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Abstract. Research on quality issues of business process models has
recently begun to explore the process of creating process models. As a
consequence, the question arises whether different ways of creating pro-
cess models exist. In this vein, we observed 115 students engaged in the
act of modeling, recording all their interactions with the modeling envi-
ronment using a specialized tool. The recordings of process modeling were
subsequently clustered. Results presented in this paper suggest the exis-
tence of three distinct modeling styles, exhibiting significantly different
characteristics. We believe that this finding constitutes another build-
ing block toward a more comprehensive understanding of the process of
process modeling that will ultimately enable us to support modelers in
creating better business process models.

Key words: business process modeling, process of process modeling,
modeling styles, cluster analysis

1 Introduction

Considering the heavy usage of business process modeling in all types of business
contexts, it is important to acknowledge both the relevance of process models and
their associated quality issues. However, actual process models display a wide
range of problems [1]. Following the SEQUAL framework [2], quality dimensions
of models include syntactic, semantic, and pragmatic quality. Syntactic and se-
mantic quality relate to model construction, and address the correct use of the
modeling language and the extent to which the model truthfully represents the
real world behavior it should depict, respectively. Pragmatic quality addresses
the extent to which a model supports its usage for purposes such as understand-
ing behavior or developing process aware systems. Considering process models
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whose purpose is to develop an understanding of real world behavior, pragmatic
quality is typically related to the understandability of the model [3]. Clearly, an
in-depth understanding of the factors influencing the various quality dimensions
of process models is in demand.

Most research in this area puts a strong emphasis on the product or outcome
of the process modeling act (e.g., [4, 5]). For this category of research, the result-
ing model is the object of analysis. Many other works—instead of dealing with
the quality of individual models—focus on the characteristics of modeling lan-
guages (e.g., [6, 7]). Recently, research has begun to explore another dimension
presumably affecting the quality of business process models by incorporating
the process of creating a process model into their investigations (e.g., [8, 9]). In
particular, the focus has been put on the formalization phase in which a process
modeler is facing the challenge of constructing a syntactically correct model re-
flecting a given domain description (cf. [10]). Our research can be attributed to
the latter stream of research.

This paper contributes to our understanding of the process of process mod-
eling (PPM) by investigating whether different ways of process modeling can
be identified, i.e., can we observe different modeling styles when modelers cre-
ate process models? Knowledge about different modeling styles will support the
creation of customized process modeling environments, supporting modelers in
creating high quality models. Similarly, a more comprehensive understanding of
the PPM can be exploited for teaching students in how to create process models
of high quality. We conducted a modeling session with 115 students, recording
all their interactions with the modeling environment using a specialized tool.
To identify different modeling styles the collected PPM instances were auto-
matically clustered suggesting the existence of three different modeling styles.
The modeling styles were subsequently analyzed using a series of measures for
quantifying the PPM to validate differences between the three groups.

The paper is structured as follows. Section 2 presents backgrounds on the
PPM and introduces measures for quantifying this process. Section 3 describes
data collection and cluster analysis. Section 4 presents the results, followed by
their discussion in Section 5. The paper is concluded with a discussion of related
work in Section 6 and a brief summary in Section 7.

2 Backgrounds

This section provides background information on the PPM and explains how
this process can be captured and quantified using a series of measures.

2.1 The Process of Process Modeling

During the formalization phase process modelers are working on creating a syn-
tactically correct process model reflecting a given domain description by interact-
ing with the process modeling tool [10]. This modeling process can be described
as an iterative and highly flexible process [11, 12], dependent on the individual
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modeler and the modeling task at hand [13]. At an operational level, the mod-
eler’s interactions with the tool would typically consist of a cycle of the three
successive phases of (1) comprehension (i.e., the modeler forms a mental model
of domain behavior), (2) modeling (i.e., the modeler maps the mental model to
modeling constructs), and (3) reconciliation (i.e., the modeler reorganizes the
process model) [9, 8].
Comprehension. Research on human cognition and problem solving has shed
light on comprehension. According to [14], when facing a task, the problem
solver first formulates a mental representation of the problem, and then uses it
for reasoning about the solution and which methods to apply for solving the
problem. In process modeling, the task is to create a model which represents
the behavior of a domain. The process of forming mental models and applying
methods for achieving the task is not done in one step applied to the entire
problem. Rather, due to the limited capacity of working memory, the problem
is broken down to pieces that are addressed sequentially, chunk by chunk [8, 9].
Modeling. The modeler uses the problem and solution developed in working
memory during the previous comprehension phase to materialize the solution in
a process model (by creating or changing it) [8, 9]. The modeler’s utilization of
working memory influences the number of modeling steps executed during the
modeling phase before forcing the modeler to revisit the problem for acquiring
more information [9].
Reconciliation. After modeling, modelers typically reorganize the process
model (e.g., renaming of activities) and utilize the process model’s secondary no-
tation (e.g., notation of layout, typographic cues) to enhance the process model’s
understandability [15, 16]. However, the number of reconciliation phases in the
PPM is influenced by a modeler’s ability of placing elements correctly when
creating them, alleviating the need for additional layouting [9].

2.2 Capturing Events of the Process of Process Modeling

To investigate the PPM, actions taken during modeling have to be recorded and
mapped to the phases described above. When modeling in a process modeling
environment, process modeling consists of adding nodes and edges to the process
model, naming or renaming activities, and adding conditions to edges. In addi-
tion to these interactions a modeler can influence the process model’s secondary
notation, e.g., by laying out the process model using move operations for nodes
or by utilizing bendpoints to influence the routing of edges, see [9] for details.

To capture modeling activities, and for obtaining a closer look on how pro-
cess models are created in a systematic manner, we instrumented a basic process
modeling editor to record each user’s interactions together with the correspond-
ing time stamp in an event log, describing the creation of the process model step
by step. Editor and event recording are available within Cheetah Experimental
Platform (CEP) [17].
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2.3 Quantifying the Process of Process Modeling

A log of modeling events allows quantitative analysis of a PPM. Based on the
conceptual background, comprehension (C), modeling (M), and reconciliation
(R) phases can be identified by grouping events into respective phases (see [9] for
details). Then, a PPM can be divided into modeling iterations [9]. One iteration
is assumed to comprise a comprehension (C), modeling (M), and reconciliation
(R) phase in this respective order. The iterations of a modeling process are
identified by aligning its phases to the CMR-pattern. If a certain phase of this
pattern is not present in the modeling process, the respective phase is skipped
for the observed iteration and the process is considered to continue with the next
phase of the pattern. In the following we present five measures quantifying the
process of process modeling.
Number of Iterations. This measure counts the modeling iterations per PPM
reflecting how often a modeler had to interrupt modeling for comprehension or
reconciliation.
Share of Comprehension. When comprehending, a mental model of the prob-
lem and a corresponding solution is developed which is then formalized in mod-
eling phases. Differences in the amount of time spent on comprehension can be
expected to characterize modeling styles and to impact on the modeling result.
We quantify this aspect as the ratio of the average length of a comprehension
phase in a process to the average length of an iteration. The initial comprehen-
sion phase is neglected as it is typically subject to various influences unrelated
to problem solving (e.g., the modeler did not start immediately).
Iteration Chunk Size. Modelers can be assumed to conduct modeling in
chunks of different sizes. We quantified chunk size as the average number of
create and delete operations executed in one iteration. This measure reflects
the ability to model large parts of a model without the need to comprehend or
reconcile.
Reconciliation Breaks. A steady process of modeling is assumed to be a se-
quence of iterations following the CMR-pattern. Reconciliation can sometimes
be skipped if the modeler can place all model elements directly at the right
spot clearly alleviating the need for reconciliation. However, some processes may
even show iterations of CR-patterns, i.e., an iteration without a modeling phase,
where a modeler interrupts the common flow of modeling for additional reconcil-
iation. We quantified this aspect by the relative share of iterations that comprise
unexpected reconciliation (without modeling) out of all iterations.
Delete Iterations. From time to time, modelers are required to remove content
from the process model. This might happen when modelers identify errors in
the model, which are subsequently resolved by removing some of the modeling
constructs and implementing the desired functionality. This measure describes
the number of iterations of the PPM containing delete operations relative to the
total number of iterations of the PPM.
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3 Clustering

To be able to make generalizations, we have used cluster analysis to a set of PPM
instances. Cluster analysis allows us to identify groups of modelers exhibiting
similar modeling styles. This section describes the modeling session, data pre-
processing and cluster analysis.

3.1 Data Collection

The modeling session was designed to collect PPM instances of students creating
a formal process model in BPMN from an informal description. The object that
was to be modeled is a process describing the activities a pilot has to execute
prior to taking off an aircraft1.

To mitigate the risk that the PPM instances were impacted by complicated
tools or notations [11], we decided to use a subset of BPMN for our experiment.
In this way, modelers were confronted with a minimal number of distractions,
but the essence of how process models are created could still be captured. A
pre-test was conducted at the University of Innsbruck to ensure the usability of
the tool and the understandability of the task description. This led to further
improvements of CEP and minor updates to the task description.

The modeling sessions were conducted in November 2010 with students of a
graduate course on Business Process Management at Eindhoven University of
Technology and in January 2011 with students from Humboldt-Universität zu
Berlin following a similar course. The modeling session at each university started
with a demographic survey, followed by a modeling tool tutorial explaining the
basic features of CEP. After that, the actual modeling task was presented in
which the students had to model the above described “Pre-Flight” process. This
was done by 102 students in Eindhoven and 13 students in Berlin. By conducting
the experiment during class and closely monitoring the students, we mitigated
the risk of falsely identifying comprehension phases due to external distractions.
No time restrictions were imposed on the students.

3.2 PPM Profile for Clustering

When trying to identify different types of PPM instances using clustering, the
question arises how to represent such a process to make clustering possible.
Based on our previous experience with the PPM we decided to focus on four
aspects. The adding of content, the removal of content, reconciliation of the
model and comprehension time, i.e., the time when the modeler does not work
on the process model. To also reflect that modeling is a time-dependent process,
we do not just look at the total amount of modeling actions and comprehen-
sion, but on their distribution over time as follows. We sampled every process
into segments of 10 seconds length. For each segment, we compute its profile
(a, d, r, c), i.e., the numbers a, d, and r of add, delete, and reconciliation events,

1 Material download: http://pinggera.info/experiment/ModelingStyles
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Interaction Classification Interaction Classification
CREATE NODE Adding RENAME ACTIVITY Reconciliation
DELETE NODE Deleting UPDATE CONDITION Reconciliation
CREATE EDGE Adding MOVE NODE Reconciliation
DELETE EDGE Deleting MOVE EDGE LABEL Reconciliation
RECONNECT EDGE Adding/Deleting MODIFY EDGE BENDPOINT Reconciliation

Table 1. Classification of CEP’s User Interactions

and the time c spent on comprehension. The profile of one PPM is then se-
quence (a1, d1, r1, c1)(a2, d2, r2, c2) . . . of its segments’ profiles. The a, d, and r
are obtained per segment by classifying each event according to Table 1. Adding
a condition to an edge was considered being part of creating an edge. Compre-
hension time c was computed as follows. Group events to intervals: an interval
is a sequence of events where two consecutive events are ≤ 1 second apart, its
duration is the time difference between its first and its last event (intervals of 1
activity got a duration of 1 second). Then c is the length of the segment (10 secs)
minus the duration of all intervals in the segment. For example, if the modeler
moved activity A after 3 secs, activity B after 3.5 secs and activity C after 4.2
secs the comprehension time in this segment would be 10−1.2 = 8.8 seconds. To
give all PPM profiles equal length, shorter profiles were extended with segments
of no interaction to reach the length of the longest PPM (required for clustering).

3.3 Clustering

The PPM profiles were exported from CEP [17] and subsequently clustered us-
ing Weka2. The KMeans algorithm, first proposed in [18], utilizing an euclidean
distance measure was chosen for clustering as it constitutes a well known and
easy to use means for cluster analysis. As KMeans might converge in a local min-
imum [19], the obtained clustering has to be validated. If the identified clusters
exhibit significant differences with regard to the measures described in Section 2,
we conclude that different modeling styles were identified. KMeans requires the
number of cluster to be known a priori. As this was not the case we gradually
increased the number of clusters starting from 2, resulting in only one major
cluster. Setting the number of expected clusters to 3 revealed two major clusters
and one cluster of 2 PPM instances. Most promising results were achieved by
setting the number of clusters to be generated to 4 and starting with a seed of
10, returning 3 major clusters and one small cluster of 2 PPM instances. We
considered these 3 major clusters for further analysis; increasing the number of
expected clusters only generated additional small clusters.

4 Results

In this section we present results of the cluster analysis and validate the difference
among the clusters using the measures described in Section 2.

2 http://www.cs.waikato.ac.nz/ml/weka
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Measure C1 C2 C3
Number of instances 42 22 49
Avg. no. of adding operations 61.36 52.91 52.57
Avg. no. of deleting operations 10.81 3.91 4.55
Avg. no. of reconciliation operations 76.26 42.00 39.27
Avg. no. operations 148.43 98.82 96.39

Table 2. Statistics per cluster

4.1 Three Clusters

We identified three major clusters of 42, 22 and 49 instances, called C1, C2, and
C3 in the sequel. In order to visualize the obtained clusters we calculated the
average number of adding, deleting and reconciliation operations per segment
for each cluster. Additionally, we calculated the moving average of six segments,
i.e., one minute, providing us with a smoother representation of the modeling
processes presented in Figures 1, 2, and 3 for C1, C2, and C3 respectively. The
horizontal axis denotes the segments into which the PPM instances were sam-
pled. The vertical axis indicates the average number of operations that were
performed in this segment. For example, a value of 0.8 for segment 9 (cf. Fig. 2)
indicates that all modelers in this cluster averaged 0.8 adding operations within
this 10 second segment.

C1 (cf. Fig. 1) is characterized by long PPM instances, as the first time the
adding series reaches 0 is after about 205 segments. Additionally, the delete series
indicates more delete operations compared to the other clusters. Several fairly
large spikes of reconciliation activity can be observed, the most prominent one
after about 117 segments.

C2, as illustrated in Fig. 2, is characterized by a fast start as a peak in adding
activity is reached after 13 segments. In general, the adding series is most of the
time between 0.5 and 0.9 operations, higher compared to the other two clusters.
The fast modeling behavior results in short PPM instances as the adding series
is 0 for the first timer after about 110 segments.

On first sight, C3 (cf. Fig. 3) seems to be between C1 and C2. The adding
curve is mostly situated between 0.4 and 0.7, a littler lower than for C2, but
still higher compared to C1. Similar values can be observed for the reconciliation
curve. The deleting curve remains below 0.1. The duration of the PPM instances
is also between the duration of C1 and C2 as the adding series is 0 for the first
time after about 137 segments.

Table 2 presents general statistics on the number of adding operations, the
number of deleting operations, the number of reconciliation operations and the
total number of operations for each cluster. Interestingly, modelers in C1 had
more adding operations, more deleting operations and, probably most notable,
almost twice as many reconciliation operations compared to C2 and C3. At a
first glance, the numbers for C2 and C3 appear to be very similar.

The following procedure for conducting the statistical analysis was used. If
the data was normally distributed and homogenity of variances was given we used
Oneway ANOVA to test for differences among the groups. Pairwise comparisons
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Fig. 1. Cluster C1
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Fig. 2. Cluster C2
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Statistic All groups Pairwise comparison
1-2 1-3 2-3

Number of Adding Operations Sig. 0.000a 0.003a 0.000a

test Oneway ANOVA Bonferroni post-hoc test

Number of Deleting Operations Sig. 0.000a 0.000b 0.000b

test Kruskall-wallis Mann-whitney test

Number of Reconciliation Sig. 0.000a 0.000b 0.000b

Operations test Kruskall-wallis t-test for unequal variances

Number of Total Operations Sig. 0.000a 0.000b 0.000b

test Kruskall-wallis t-test for unequal variances
a p < 0.05 b p < 0.05/3

Table 3. Significant differences for statistics

were done using the bonferroni post-hoc test. Note that the bonferroni post-hoc
test uses an adapted significance level. Therefore, p-values less than 0.05 are
considered to be significant, i.e., there is no need to divide the significance level
by the number of groups, i.e., clusters. In case normal distribution or homogenity
of variance was not given a non-parametric alternative to ANOVA, i.e., kruskall-
wallis, was utilized to test for differences among the groups. Pairwise comparisons
were done using the t-test for (un)equal variances (depending on the data) if
normal distribution was given. If no normal distribution could be identified the
mann-whitney test was utilized. In either case, i.e., t-test or mann-whitney test,
the bonferroni correction was applied, i.e., the significance level was divided by
the number of clusters.

The results are summarized in Table 3, indicating significant differences be-
tween C1 and C2 and C1 and C3, but not between C2 and C3. Only significant
differences are stated.

4.2 Applying Measures

In order to further distill the properties of the three clusters, we calculated the
measures described in Section 2.3 for each PPM. Table 4 provides an overview
presenting the average values for each measure in each cluster. As indicated in
Fig. 1, C1 constitutes the highest number of PPM iterations. Tightly connected
to this observation is the average iteration chunk size. Modelers in C2 added
by far the most content per iteration to the process model. Also the number of
iterations containing delete iterations is higher for C1 than for the other clusters,
which is consistent with the higher number of delete operations (cf. Table 2). The
amount of time spent on comprehending the task description and developing the
plan on how to incorporate them into the process model seems to be far larger
for C1 compared to C2, which has the lowest share of comprehension, but also
larger compared to C3. When considering reconciliation breaks C3 sets itself
apart posting the lowest number of reconciliation breaks. C2 is somewhere in
between and C1 has the highest number of reconciliation breaks.

Statistical analysis of the differences between the groups was performed fol-
lowing the procedure described in the previous section. An overview of the results
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Measure C1 C2 C3
Avg. no. of PPM iterations 21.50 12.32 14.69
Avg. iteration Chunk Size 3.66 5.28 4.24
Avg. share of comprehension 49.88 39.28 45.02
Avg. reconciliation breaks 21.37 18.14 13.85
Avg. delete iterations 17.06 10.07 10.83

Table 4. Measures per cluster

Measure All groups Pairwise comparison
1-2 1-3 2-3

Iteration Chunk Size Sig. 0.000a 0.000b 0.000b 0.007b

test Kruskall-wallis t-test for unequal variances

Number of Iterations Sig. 0.000a 0.000b 0.000b 0.004b

test Kruskall-wallis t-test for unequal variances

Share of Comprehension Sig. 0.000a 0.000a 0.036a 0.045a

test Oneway ANOVA Bonferroni post-hoc test

Delete Iterations Sig. 0.005a 0.026a 0.011a

test Oneway ANOVA Bonferroni post-hoc test

Reconciliation Breaks Sig. 0.005a 0.004a

test Oneway ANOVA Bonferroni post-hoc test
a p < 0.05 b p < 0.05/3

Table 5. Significant differences for measures

is presented in Table 5. Only significant differences are stated. In constrast to
the statistics presented in Table 3, we were able to identify significant differences
between C2 and C3.

5 Discussion

In this section we present our insights when comparing the identified clusters
and we discuss the lessons learned in this work and how they influence our future
work. Additionally, limitations of this work are described.

5.1 Cluster C1

C1 can be clearly distinguished from C2 and C3. This becomes evident on visual
inspection of Fig. 1, but also when considering the number of adding operations,
the number of deleting operations, the number of reconciliation operations and
the total number of operations. We identified statistically significant differences
between C1 and C2 and between C1 and C3 for all statistics (cf. Table 3).

In general, modelers in C1 had rather long PPM instances, i.e., the number
of PPM iterations was significantly higher compared to C2 and C3. In addition,
modelers in C1 spent more time on comprehension compared to C2. Modelers
started rather slowly, not eclipsing 0.5 adding operations. The slow modeling
speed is underlined by the significantly lower chunk size compared to C2 and C3.
During the whole process, adding operations are accompanied by a relatively high
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amount of delete operations. This is underlined by the significant differences in
the number of delete iterations between C1 and C2 and C1 and C3 (cf. Table 5).
Also, we observed a fairly large amount of reconciliation operations, culminating
in a massive peak after about half of the PPM instances.

The results suggest that modelers in C1 were not as goal oriented as their
colleagues in other clusters, since they spent a great amount of time on com-
prehension, added more modeling elements which were subsequently removed
and put significantly more effort into improving the visual appearance of the
process model. There might be multiple reasons for this behavior. On the one
hand, it could point toward modelers having trouble executing the modeling
task and therefore needed more reconciliation to facilitate their understanding
of the process model at hand. On the other hand, their focus on layouting might
have acted as a distraction from the modeling task, resulting in the higher num-
ber of adding operations and deleting operations. Still, other techniques will be
required for further investigating this claim, e.g., think aloud protocols (cf. [20]).

5.2 Cluster C2

When inspecting Fig. 2 the very steep start of the adding curve strikes the eye,
indicating that modelers started creating the process model right away. When
focusing on reconciliation operations, several spikes in the layouting curve can
be identified, notably one last spike right after the number of adding operations
decreases. As already mentioned above, C2 is statistically significant different
compared to C1 for all statistics presented in Table 2. No differences can be
identified between C2 and C3.

Considering the measures described in Section 2.3, C2 has a significantly
higher chunk size compared to C1 and C3. Similarly, we observed the lowest
number of PPM iterations. This means that modelers add a lot more content
per PPM iteration. In addition, modelers in C2 did not spend as much time on
comprehension compared to modelers in C1 and C3.

In a nutshell, modelers of C2 are very focused and goal oriented following
a straight path when creating the process model. They are quick in making
decisions about how to proceed and only slow down their modeling endeavor
from time to time for some reconciliation, resulting in short PPM instances.

5.3 Cluster C3

Fig. 3 shows the PPM instances for C3. The processes are shorter compared to
C1 and longer compared to C2. It is lacking the fast start of the adding curve we
identified for C2. The reconciliation curve is more or less following the adding
curve. Notably, this is the only curve without a reconciliation spike once the
number of adding operations decreases.

The calculated measures indicate clear differences to C1 when it comes to
chunk size, number of iterations, share of comprehension, but also number of
delete operations and reconciliation breaks. C2 and C3 differ in chunk size, the
number of iterations and the time spent on comprehension.
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When comparing C2 and C3, the question arises whether modelers in C3
followed the same strategy as modelers in C2, just a little slower. We believe
that, in contrary to C2, modelers of C3 followed a more systematic approach to
process modeling. They continuously reconciled their process model, alleviating
the need for dedicated reconciliation breaks. This is indicated by the lack of a
reconciliation spike after the decrease of adding operations in Fig. 3. Addition-
ally, reconciliation breaks points into this direction (18.16 for C2 vs. 13.85 for
C3). Fig. 4 depicts the reconciliation breaks box plot, hinting at a difference in
reconciliation breaks between C2 and C3. Still, the difference did not turn out
to be statistically significant leaving us with some future work on investigating
whether this claim actually holds.
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Fig. 4. Reconciliation Breaks

Additionally, we believe that dif-
ferent reasons for reconciliation breaks
exist. On the one hand, modelers are
forced to stop their modeling endeav-
our and layout the process model
when they are overwhelmed by the
complexity at hand. On the other
hand, some modelers might stop mod-
eling at strategic points to recon-
cile the process model in order to
avoid situations like the one men-
tioned above before they even arise.
Even though this explanation would
fit the boxplot depicted in Fig. 4, further investigations are in demand to fully
understand the reconciliation behavior of modelers.

5.4 Lessons Learned

We were able to identify three different modeling styles using cluster analysis.
Differences among the clusters were subsequently validated using a series of
measures quantifying the PPM. Note that these measures were defined prior
to performing the cluster analysis. The measures are based on the detected
iterations of the PPM, approaching the PPM from a different angle. Therefore
they enable us to validate the differences among the three clusters.

The detected modeling styles contribute to our understanding of the process
of process modeling, as, to our knowledge, this is the first systematic attempt to
establish a categorization of PPM instances in the domain of business process
modeling. We believe that further refinements of the categorization will emerge,
ultimately enabling us to create personalized modeling environments based on
their observed modeling behavior. In addition, these findings can be exploited for
teaching purposes. For example, teachers might be able to identify students fac-
ing difficulties during a modeling assignment based on their modeling behavior
and provide them with additional support. Still, some research questions emerg-
ing from these findings have to be addressed first. The most pressing might
be whether a modeler’s personal style persists over several different modeling
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tasks or if the modeling style is determined by the modeling task at hand. To
answer this question further empirical investigations are in demand. Based on
some preliminary observations we would assume that the influence of the mod-
eling task cannot be neglected. Even though a modeler might like to create a
process model in a straight forward, goal oriented way, the complexity of the
modeling task might force her to reduce the modeling speed and switch to a
more conservative modeling style.

On a long-term basis questions on how to exploit this knowledge to improve
the quality of the resulting process model become evident. Unfortunately, the
naive assumption that one modeling style is superior to the others could not be
confirmed. All clusters contained excellent process models and process models
of low quality. This is not surprising though. Even modelers in C1 who face
difficulties, exhibiting long PPM instances, can still come up with good process
models if they succeed in overcoming the adversity they are facing.

5.5 Limitations

The interpretation of our findings is presented with the explicit acknowledgement
of a number of limitations to our study. First of all, our respondents represented
a rather homogeneous and inexperienced group. Although relative differences
in experience were notable, the group is not representative for the modeling
community at large. At this stage, in particular, the question can be raised
whether experienced modelers also exhibit the same style elements as skillful yet
inexperienced modelers. In other words, will experienced modelers display similar
characteristics of style or can other styles be observed within their approaches?
Note that we are mildly optimistic about the usefulness of the presented insights
on the basis of modeling behavior of graduate students, since we have established
in previous work that such subjects perform equally well in process modeling
tasks as some professional modelers [21].

Secondly, the influence of the modeling task—more precisely, the modeling
task’s complexity (cf. [22])—on the PPM is not fully understood. All students in
our modeling session were working on the same modeling assignment. Hence, the
observed clusters might be specific to modeling tasks of this complexity level.
Further investigations will be necessary to let sunlight fall on the influence of
the modeling task, which might result in the emergence of additional clusters.
Preliminary results of a different modeling task suggest the existence of modeling
styles comparable to the results presented in this paper.

Thirdly, we can not rule out that KMeans identified a local minimum, result-
ing in a suboptimal clustering. To counter this threat we validated the clustering
using a series of measures quantifying the PPM and identified significant differ-
ences among the three groups.

6 Related Work

Our work is essentially related to model quality frameworks and research on the
process of modeling.
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There are different frameworks and guidelines available that define quality for
process models. Among others, the SEQUAL framework uses semiotic theory for
identifying various aspects of process model quality [3], the Guidelines of Process
Modeling describe quality considerations for process models [23], and the Seven
Process Modeling Guidelines define desirable characteristics of a process model
[24]. While each of these frameworks has been validated empirically, they rather
take a static view by focusing on the resulting process model, but not on the
act of modeling itself. Our research takes another approach by investigating the
process followed to create the process model.

Research on the process of modeling typically focuses on the interaction be-
tween different parties. In a classical setting, a system analyst directs a domain
expert through a structured discussion subdivided into the stages elicitation,
modeling, verification, and validation [10, 25]. The procedure of developing pro-
cess models in a team is analyzed in [26] and characterized as a negotiation pro-
cess. Interpretation tasks and classification tasks are identified on the semantic
level of modeling. Participative modeling is discussed in [27]. These works build
on the observation of modeling practice and distill normative procedures for
steering the process of modeling towards a good completion. Our work, in turn,
focuses on the formalization of the process model, i.e., the modeler’s interac-
tions with the modeling environment when creating the formal business process
model.

7 Summary

This paper contributes to our understanding of the PPM as it constitutes the first
systematic attempt to identify different modeling styles in the domain of business
process modeling. We conducted a modeling session with 115 students of courses
on business process management, collecting their PPM instances. We were able
to identify three different modeling styles using cluster analysis and validated
the retrieved clusters using a series of measures for quantifying the PPM. We
believe that a better understanding regarding the PPM will be beneficial for
future process modeling environments and will support teachers in mentoring
their students on their way to professional process modelers.
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