
A Hierarchical Learning Scheme for Solving

the Stochastic Point Location Problem

Anis Yazidi1, Ole-Christoffer Granmo1,
B. John Oommen2,�, and Morten Goodwin

1 Dept. of ICT, University of Agder, Grimstad, Norway
2 School of Computer Science, Carleton University, Ottawa, Canada

Abstract. This paper deals with the Stochastic-Point Location (SPL)
problem. It presents a solution which is novel in both philosophy and
strategy to all the reported related learning algorithms. The SPL prob-
lem concerns the task of a Learning Mechanism attempting to locate
a point on a line. The mechanism interacts with a random environment
which essentially informs it, possibly erroneously, if the unknown param-
eter is on the left or the right of a given point which also is the current
guess. The first pioneering work [6] on the SPL problem presented a so-
lution which operates a one-dimensional controlled Random Walk (RW)
in a discretized space to locate the unknown parameter. The primary
drawback of the latter scheme is the fact that the steps made are always
very conservative. If the step size is decreased the scheme yields a higher
accuracy, but the convergence speed is correspondingly decreased.

In this paper we introduce the Hierarchical Stochastic Searching on
the Line (HSSL) solution. The HSSL solution is shown to provide orders
of magnitude faster convergence when compared to the original SPL solu-
tion reported in [6]. The heart of the HSSL strategy involves performing
a controlled RW on a discretized space, which unlike the traditional RWs,
is not structured on the line per se, but rather on a binary tree described
by intervals on the line. The overall learning scheme is shown to be opti-
mal if the effectiveness of the environment, p, is greater than the golden
ratio conjugate [4] – which, in itself, is a very intriguing phenomenon.
The solution has been both analytically analyzed and simulated, with
extremely fascinating results. The strategy presented here can be uti-
lized to determine the best parameter to be used in any optimization
problem, and also in any application where the SPL can be applied [6].

Keywords: Stochastic-Point Problem, Discretized Learning, Learning
Automata, Controlled Random Walk.

� Chancellor’s Professor; Fellow: IEEE and Fellow: IAPR. The Author also holds an
Adjunct Professorship with the Dept. of ICT, University of Agder, Norway The
author is grateful for the partial support provided by NSERC, the Natural Sciences
and Engineering Research Council of Canada.

H. Jiang et al. (Eds.): IEA/AIE 2012, LNAI 7345, pp. 774–783, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



A Hierarchical Learning Scheme for Solving the SPL Problem 775

1 Introduction

Learning algorithms which operate within a known domain (for example, within
the unit interval), generally work by moving from their current location to a
new point within its immediate neighborhood. The step size of the migration
depends on the learning parameter, where a smaller step size leads to a slower
but more accurate convergence, and conversely, a larger step size leads to a
faster but less accurate convergence. In this paper, we propose a completely
novel strategy regarding how one can move around within the domain of interest.
Rather than consider the domain as a single interval, we model it is a sequence
of increasingly larger intervals mapped onto an underlying Binary Search Tree
(BST). Thus, effectively, we are operating a Random Walk (RW) on a BST,
where the steps of the RW need not necessarily be in the close proximity of
the current point. The most incredible facet of this strategy is that the RW
converges to the underlying optimum point – even if the environment providing
the information to the learning algorithm is faulty or erroneous.

The problem we investigate is Stochastic Point Location (SPL) [6] problem
which can be described as follows. Consider the problem of a robot (algorithm,
Learning Mechanism (LM)) moving along the real line attempting to locate a
particular point λ∗. To assist the mechanism, we assume that it can communicate
with an Environment (“Oracle”), which guides it with information regarding the
direction in which it should go. If the Environment is deterministic, the problem
is the “deterministic point location problem”, which has been studied rather
thoroughly. In an initial version, Baeza-Yates et al. [1] presented the problem
in a setting such that the Environment could charge the robot a cost that is
proportional to the distance it is from the point sought for. The question of
having multiple communicating robots locate a point on the line has also been
studied by Baeza-Yates et al. [1,2]. In the stochastic version of this problem
pioneered by Oommen [6,8,9], the LM attempts to locate a point in an interval
with stochastic (i.e., possibly erroneous), instead of deterministic, responses from
the Environment. Thus, when it should really be moving to the “right” it may
be advised to move to the “left” and vice versa, with a nonzero probability.

Bentley and Yao [3] solved the deterministic point-location problem of search-
ing in an unbounded space by examining points f(i) and f(i+1) at two successive
iterations between which the unknown point lies, and by doing a binary search
between them.

Unlike the work of Bentley and Yao [3], the faulty nature of the feedback
from the Oracle in the SPL problem would render the latter task extremely
intriguing and challenging. In fact, in [3], by virtue of the “correctness” nature
of the feedback provided by the Oracle, the LM is able to confidently discard
an entire interval from the search space each time it queries the Oracle. This
approach would not be directly applicable to the SPL, as wrongly discarding a
region that contains λ∗ would mislead the LM. In this paper, we aim to design
novel hierarchical learning schemes for solving the SPL problem that tolerate
faulty feedback.



776 A. Yazidi et al.

The main drawback of the state-of-the-art solution to the Stochastic-Point
Location (SPL) problem reported in [6] is that the steps are always very conser-
vative. If the step size is increased, the scheme converges faster, but the accuracy
is correspondingly decreased. While if the step size is decreased the scheme yields
a higher accuracy, but the convergence speed is correspondingly decreased.

In this paper we introduce the Hierarchical Stochastic Searching on the Line
(HSSL) solution to the SPL problem. In the HSSL solution, as alluded to above,
we structure the space as a binary tree. The algorithm then orchestrates a con-
trolled RW on this space.

To informally clarify this, we preface our discussion by mentioning that for
generations, the technique of searching a sorted list using “Binary Search” has
been proven to outperform a controlled walk in the deterministic context. In the
HSSL, this same principle has been extended to the SPL by discretizing the pa-
rameter space with a multilevel hierarchy, and performing the above-mentioned
controlled RW on this space. The heart of the strategy involves performing con-
trolled moves on a space structured as a tree, and then intelligently pruning the
space using a hierarchical stochastic search. The rationale of the solution is to
take advantage of the tree structure of the search space in order to enhance the
search speed. This would enable the LM to quickly explore the search space and
hopefully, focus its visits on the region that contains λ∗.

Apart from the problem being of importance in its own right, it also has
potential applications in solving optimization problems. The details of this are
omitted here, but can be found in[6].

2 Related Work

Oommen [6] proposed and analyzed an algorithm that operates on a discretized
search space while interacting with an informative Environment ((i.e. p > 0.5).
This algorithm takes advantage of the limited precision available in practical
implementations to restrict the probability of choosing an action to only finitely
many values from the interval [0, 1], which also enables the analysis of the scheme.

The solution proposed in [6] for the SPL problem functions as follows. The
space in which the search is conducted is first sliced by subdividing the unit
interval into N steps {0, 1/N, 2/N, . . . , (N − 1)/N, 1}, and a larger value of N
will ultimately imply a more accurate convergence to the unknown λ*. The
algorithm then invokes a controlled RW on this space. Whenever the LM is told
to go to the right (left), it moves to the right (left) by a single step in this space.

The analytic results derived in [6] proved that if the “Oracle” was itself in-
formative, the discretized RW learning was asymptotically optimal. Thus the
mechanism would converge to a point arbitrarily close to the true value of λ*
with an arbitrarily high probability.

The primary drawback of the scheme described in [6] is the fact that the steps
made are always very conservative. Thus, as stated above, if the step size is
increased the scheme converges faster, but with a correspondingly less accuracy.

A novel strategy combining Learning Automata (LA) [5] and pruning was
used in [8], which aims to search for the parameter in the continuous space



A Hierarchical Learning Scheme for Solving the SPL Problem 777

when interacting with an informative Environment. Utilizing the response from
the Oracle, Oommen et al. partitioned the interval of search into three disjoint
subintervals, eliminating at least one of the subintervals from further search and
recursively searching the remaining interval(s) until the search interval is at least
as small as the required resolution of estimation.

In a subsequent work [9], Oommen et al. introduced the Continuous Point
Location with Adaptive d-ARY Search (CPL-AdS) which is a generalization of
a portion of the work in [8]. In CPL-AdS, the given search interval is divided
into d partitions representing d disjoint subintervals. In each interval, initially,
the midpoint of the given interval was considered as the estimate of the unknown
λ∗. Each of the d partitions of the interval is independently explored using an
ε-optimal two-action LA, where the two actions are those of selecting a point
from the left or right half of the partition under consideration. Then, the au-
thors eliminated at least one of the subintervals from being searched further, and
recursively searched the remaining pruned contiguous interval until the search
interval is at least as small as the required resolution of estimation. This elim-
ination process essentially utilizes the ε-optimality property of the underlying
automata and the monotonicity of the intervals to guarantee the convergence.
At each epoch consisting of a certain number, N∞, of iterations, the algorithm
“confidently” discarded regions of the search space.

In [7], Oommen et al. reported the first known solution to the stochastic point
location (SPL) problem when the environment is non-stationary.

2.1 Contributions

Our paper presents a set of novel contributions summarized below:

– With regard to the design and analysis of discretized parameter schemes,
we submit that a fundamental contribution of this paper is the manner
in which we have designed the discretized search space, by structuring it
as a balanced binary tree. Traditional approaches for discretization work
by restricting the corresponding parameter to be one of finite number of
values in the interval [0, 1], and then a “one-dimensional” controlled RW is
performed on the discretized space, where the transitions only occur between
neighbor nodes, i.e to the “left” or to the “right”. Instead, we propose a
new philosophy for phenomenon of discretization itself, where the parameter
space is structured as a binary tree. In brief, to each level of the tree, we
associate a resolution that becomes finer at higher levels of the tree.

– The paper presents a significant contribution to the families of solutions
relevant to the SPL problem.

– Extensive simulations results confirm that our scheme outperforms the state-
of-the art discretized scheme [6]. We verify empirically that the proposed
HSSL solution provides orders of magnitude faster convergence compared
to the work reported in [6]. In addition, simulations results show that our
scheme possesses an excellent ability to cope with nonstationary environ-
ments, both of which, we believe, are truly impressive!



778 A. Yazidi et al.

– We report the first analytical results for HSSL and prove that the HSSL is
asymptotically optimal. The analysis of the scheme is a contribution in its
own right to the field of Markov Chains and LA.

3 Merging the Fields of Binary Search and SPL in HSSL

The algorithm we propose operates by invoking a controlled RW on a tree.
The space of the search is arranged in the form of a binary tree with depth
D = log2 (N), where N , (which, for the sake of simplicity, is assumed to be a
power of 2) is the resolution of the algorithm. The LM searches for the optimal
value λ∗ by traversing the tree, moving from one tree node to another. The way
by which this is achieved in explained below.

3.1 Definitions

Construction of Hierarchy: Let Δ = [σ, γ) be the current search interval
containing λ∗ whose left and right (smaller and greater) boundaries on the real
line are σ and γ, respectively. Without loss of generality, we initially assume that
σ = 0 and γ = 1. The search space is constructed as follows: First of all, the
hierarchy is organized as a balanced binary tree with depth D. To each node in
the hierarchy we associate an interval. For convenience, we will index the nodes
using their depth and their relative order with respect to the nodes situated at
the same the depth.

Root Node: The root of the hierarchy (at depth 0), which we call S{0,1}, is
assigned the interval Δ = Δ{0,1} = [0, 1).

This interval is partitioned into two disjoint equisized1 intervals Δ{1,1} and
Δ{1,2}, such thatΔ1,1 = [0, 1/2)andΔ1,2 = [1/2, 1).Note that1/2 = mid(Δ{0,1}),
where mid(Δ{0,1}) denotes the midpoint of Δ{0,1}. To avoid confusion, we shall use
the notation2 that refers to the interval Δ{1,1} as the Left Child of the root and to
Δ{1,2} as its Right Child.

Nodes at depth d: The node j ∈ {1, ..., 2d} at depth d, is referred to as S{d,j}
for 1 < d < D. This node is assigned the interval Δ{d,j} = [σ{d,j}, γ{d,j}), which
is associated with two disjoint equisized intervals Δ{d+1,2j−1} and Δ{d+1,2j}.

Following the same previously alluded to nomenclature, Δ{d+1,2j−1} is the
Left Child of Δ{d,j}, and Δ{d+1,2j} is its Right Child.

Nodes at depth D: At depth D, which represents the maximal depth of the
tree, the nodes do not have children. In fact, when the search interval is at least
as small as the required resolution of estimation, we do no further partitioning.

By virtue of the equi-partitioning property, for a given node j at depth d
that is associated with the respective interval Δ{d,j}, we can deduce the values

1 The equi-partioning is really not a restriction. It can be easily generalized.
2 Indeed, we shall utilize the notations that Parent, Left Child and Right Child of an

interval Δ{i,j} in the binary tree are the intervals associated to the respective Parent,
Left Child and Right Child of the node S{i,j}.



A Hierarchical Learning Scheme for Solving the SPL Problem 779

of the left and right boundaries of the interval to be: σ{d,j} = (j − 1)(1
2 )d and

γd,j = j(1
2 )d, for j ∈ {1, ..., 2d} where 1 ≤ d ≤ D.

Boundary Value Convention Regarding Notation: Since level “−1” is
nonexistent, we use the notation appropriate for the boundary (basis case) con-
dition, and denote the Parent of Δ{0,1} to be Δ{0,1} itself. The same comment
is also valid for the root node. In other words: Parent(Δ{0,1})=Δ{0,1}.

Also, since level D + 1 is nonexistent, we use the convention that the Right
Child of a leaf node is the same as the leaf node itself. Similarly, the Left Child of
a leaf node is the leaf node itself. Thus, formally, we call Left Child(Δ{D,j})=Right
Child(Δ{D,j})=Δ{D,j} for j ∈ {1, ..., 2D}. The same notation applies as well to
the leaf nodes S{D,j}.

Target Node: We define the Target node as the leaf node whose associated
interval contains λ∗.

Non-Target Nodes: The Non-Target nodes are leaf nodes whose correspond-
ing associated intervals do not contain λ∗.

Resolution: Whenever the LM is at a certain node in the tree, we propose to
use, as an estimate of the unknown λ∗, the middle point of the interval itself. By
virtue of the equi-partitioning of the intervals at each level of the tree, whenever
the LM is at node of a certain depth d in the tree, the estimate of the unknown
λ∗ will take a discretized value, a multiple of (1

2 )d+1.
We call the resolution of the scheme, the number of leaf nodes, i.e N = 2D.

3.2 Structure of the Search Space and Responses from the
Environment

We intend to organize the search space in the form of a balanced binary tree,
where each node corresponds to an interval range. Initially, we guess the midpoint
of the given interval to be our estimate of the unknown λ∗. The LM searches for
the optimal value λ∗ by operating a RW on the tree, moving from one tree node
to another, with the goal of locating the target leaf node. Each node in the tree
is associated with an interval; e.g., the root is associated with the interval [0, 1).
This interval is partitioned into two disjoint equi-sized intervals. Thus, the left
child of the root is associated with [0, 1/2), the right child with [1/2, 1), etc.

At any given time instance, let us assume that the LM finds itself at a node
S{d,j} in the tree, where j ∈ {1, ..., 2d} and 1 ≤ d ≤ D. The LM attempts to
infer the next promising search interval that is likely to contain λ∗ by making
a sequence of “informed” guesses. For each guess, the Environment essentially
informs the LM, possibly erroneously (i.e., with probability p), which way it
should move to reach the unknown point. Let Δ{d,j} be the interval that is
associated with the node where the LM resides at the current time instant. The
informed guesses correspond to a sampling at the boundary points of the interval:
Δ{d,j}, and at the midpoint of the interval: mid(Δ{d,j}).



780 A. Yazidi et al.

We formalize this by saying that the sampled points can be expressed as a
vector −→x = [x1, x2, x3], where x1 = σ{d,j} = (j − 1)(1

2 )d, x2 = mid(Δ{d,j}) =
(2j − 1)(1

2 )d+1 and x3 = γ{d,j} = j(1
2 )d.

Further, let the corresponding respective responses from the Environment E

be formulated as a tuple:
−→
Ω = [Ω1, Ω2, Ω3].

Note that Ωk, for k ∈ {1, 2, 3}, is a random variable that can take either the
value Left or Right. Since the environment is assumed faulty, we suppose that it
suggests the correct direction with a probability p. Therefore Ωk, for k ∈ {1, 2, 3}
can be formally defined according to whether λ is bigger or smaller than xk as:

If λ < xk

Ωk =

{
L with probability p

R with probability (1 − p), and

If λ ≥ xk

Ωk =

{
L with probability (1 − p)
R with probability p,

where for simplicity, we use L to imply a region to the “left” of the sampled
point, and R to imply a point to the “right” of the sampled point.

As a consequence of the above, it is easy to see that the overall effect of the
Environment E is that it responds with one of the 23 possible results:

{[L, L, L], [L, L, R], [L, R, L], [L, R, R], [R, L, L], [R, L, R], [R, R, L], [R, R, L]}.
Based on these responses the LM moves to another node in the tree, either to

the current node’s parent, or to one of its children (Left Child/Right Child). The
rules for moving in the tree are summarized in Table 1, and the formal result
about the algorithm is stated in Theorem 1.

Table 1. Decision table to choose the next search interval based on the response vector
[Ω1, Ω2, Ω3], when the current search interval is Δ{i,j}

Next Search Interval Condition

Parent(Δ{i,j})
[R, R, R]

∨
[L, R, R]

∨
[L, L, R]

∨
[L, L, L]

LeftChild(Δ{i,j}) [R, L, R]
∨

[R, L, L]

RightChild(Δ{i,j}) [R, R, L]
∨

[L, R, L]

Theorem 1: The parameter learning algorithm specified by the rules summa-
rized in Table 1 is asymptotically optimal if p is bigger than the conjugate of
the golden ratio3. Formally, LimN→∞Limn→∞E[λ(n)] → λ∗.

In the interest of brevity, we omit the proof of Theorem 1. The proof is quite
involved and can be found in [10]. ��

3 The golden ratio conjugate quantity is defined as Φ =
√

5−1
2

.



A Hierarchical Learning Scheme for Solving the SPL Problem 781

4 Simulation Results

In this section, we present the results which demonstrate the power of the HSSL
for the SPL. In order to confirm the superiority of our scheme, we have conducted
extensive simulations results under different parameter settings. However, in the
interest of brevity, we merely cite a few specific experimental results.

In Table 4 we have recorded the true value of E[λ(∞)] for various values of p
and the tree depth D = log2(N) (i.e, the resolution is N = 2D) when the value
of λ∗ is 0.9123. The values of p are 0.7, 0.85, and 0.95.

The optimality property is empirically confirmed through the simulation. Ob-
serve that independent of whether the value of p is as low as 0.7 or as high as
0.95, E[λ(∞)] indefinitely approaches the optimal λ∗ as we increase the resolu-
tion. Note that for a depth D which equals 12, the final terminal value represents
an error less than 0.0005% for p = 0.7, p = 0.85, and p = 0.95.

We now report the results of the second set of experiments in which we have
tried to catalogue the convergence of E[λ(n)] with time, “n”.

In order to obtain an understanding as to how the scheme converges with time,
various simulations were conducted to evaluate the performance of the algorithm
under a variety of constraints. In each simulation, 100 parallel experiments were
conducted so that an accurate ensemble average of the results could be obtained.
Again, although numerous experiments have been conducted, in the interest of
brevity we shall merely report the results obtained for one set of experiments
involving the unknown parameter λ∗ switching periodically between the values
0.9123 and 1−0.9123. We compared our results to the algorithm presented in [6].
Also, to be on the same level playing field, since there was no apriori information
about the value λ∗, at time instant 0, we initialized the LM of the original SPL
scheme to the position N

2 , while the corresponding LM of the HSSL algorithm
started from the root node.

In order to understand the effect of the resolution on the rate of convergence,
we report the number of iterations required to reach a value that is 95% of the
final value of λ∗.

In all brevity, we state that the HSSL algorithm outperformed the original
SPL solution and learned the value of λ∗ much faster. The experimental results
obtained are truly conclusive.

In the first set of experiment, we fixed p to 0.8. The plots of the corresponding
results are shown in Fig. 1(a) and Fig. 1(b). In Fig. 1(a), the resolution N was
equal to 256 while λ∗ switched every 400th iteration. In Fig. 1(b), the resolution
N was equal to 1, 024, while λ∗ switched every 1, 500th iterations.

From Fig. 1(a), we see that in the first 400 iterations, it took the HSSL solu-
tion only 30 time instants to reach 95% of λ∗, while the original SPL solution
required 180 iterations. After the first environment “switch”, i.e between time
instants 400 and 800, we observe that the convergence speed of both algorithms
decreased slightly. In fact, 95% of λ∗ was attained within 45 subsequent itera-
tions in the case of the HSSL solution, while the original SPL solution took 350
iterations. Comparing the results of the first 400 iterations with that of the sub-
sequent iterations, we conclude that although the final steady-state probabilities



782 A. Yazidi et al.

are independent of the starting state, in reality, the time that the LM took to
converge to λ∗ is dependent on where one starts.

In Fig. 1(b), we show the results when we increased the resolution N to
1, 024. As in the previous case, from Fig. 1(b), we observe that in the first 1, 500
iterations, it took approximately only 50 iterations for our HSSL solution to reach
95% of the optimal value λ∗, while the original SPL solution spent 680 iterations.
After the first environment switch, i.e between time instants 1500 and 3000, we
observe that the convergence speed decreased. In fact, it took approximately 75
iterations for our HSSL solution to reach 95% of the optimal value λ∗, while
the original SPL solution required 1, 380 iterations. In these settings, the HSSL
approach provided an order of magnitude (i.e., 18) faster convergence than the
original SPL solution. This, we believe, is impressive. We further remark that,
as we increased the resolution N from 256 (see Fig. 1(a)) to 1024 (see Fig. 1(b))
for the same p = 0.8, the convergence speed of the original SPL solution was
significantly reduced while the speed of the HSSL was less affected by this.

Table 2. True value of E[λ(∞)] for various values of p and various resolutions, when
the value of λ∗ is 0.9123

log2(N) p = 0.7 p = 0.85 p = 0.95

2 0.727906125 0.825522 0.866370875

3 0.82995875 0.9204060625 0.9337756875

4 0.86781290625 0.90972528125 0.9076381875

5 0.89240075 0.91925609375 0.921083703125

6 0.9056527421875 0.9150871328125 0.9144455

7 0.9069764765625 0.91111155859375 0.91035579296875

8 0.908265740234375 0.911884287109375 0.912022787109375

9 0.911209423828125 0.9128465126953125 0.9130258076171875

10 0.9116439086914062 0.912655470703125 0.9126211733398437

11 0.91219955078125 0.9124482912597657 0.912371505859375

12 0.9121167028808593 0.9122652081298828 0.9122371402587891

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 400 800 1200 1600
n

Es
t. 

of
 E

(
(n

))

Hierachical SPL approach
Original SPL approach

(a)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1500 3000 4500 6000
n

Es
t. 

of
 E

(
(n

))

Hierachical SPL approach
Original SPL approach

(b)

Fig. 1. The learning characterstics of the HSSL and the original SPL algorithm when
λ∗ switches between the values 0.9123 and 1.0−0.9123 every: (a) 400th iterations where
N = 256 and p = 0.8, and (b) 1500th iterations where N = 1024 and p = 0.8



A Hierarchical Learning Scheme for Solving the SPL Problem 783

5 Conclusions

The SPL problem involves a LM that attempts to learn a parameter, for ex-
ample, λ∗, within a closed interval. For each guess, the environment essentially
informs the mechanism with three responses, each possibly erroneous (i.e., with
probability p), on which way it should move to reach the unknown point. We
have presented a solution that involves discretizing the space, mapping the dis-
cretized intervals onto a binary tree and performing a controlled random walk on
this space. The solution we have presented has been both analytically analyzed
and simulated, with extremely fascinating results. Apart from formally analyzing
this algorithm, we have also experimentally demonstrated its superiority over the
state-of-the-art. From this perspective, our approach has been shown to provide
orders of magnitude faster convergence speed than the traditional SPL solution
[6] in non-stationary environments, i.e., where λ∗ changes over time.

References

1. Baeza-Yates, R., Culberson, J., Rawlins, G.: Searching with uncertainty. In: Pro-
ceedings of Scandinavian Workshop Algorithms and Theory (SWAT), Halmstad,
Sweden, pp. 176–189 (1998)

2. Baeza-Yates, R., Schott, R.: Parallel searching in the plane. Comput. Geom. Theory
Appl. 5, 143–154 (1995)

3. Bentley, J.L., Yao, A.C.C.: An Almost Optimal Algorithm for Unbounded Search-
ing. Inform. Proc. Lett. 5, 82–87 (1976)

4. Livio, M.: The Golden Ratio: The Story of Phi, the World’s Most Astonishing
Number. Paw Prints (2008)

5. Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction.
Prentice-Hall, Inc. (1989), http://portal.acm.org/citation.cfm?id=64802

6. Oommen, B.J.: Stochastic searching on the line and its applications to parame-
ter learning in nonlinear optimization. IEEE Transactions on Systems, Man and
Cybernetics 27B, 733–739 (1997)

7. Oommen, B.J., Kim, S.W., Samuel, M., Granmo, O.C.: A solution to the stochastic
point location problem in metalevel nonstationary environments. IEEE Transac-
tions on Systems, Man, and Cybernetics 38(2), 466–476 (2008)

8. Oommen, B.J., Raghunath, G.: Automata learning and intelligent tertiary search-
ing for stochastic point location. IEEE Transactions on Systems, Man and Cyber-
netics 28B, 947–954 (1998)

9. Oommen, B.J., Raghunath, G., Kuipers, B.: Parameter learning from stochastic
teachers and stochastic compulsive liars. IEEE Transactions on Systems, Man and
Cybernetics 36B, 820–836 (2006)

10. Yazidi, A., Granmo, O.C., Oommen, B.J., Goodwin, M.: Hierarchical stochastic
searching on the line. Unabridged version of this paper (to be submitted for pub-
lication)

http://portal.acm.org/citation.cfm?id=64802

	A Hierarchical Learning Scheme for Solving the Stochastic Point Location Problem
	Introduction
	Related Work
	Contributions

	Merging the Fields of Binary Search and SPL in HSSL
	Definitions
	Structure of the Search Space and Responses from the Environment

	Simulation Results
	Conclusions
	References




