes CRY2 and PHOT1 (inset)

Over the past 25 years, knowledge of the Arabidopsis genome has increased
exponentially, together with that of other model organisms. This abundance of
data has led to an era of comparative genomics, in which genes can be compared
across diverse taxa to provide insights into evolutionary similarities as well as
key divergences. Already the study of genes in Arabidopsis has helped to in-
form human research and vice versa. Increasingly, every new genome must be
understood in light of previously sequenced and analyzed genomes.

We will consider orthologous genes from three model organisms: Saccha-
romyces cerevisiae (yeast), Caenorhabditis elegans (nematode) and Drosophila
melanogaster (fruit fly). The rationale for including these highly annotated
genomes is to synthesize existing knowledge to enhance our understanding of
gene function in Arabidopsis (and possibly vice versa). A future aim of our re-
search will be to extend cross genome analysis to include a range of plants,
including lower plant species. Currently, a number of these genomes are sparsely
annotated. By incorporating the genomes of such plant species, we may help
to build knowledge in less well-studied species by bootstrapping to Arabidop-
sis, while strengthening our overall understanding of plant gene function and
evolution.

We recognize that our goals are ambitious and that we have to solve numerous
challenges. First, we have to find patterns in annotation graph datasets. On this
challenge, we can report some initial success [1,22,27].

Next, we must integrate annotation data across multiple organisms to per-
form comparative genomics. We must identify a protocol and efficient processes
to obtain orthologs or other matching genes from multiple organisms. Potential
resources and tools include the Homologene service from NCBI [9], Inparanoid
[10], a database that includes animals, and Plaza [18], which is exclusive to plant
species. In this paper, we bypass this potentially expensive process and describe
a simpler, less expensive protocol. We use shared annotations, and gene and pro-
tein families, to harvest Arabidopsis and C. elegans genes and annotations for
cross genome analysis. We recognize that this protocol is less accurate at finding
orthologous genes and we use it only for proof-of-concept purposes.
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A key element in finding patterns is identifying related ontological concepts.
A fragment of the GO ontology is shown on the right of Figure 1. We postulate
that ontology terms that are located in proximity to each other in the ontology
are more related. In addition, terms which are located along branches of the
tree with greater depth and/or breadth potentially reside in areas where the
ontological concepts are defined at a more granular level of functional or de-
scriptive detail. Finally, pairs of terms within the same proximity and that are
(both) more distant from the root of the tree may be more related. We propose
a metric dtax for taxonomic distance and compare to dps [16], a state-of-the-art
metric. Figure 1 also illustrates different types of relationships in GO including
part of, is a and regulates. While these relationship types are important in de-
termining relatedness, we have not used these features in our current work. The
contributions of this paper are as follows:

– We present the concept of tripartite annotation graphs (TAG) and our tool
PAnG (Patterns in Annotation Graphs) to identify patterns. PAnG relies on
dense subgraphs and graph summarization methods.

– Using sample datasets of groups of genes from Arabidopsis and C. elegans
that share similar gene function, we show some preliminary results of vali-
dating PAnG for cross genome analysis.

– We study the properties of metrics dtax and dps for a subset of GO terms and
demonstrate that dtax is better able to discriminate between taxonomically
close terms.

This paper is organized as follows: Section 2 presents an overview of PAnG
including dense subgraphs and graph summarization. Section 3 considers groups
of genes from Arabidopsis and C. elegans, with shared function and GO annota-
tion, to explore the potential benefits of cross genome pattern discovery. Section 4
presents the two distance (similarity) metrics dtax and dps and compares their
properties on several subsets of GO biological process (GO-BP) terms.

2 Overview of PAnG

Figure 2 illustrates the overall workflow of PAnG. The input is a tripartite anno-
tated graph G, and the output is a graph summary. Our workflow consists of two
steps. The first step is optional and deals with the identification of dense sub-
graphs, i.e., highly connected subgraphs of G that are (almost) cliques. The goal
is to identify interesting regions of the graph by extracting a relevant subgraph.

Next, graph summarization transforms the graph into an equivalent compact
graph representation. Graph summaries are made up of the following elements:
(1) supernodes; (2) superedges; (3) deletion and addition edges (corrections).
The left inset of Figure 1 shows a fragment of a graph summary obtained from
the analysis of photomorphogeneis genes in Arabidopsis. There is a supernode
with the two genes PHOT1 and CRY2 and another supernode with two PO terms.
There is a superedge between these two supernodes reflecting that the two genes
are both annotated with the two PO terms. Both genes are also annotated with
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Fig. 2. The original TAG can be subject to an optional filter step to identify dense
subgraphs. The PAnG tool employs graph summarization to identify patterns.

the GO term. We note that while this appears to be a very simple pattern,
the association of these two genes and their PO and GO terms annotations
represented an as yet unknown and potential interaction between phototropins
(PHOT1) and chryptochromes (CRY2) [22].

The summary reflects the basic pattern (structure) of the graph and is ac-
companied by a list of corrections, i.e., deletions and additions, that express
differences between the graph and its simplified pattern. For example, a deletion
reflects that a gene does not have a particular annotation that is shared by other
genes within the supernode.

A graph summary has several advantages. First, it gives a better understand-
ing of the structure of the underlying graph and is good for visualization. Second,
the summary captures semantic knowledge not only about individual nodes and
their connections but also about groups of related nodes. Third, the corrections,
in particular deletions, are intuitive indicators for future edge prediction.

Our approach is not limited to TAGs. A k-partite layered graph can be first
converted to a more general (bi-partite) graph. Our experience is that when
presented with patterns, a bi-partite graph that combines terms from multiple
ontologies into one layer may not convey the same intuitive meaning to a sci-
entist. With more than 3 layers, however, the patterns become more difficult to
comprehend.

2.1 Dense subgraphs

Given an initial tripartite graph, a challenge is to find interesting regions of
the graph, i.e., candidate subgraphs, that can lead to valuable patterns. We
commence with the premise that an area of the graph that is rich or dense with
annotation is an interesting region to identify candidate subgraphs. For example,
for a set of genes, if each is annotated with a set of GO terms and/or a set of PO
terms, then the set of genes and GO terms, or the set of genes and PO terms,
form a clique. We thus exploit cliques, or dense subgraphs (DSG) representing
cliques with missing edges. Density is a measure of connectedness. It is the ratio
of the number of induced edges to the number of vertices in the subgraph.
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Even though there are an exponential number of subgraphs, a subgraph of
maximum density can be found in polynomial time [13,8,5]. In contrast, the
maximum clique problem to find the subgraph of largest size having all possible
edges is NP -hard; it is even NP hard to obtain any non-trivial approximation.
Finding densest subgraphs with additional size constraints is NP hard [12]; yet,
they are more amenable to approximation than the maximum clique problem.

An annotation graph is a tripartite graph G = ((A,B,C), (X,Y )). PAnG
employs our approach in [22] and thus first transforms the tripartite graph G
in a weighted bipartite graph G′ = (A,C,E) where each edge e = (a, c) ∈ E
is labeled with the number of nodes b ∈ B that have links to both a and c.
We then compute a densest bipartite subgraph G2 by choosing subsets of A
and C to maximize the density of the subgraph. Finally, we build the dense
tripartite graph G3 out of the G2 by adding all intermediate nodes b ∈ B that
are connected to at least one node of G2.

In an ontology (see right inset of Figure 1), nodes from PO and GO are
hierarchically arranged to reflect their relationships (e.g., is-a or part-of). The
PAnG tool allows users to include restrictions on the ontology terms in the
DSG. The simplest restriction is a distance restriction that specifies the maximal
path length between pairs of nodes in set A (C). To this end, PAnG employs
a distance metric dA (dC) and computes the densest subgraph G3 that ensures
that all node pairs of A (C) are within a given distance τA (τC). Furthermore,
the user can filter the ontology by the relationship type, i.e., only node pairs
that are in a specific relationship are considered for distance computation. The
current version of PAnG [1] uses the simple shortest path length between a pair
of terms as the distance metric. In this paper, we evaluate more sophisticated
distance metrics in Section 4.

2.2 Graph summarization

PAnG generates graph summaries for representing patterns. A summary of a
tripartite annotation graph is also a graph. While there are many methods to
summarize graphs, we focus on the graph summarization (GS) approach of [15].
Their graph summary is an aggregate graph comprised of a signature and correc-
tions. It is the first application of minimum description length (MDL) principles
to graph summarization and has the added benefit of providing intuitive coarse-
level summaries that are well suited for visualization and link prediction.

A graph summary (GS) of a graph G = ((A,B,C), (X,Y )) consists of a
graph signature Σ(G) and a set of corrections ∆(G). The graph signature is
defined as follows: Σ(G) = ((SAC , SB), SXY ). The sets SAC and SB are a disjoint
partitioning of A ∪ C and B, respectively, that cover all elements of these sets.
Each element of SAC or SB is a supernode and consists of one or more nodes of
the original graph. An element of SXY is a superedge and it represents edges
between supernodes, i.e., SXY ⊆ SAC×SB . The corrections are the sets of edge
additions and deletions ∆(G) = (Sadd, Sdel). All edge additions are edges of the
original graph G, i.e., Sadd ⊆ X∪Y . Deletions are edges between nodes of G that
do not have an edge in the original graph, i.e., SDel ⊆ ((A∪C)×B)− (X ∪ Y ).
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Fig. 3. Screenshot of a graph summary as generated by PAnG. Superedges are repre-
sented by green solid lines. Corrections include red dashed (deletion) and blue dotted
(addition) lines, respectively.

Graph summarization is based on a two-part minimum description length
encoding. The complexity of the original GS problem is currently unknown.
However, if nodes are allowed to belong to more than one super node (i.e.,
overlapping supernodes), the problem reduces to finding the maximum clique in
a graph, which is NP-hard. We use a greedy agglomerative clustering heuristic.
The possible summaries of a graph will depend on the cost model used for an
MDL encoding. In general, the cost model assigns weights to the number of
superedges, deletions, and additions, respectively. Graph summarization looks
for a graph summary with a minimal cost. Currently PAnG employs a simple
cost model that gives equal weight to supernodes, superedges, and corrections.

2.3 Example Graph Summary

The Sze Laboratory at the University of Maryland is studying 20 CHX (Cation/H+
Exchanger) genes within the CPA2 family [23]; Figure 3 shows a dense subgraph
(DSG) of the following 9 genes: CHX2, CHX10, CHX18, CHX19, CHX23, CHX25, CHX28,
ATCH8, and ATCH13. A supernode (shaded rectangle) groups together either genes
or GO terms or PO terms.4 For example, there are 3 gene supernodes; the top
supernode includes 3 genes, CHX23, CHX10, and CHX28 while the middle supern-
ode has 4 genes, ATCHX8, CHX19, CHX18, and CHX2. Figure 3 also includes 3 PO
supernodes of 3, 3, and 2 terms, respectively; this summary also contains 1 GO
supernode with 3 terms.

A superedge is a thick edge in the figure and occurs between 2 supernodes;
it represents that all nodes in both the supernodes are connected to each other.

4 Supernodes can also group dissimilar terms if desired, e.g., GO and PO terms.
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For example, the superedge between the middle PO supernode with 2 PO terms
carpel and sepal, and the middle gene supernode with 4 genes indicates that
all 4 genes are each annotated with both PO terms.

We use the supernodes and superedges to explain the patterns. The top gene
supernode (with 3 genes) has 1 superedge to the bottom PO supernode (with 2
terms). In contrast, the middle gene supernode (4 genes) has 3 superedges to each
of the 3 PO supernodes. The bottom gene supernode (2 genes) has 2 superedges.
Thus, the pattern distinguishes the 4 genes in the middle gene supernode, each
annotated with 7 PO terms, from the 3 genes in the top gene supernode with
the least number of PO annotations. CHX18 in the middle gene supernode is an
outlier as will be discussed. 8 genes (except CHX28) are also annotated with all 3
GO terms in the GO supernode; thus, the gene function behavior of these 8 genes
is identical with respect to these 3 GO terms. Sze confirmed the consistency of
these patterns with results reported in [24].

Finally, the summary in Figure 3 illustrates deletion edges; these are broken
edges in the figure and represent a deviation of behavior. A deletion reflects that a
gene does not have a particular GO or PO annotation that is shared by the other
genes (within the supernode). For example, CHX18 (middle supernode) is not
annotated with PO terms petal or pollen tube; this is consistent with tissue
localization results in [24]. CHX28 (top supernode) is not annotated with GO
term sodium:hydrogen. . . . While this gene has not been studied, the patterns
appears consistent with function based on phylogenetic tree analysis [23].

3 Preliminary Cross Genome Validation

3.1 Data Collection Protocol and Statistics

Ideally, PAnG would use tools such as Inparanoid [10], Plaza [18], and Homolo-
gene [9] to find all known homologs of a given gene, in some alternate organism.
For our proof-of-concept prototype, we apply a simpler protocol to identify genes
with shared annotations. Collaborators Sze and Haag identified families of Ara-
bidopsis or C elegans genes, respectively, as genes of interest. We then used
GO terms describing their function to retrieve corresponding genes in a sister
organism.

– At 8 and Ce 9
At 8: Eight Arabidopsis genes in families labeled NHX or SOS; responsible for
ion transport; seven are members of a sodium proton exchanger family.
Ce 9: Nine C. elegans genes in families labeled nhx or pbo; all are members
of a sodium proton exchanger family.

– At 37 and Ce 53
At 37: 37 Arabidopsis genes. We started with a collection of 19 genes, iden-
tified by Sze, as occurring in family number(s) 212, 277, and 469; all are pu-
tative heavy ion transporting P2A-type ATPase genes [4,25]. We expanded
this set to include all genes in families labeled ACE, ECA, HMA, RAN, and PAA.
Ce 53: 53 C. elegans genes that are annotated with terms ion transport
and/or divalent cations.
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Dataset Genes Annotation unique GO Terms Biol. Proc. Cell. Comp. Molec. Funct.

At 8 8 117 28 17 6 5

Ce 9 9 91 25 20 3 2

Overlap 6 4 0 2
Table 1. Statistics for datasets At 8 and Ce 9. The 4 overlapping biological processes
are cation transport, regulation of pH, sodium ion transport, and transmembrane trans-
port. The 2 overlapping molecular functions are sodium:hydrogen antiporter activity and
solute:hydrogen antiporter activity.

Dataset Genes Annotation unique GO Terms Biol. Proc. Cell. Comp. Molec. Funct.

At 37 455 37 106 55 29 22

Ce 53 53 685 48 21 9 18

Overlap 17 8 6 4
Table 2. Statistics for datasets At 37 and Ce 53. The 8 overlapping biological pro-
cesses are ATP catabolic process, ATP biosynthetic process, transport, cation transport,
metabolic process, response to metal ion, response to manganese ion, and manganese ion
homeostasis. The 6 overlapping cellular components are intracellular, nucleus, cytoplasm,
vacuolar membrane, membrane, and integral to membrane. The 4 overlapping molecular
functions are zinc ion binding, coupled to transmembrane movement of ions, phosphoryla-
tive mechanism, and ATPase activity,

We next report on the number of (distinct) GO terms associated with each
dataset, as well as the overlap, along the three GO branches, biological pro-
cess (GO-BP), molecular function (GO-MF) and cellular component (GO-CC)
in Table 1 and Table 2, respectively. We also report on the total number of an-
notations since multiple genes in the dataset could be annotated with the same
GO term 5.

3.2 Cross Genome Validation Using GS and DSG+GS Summaries

Figure 4 shows a graph summary (GS) for 8 genes in At 8. GO-BP terms are
on the right and GO-MF and GO-CC on the left. Two genes supernodes include
(NHX2, NHX6), and (NHX3, NHX4, NHX5), respectively. All the genes are annotated
with the 3 GO-BP terms in the top GO-BP supernode. They do not appear to
share many other GO-BP terms. Similarly, the 8 genes do not appear to share
many GO-MF or GO-CC terms. We note that there is a deletion edge indicat-
ing that while NHX2 is associated with both sodium hydrogen antiporter and
sodium ion transmembrane transporter function, NHX6 which shares many
functions with NHX2 and is in the same gene supernode, is not annotated with
sodium ion transmembrane transporter function.

5 We further note that there are cases where a single gene is annotated more than once
with the same GO term; this occurs when there is dissimilar annotation evidence
from multiple sources.
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Fig. 4. Graph Summary (GS) of GO annotations for 8 genes in At 8; GO-BP on the
right and GO-MF and GO-CC on the left.

Figure 5 shows the graph summary (GS) for 9 genes in Ce 9. GO-BP terms
are on the right and GO-MF and GO-CC on the left. All 9 genes share the
three GO-MF terms in the supernode on the upper left. They also share 4 GO-
BP terms grouped into a supernode on the right in the middle of the figure.
8 of the genes are gouped into a single gene supernode, with nhx-2 being the
outsider. This is because nhx-2 appears to be much more richly annotated with
an additional 11 GO-BP terms. Only nhx-1 shares a single GO-BP term in
that group, positive regulation of growth rate. However, these 8 genes in
the supernode do not appear to share many additional GO-BP annotations.
For example, only nhx-1, nhx-4 and nhx-6 share the GO-BP annotation embro
development ending in birth.

Finally, we combine the 8 Arabidopsis and the 9 C. elegans genes. We then
identify a dense subgraph (DSG) with no distance restrictions. Figure 6 il-
lustrates the benefit of creating a DSG prior to applying the graph summary
(GS); DSG+GS identifies a single gene supernode that includes the 9 C. elegans
genes and 2 Arabidopsis genes, NHX2 and NHX6. These 2 Arabidopsis genes are
included since both are annotated with the 4 GO-BP terms that annotated all
9 C. elegans genes as well as one (two) GO-MF terms. We note that the same 4

9



Fig. 5. Graph Summary (GS) of GO annotations for 9 genes in Ce 9; GO-BP on the
right and GO-MF and GO-CC on the left.

GO-BP terms and 2 of the 3 GO-MF of Figure 6 were identified in the overlap
of Table 1. Thus, the DSG+GS annotation pattern is consistent with the shared
annotations and overlap. Further, the DSG+GS annotation pattern provides a
more detailed and nuanced understanding compared to the simple data of the
overlap.

Based on phylogeny studies, NHX5 and/or NHX6 (intramembrane/Golgi
phenotype) are more likely to be close homologs to C. elegans genes. NHX2
is part of the [NHX1-NHX4] group with a vacuolar-localized phenotype; phylo-
genetic studies show they are typically plant-specific genes. Thus, the supernode
grouping of NHX2 and NHX6 with the 9 C. elegans genes appears to be partially
validated using biological knowledge but requires further study to determine if
this grouping may also have resulted from an incomplete annotations of these
genes.

4 Using Distance Metrics for Validation

In Section 3, the dense subgraph (DSG) did not consider any distance restriction
between the pairs of GO terms in the subgraph. Similar the graph summarization
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Fig. 6. Graph Summary of a Dense Subgraph (DSG+GS) of GO annotations for 8
genes in At 8 and 9 genes in Ce 9; GO-BP on the right and GO-MF and GO-CC on
the left.

(GS) did not consider any distance restriction when constructing GO supernodes.
This has significant limitations since terms in GO reflect concepts, and proximity
(parents, siblings and neighbors) reflect relatedness of these concepts.

In this section, we consider two distance metrics that can be applied to tax-
onomies to measure the relatedness or similarity of concepts. We recognize that
relatedness and similarity are not always synonymous. Our proposed metric is
labeled dtax and we compare it to dps [16], a state-of-the-art metric from the
literature. We report on experiments performed on several datasets. In the range
[0.0 . . . 1.0], where 1.0 represents no similarity, dtax provides a wider dispersion
of values, compared to dps. This wider dispersion provides dtax with better dis-
crimination of concepts that are not related, and hence more suited to the task
of identifying related concepts.

4.1 Distance Metrics

The taxonomic organization of vertices in an ontology, as well as node properties
such as descendants and ascendants, have been considered to develop state-of-
the-art distance metrics that identify near neighbors, i.e., those that are proximal
to each other in the taxonomy [11,14,17,20,28]. Consider the taxonomy of Fig-
ure 7(a). A good taxonomic distance metric should reflect that while the number
of edges (say shortest path length) between a pair of nodes (1, 9) and (4, 17)
may both be equal to 2, the taxonomic distances between these pairs should
be different. The reasoning is that nodes that are deeper in the hierarchy and
farther from the root are more specific.

Taxonomic distance metrics take values in the range [0.0 · · · 1.0], where 0.0
represents the greatest similarity. A desirable property is that two nodes that
are (1) farther from the root and (2) closer to their lowest common ancestor,
should be closer in distance. For example, in Figure 7(a), the pair of nodes (8,
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(a) Example taxonomy

Pair dtax dps

(0,1) 1.0 1.0
(1,3) 1.0 1.0
(6,7) 0.25 0.40
(7,8) 0.11 0.20
(8,15) 1.0 1.0
(8,16) 0.09 0.17
(8,17) 0.4 0.57
(10,17) 0.33 0.50
(11,12) 0.50 0.66

(b) Distances

Fig. 7. Example of taxonomic distance(s) between pairs of vertices for an example
taxonomy.

16) should have a lower taxonomic distance to each other compared to the pair
(11, 12), although the path length = 2 for both pairs. This is because the pair
(8, 16) is farther from the root compared to (11, 12). The depth of a node from
the root and the lowest common ancestor are defined as follows:

Definition 1 (Vertex Depth). Given a directed graph G, the depth of a
vertex x in G is the length of the longest path from the root of G to x.

Definition 2 (Lowest Common Ancestor [3]). Given a directed graph G,
the lowest common ancestor of two vertices x and y, is the vertex of greatest
depth in G that is an ancestor of both x and y.

Let d(x, y) be the number of edges on the longest path between vertices x
and y in a given ontology. Also let lca(x, y) be the lowest common ancestor of
vertices x and y.

We propose a taxonomic distance (dtax) which is defined as follows:

dtax(x, y) =
d(lca(x, y), x) + d(lca(x, y), y)

d(root, x) + d(root, y)
(1)

where root is the root node in the ontology.
We compare dtax to a state-of-the-art distance metric dps [16] which is defined

as follows:

dps(x, y) = 1− d(root, lca(x, y))
d(root, lca(x, y)) + d(lca(x, y), x) + d(lca(x, y), y)

(2)

The intuition behind the dps metric proposed by Pekar and Staab [16] is that
it captures the ability to represent the taxonomic distance between two vertices
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Dataset dtax dps

average std dev average std dev

At 8 Arabidopis 0.936 0.207 0.964 0.133
Ce 9 C. elegans 0.868 0.275 0.925 0.182
At 8 ∩ Ce 9 0.872 0.270 0.925 0.185
At 8 ∪ Ce 9 0.962 0.159 0.977 0.106

At 37 Arabidopis 0.817 0.324 0.877 0.246
Ce 53 C. elegans 0.947 0.187 0.974 0.103
At 37 ∩ Ce 53 0.820 0.316 0.881 0.220
At 37 ∪ Ce 53 0.965 0.153 0.980 0.097

Table 3. Average and Variance of Taxonomic Distance(s) between GO-BP

with respect to the depth of the common ancestor of these two vertices. Our
proposed dtax distance metric is to assign low(er) values of taxonomic distance
to pairs of vertices that are (1) at greater depth in the taxonomy and (2) are
closer to their lowest common ancestor. Although dtax distance metric satisfies
theoretical distance properties, i.e., zero law, symmetry and triangle inequality,
we do not focus on the formalization of these properties in this paper. In contrast,
we show an empirical analysis of dtax and how it compares to dpswhen both
metrics are used to measure the relatedness or similarity of taxonomic concepts.

4.2 Properties of the Distance Metrics

Figure 7(b) illustrates the values assigned by both dtax and dps to vertices in
the taxonomy shown in Figure 7(a). In general, both metrics are able to assign
values close to 0.0 to pairs of vertices separated by a small number of edges, and
a value close to 1.0 to pairs of vertices separated by a large number of edges,
e.g., (0, 1) and (8, 1). However, consider the pairs (10, 17) and (11, 12); dtax

is able to distinguish that both pairs have different taxonomic properties, i.e.,
the ratio dtax(10,17)

dtax(11,12) is 0.6. Note that a value of 1.0 for this ratio implies that the
taxonomic distances are judged to be similar. However, dps is not able to identify
that these two pairs have different taxonomic properties. It assigns values such
that the ratio dps(10,17)

dps(11,12) is 0.75, i.e., closer to 1.0.
Next we report on the distribution of the pairwise distance dtax and dps

for several datasets (Table 3). We focus on the GO-BP terms and report on
average and standard deviation. For At 8 and Ce 9, the GO-BP terms in the
intersection were more closely related compared to the individual datasets. The
average distance for dtax is also observed to be lower than the average for dps.
Similarly, Ar 37 had many pairs that were very close while there were also very
distance pairs. We observe that the average is lower while there is also higher
variance in the values.

To understand the discrimination capability of both metrics we ”bucketize”
pairs of GO-BP terms in U1 and U2 based on the length of the shortest path
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Path Length #Pairs dtax dps

average std dev average std dev

A
t

8
∪

C
e

9 1 51 0.15 0.09 0.31 0.12
2 396 0.79 0.35 0.85 0.27
3 2217 0.95 0.18 0.97 0.11
4 4527 0.98 0.11 0.99 0.06
5 1850 0.99 0.07 1.00 0.03
6 254 1.0 0.0 1.0 0.0
7 21 1.0 0.0 1.0 0.0

A
t

3
7
∪

C
e

5
3 1 7 0.13 0.09 0.26 0.17

2 63 0.74 0.35 0.84 0.23
3 210 0.97 0.14 0.99 0.07
4 372 0.98 0.10 0.99 0.04
5 304 1.0 0.04 1.0 0.02
6 103 1.0 0.03 1.0 0.02
7 21 1.0 0.0 1.0 0.0

Table 4. Taxonomic Distance(s) between GO-BP for At 8 ∪ Ce 9 and At 37 ∪
Ce 53 (bucketized by path length).

between them. Table 4 reports on the number of pairs, and the average and
standard deviation for both metrics.

We can observe that the dtax average for path length = 1 and 2 are 0.15 and
0.79 whereas the values for dps are 0.31 and 0.85, respectively. This reflects that
dtax is more sensitive to path length, and is able to discriminate better than dps,
when vertices are connected by a small number of edges. However, for distant
vertices both metrics exhibit similar behavior.

Finally, we report on the distribution of values for dtax and dps, for GO-BP
terms in U1, for path length = 1 and 2, in Figure 8. For path length = 1, 15
pairs have a value of 0.05 and 30 pairs have a value of 0.15, for dtax. In contrast,
3 pairs have a value of 0.05 and 14 pairs have a value of 0.15, for dps.

To summarize, dtax appears to be more sensitive in capturing the range of
(dis)similarity or distance between pairs of terms. In contrast, dps appears to
compress the distance distribution. Thus, dtax appears to be more useful in
differentiating closer pairs from more distant pairs.

5 Summary and Conclusions

We present a tool, PAnG (Patterns in Annotation Graphs), that is based on a
complementary methodology of graph summarization and dense subgraphs. Our
collaborators (Heven Sze an Arabidopsis specialist and Eric Haag who studies C.
elegans) helped us to validate potential cross genome annotation patterns using
gene families with shared function in the two organisms. We demonstrate that a
proposed metric for taxonomic distance dtax is better able to discriminate among
pairs of GO terms. In future work, we plan large scale cross genome experiments

14



 0

 5

 10

 15

 20

 25

0.05 0.15 0.25 0.35 0.45

Fr
ec

ue
nc

y
dtax
dps

(a) Path Length = 1

 0

 50

 100

 150

 200

 250

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Fr
ec

ue
nc

y

dtax
dps

(b) Path Length = 2

Fig. 8. Frequency Distributions of distance ttax and dps for pairs of GO-BP terms in
dataset At 8 ∪ Ce 9 with Path Length = 1 and 2.

and human validation of both the annotation patterns and the relatedness of
pairs of GO terms. Further, we plan to study the properties of the proposed
distance metric in ontologies as MeSH 6 and Plant Ontology 7.
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