
ar
X

iv
:1

20
4.

40
44

v1
 [

cs
.D

C
]

 1
8

A
pr

 2
01

2

Asynchrony and Collusion in the

N-party BAR Transfer Problem

Xavier Vilaça, Oksana Denysyuk, and Lúıs Rodrigues

INESC-ID, Instituto Superior Técnico, Universidade Técnica de Lisboa

Abstract. The problem of reliably transferring data from a set of NP producers to a set of NC

consumers in the BAR model, named N-party BAR Transfer (NBART), is an important building block
for volunteer computing systems. An algorithm to solve this problem in synchronous systems, which
provides a Nash equilibrium, has been presented in previous work. In this paper, we propose an NBART
algorithm for asynchronous systems. Furthermore, we also address the possibility of collusion among
the Rational processes. Our game theoretic analysis shows that the proposed algorithm tolerates certain
degree of arbitrary collusion, while still fulfilling the NBART properties.

1 Introduction

Peer-to-peer networks can be used for executing computationally intensive projects, as shown by
the Boinc infrastructure [1]. Building systems on this kind of networks may be quite challenging due
to the existence of Byzantine processes, whose behaviour is arbitrary, and of Rational processes,
which may deviate from the specified protocols if they can increase their utility. A system model
that captures this variety of behaviours has been coined the BAR model [2], named after the three
classes of processes (Byzantine, Altruistic, and Rational) that it explicitly considers.

Our work focuses on the particular problem of reliably transferring data from a set of NP

producers to a set of NC consumers in the BAR model, named N-party BAR Transfer (NBART).
This problem is an important building block for volunteer computing systems, since it allows
volunteers to transfer intermediate or final results of the computations to another set of volunteers,
after storing the data for some time. For instance, if computations are to be performed using a
model such as MapReduce, mappers may invoke the NBART primitive to transfer the intermediate
results to reducers.

Although an algorithm that solves this problem has already been devised for synchronous sys-
tems [3], in a peer-to-peer network it is often unrealistic to assume that there is a known upper
bound for the execution time and the communication delay. With this in mind, this paper addresses
the NBART problem in an asynchronous system.

Furthermore, this paper also addresses the problem of collusion, which is a real issue in peer-
to-peer networks due to attacks, such as sybil and white washing. In addition to arbitrary collusion
of Byzantine players, we consider that Rational processes may create collusion groups, including
producers and consumers.

Related Work Since models based on traditional Game Theory assume that all processes follow
the selfish strategy that maximises their utility function, they fail to account for arbitrary behaviour
that may arise from Byzantine faults. In face of this limitation, traditional utility functions must
be augmented to accommodate Byzantine-awareness. Additionally, alternative rules for predicting
how the game will be played have also been proposed to address Byzantine behaviour.

To the best of our knowledge, the work of Eliaz et. al. [4] was the first to address the issues
above, introducing the notion of k-Fault Tolerant Nash Equilibrium (k-FTNE). In this context, a
profile of strategies is k-FTNE if the strategy of each player is a best response to the strategy of
other players, independently of the identity of Byzantine players and the arbitrary strategy they

http://arxiv.org/abs/1204.4044v1

follow. This concept was later applied to virus inoculation games [5]. In [6], the authors discuss
the limitations imposed by regret freedom on communication games, by proving that there are
no non-trivial equilibria that provide regret-freedom strategies. Then, they propose a different
approach named regret-braving where players are willing to obey the specified solutions basing
on their expectations about the environment, and these strategies are regret-free as long as those
expectations hold. In our work, we consider that players are risk-averse, that is, they always hold
the expectation that Byzantine players will follow the worst possible strategy to their utility.

In practice, rational players can seek maximising their utility function by colluding with other
players, i.e., forming coalitions. Therefore, the solution concepts are more robust if they account
for such rational behaviour. Aumann [7] addressed this issue by defining an equilibrium as a profile
of strategies where no deviating collusion strategy provides a greater utility for all players of the
group. Then, Bernheim et. al. [8] introduced the notion of coalition-proof Nash equilibrium, where
no deviations by a coalition can perform better, although they do not allow further deviations to the
collusion strategy. This work was later extended to take into consideration correlated strategies [9].

The work of [10] considered the existence of processes with unexpected utilities and collusion.
The authors proposed the solution concept of (k, t)-robustness, where no process can increase
its utility by deviating in collusion with up to k − 1 other processes, regardless of the Byzantine
behaviour of up to t processes. This notion is stronger than the previous models for collusion, since it
accounts for arbitrary collusion where it should be true that no player performs better by deviating
from the equilibrium strategy, even if that implies decreasing the utility of other players within the
coalition. Unfortunately, in certain scenarios such as communication games (where players incur
communication costs), it was shown that no game can be (k, t)-robust for k, t > 0 [11].

Additional literature relevant to our results include works on agreement in the BAR model [2,11]
and data dissemination [12,13,14], which studied protocols tolerant to the BAR model and showed in
which conditions those solutions provide Nash equilibriums. In [15], the authors studied the impact
of altruism on a repeated game modelled by the BAR model. All these works assume repeated
interactions of processes in a cooperative service. On the other hand, our paper considers one-shot
games, and therefore addresses the need to provide equilibrium strategies for Rational processes to
follow the specified algorithm based on incentives provided in a single instance of NBART.

Contributions The first contribution of this paper consists in an algorithm that solves NBART
in asynchronous systems. We show that the proposed algorithm is correct, assuming that all non-
Byzantine processes follow it, for NP ≥ 2FP + 1 and NC ≥ FC + 1, where FP and FC are upper
bounds on the number of Byzantine producers and Byzantine consumers respectively. We also show
that the presented algorithm obtains asymptotically optimal bit complexity in certain scenarios.

The second contribution consists in the game theoretic analysis of the proposed algorithm. Since
processes incur communication costs, our algorithm cannot be (k, t)-robust [11], hence we rely on
a weaker notion of Byzantine aware utility function to account for Byzantine behaviour, based on
the notion proposed in [11].

Given that we cannot ensure that the players within a coalition follow the algorithm, we propose
a new solution concept, which is an adaptation of k-resilience to account for collusion in the following
way. We define an equilibrium as a profile of strategies σ where members of a coalition are interested
in deviating from σ only if their behaviour, as observed by other processes, is equivalent to σ.

We assume that the size of each group of Rational colluding processes is bounded by a constant
NT = NP

T +NC
T , where N

P
T is the number of members of the colluding group that are producers and

NC
T is the number of consumers on the same group. We show that, if NP ≥ max(FP , N

P
T)+FP +1

and NC ≥ FC +NC
T +1, then the algorithm provides such equilibrium, implying that processes from

any coalition follow a strategy that ensures that the NBART properties are fulfilled. An important
consequence of this is that, in the absence of collusion, the algorithm provides a Nash equilibrium.

2

Paper Organisation The remainder of the paper is structured as follows. The system model and
the NBART problem are defined in Section 2. The algorithm that solves NBART in the given model
is presented in Section 3, along with the proofs of correctness and a simple complexity analysis. In
Section 4, we perform the game theoretic analysis of the algorithm.

2 System Model

We assume an asynchronous system composed of N processes or players (we will use the term
player only when performing the Game Theoretic analysis; in any other case, we will use the name
process). Processes are connected by a fully-connected network and can communicate using reliable
authenticated point-to-point communication channels [16].

We make the distinction between identity, process/player, and coalition. An identity is a tuple
(i, pki, ski), where i is an identifier and pki and ski are the corresponding public and private keys.
There is a set of identities I = P∪C, where P and C are the sets of producer and consumer identities,
respectively, such that #P = NP and #C = NC . Players are the decision-making entities of our
Game Theoretic analysis and are represented by a single identity. Therefore, when referring to the
process that holds the identity (i, pki, ski), we will simply refer to it as i. If i ∈ P, the corresponding
process is referred to as a producer, otherwise, it is called a consumer. Finally, NP +NC = N .

As defined by the BAR model, a player can be Altruistic (if it follows the algorithm), Byzantine
(if its behaviour is arbitrary), or Rational (if it follows the strategy that maximises its utility
given the expectations regarding the strategies followed by other players). We assume that Rational
processes adhere to the promptness principle [2], in the sense that if the expected utilities of following
the algorithm and deviating by delaying messages are equivalent, then processes do not deviate. It
is said that a player i signs information with ski by invoking si(data).

2.1 NBART Problem

The NBART Problem can be defined as follows. Each producer p produces an arbitrarily large
value vp by invoking the deterministic function produce(p, vp), such that any two non-Byzantine
producers produce the same value, named the correct value. Consumers must consume only one
value v, sent by some producer, by invoking consume(c, v). The invocation of this primitive proves
that, indeed, c consumes the value. To deal with Rational behaviour, we rely on the participation
of an abstract entity named Trusted Observer (TO), whose function is to gather cryptographic in-
formation from the participants of each transfer and reward processes according to their observable
behaviour. To assess the behaviour of each process, TO uses two predicates hasProd(evidence, p)
and hasAck(evidence, c) that take as input the evidence produced by TO to indicate, respectively,
if producer p participated in NBART and if consumer c notified the reception of the correct value.
TO is said to eventually produce evidence about the transfer if, when hasProd and hasAck become
true for all corresponding non-Byzantine producers and consumers, TO eventually calls the primi-
tive certify(TO, evidence) after that. With these definitions, the NBART problem is characterised
by the following properties:

– NBART 1 (Validity): If a non-Byzantine consumer consumes v, then v was produced by some
non-Byzantine producer.

– NBART 2 (Integrity): No non-Byzantine consumer consumes more than once.

– NBART 3 (Agreement): No two non-Byzantine consumers consume different values.

– NBART 4 (Eventual Consumption): Eventually, every non-Byzantine consumer consumes a
value.

– NBART 5 (Evidence): TO eventually produces evidence about the transfer.

3

– NBART 6 (Producer Certification): If producer p is non-Byzantine, then hasProd(evidence, p)
eventually becomes true.

– NBART 7 (Consumer Certification): If consumer c is non-Byzantine, then hasAck(evidence,
c) eventually becomes true.

3 Asynchronous NBART

We now describe an algorithm that solves the NBART problem in an asynchronous environment.
We first provide an overview, then proceed to the detailed description of the algorithm, and we
conclude with a theoretical analysis, where we prove the correctness of this solution and perform a
complexity analysis in terms of message and bit complexity.

3.1 Overview of the Algorithm

The algorithm can be briefly described as follows. Each producer p owns a block (bp) that belongs
to the set of NP blocks obtained from the value v by using Reed-Solomon codes, such that v can
be retrieved from any subset of B blocks (NP ≥ B+FP). Then, p strives to transfer bp along with
the signature of the vector that contains the hashes of all blocks to a subset of consumers denoted
by consetp. Each consumer c only needs to receive B correct blocks and FP + 1 signatures of the
same vector of hashes to consume the value. However, c must continue to process any received
information and send it to TO, which must (re-)invoke certify(evidence) whenever it receives new
information, in order to fulfil the property NBART-5.

3.2 Algorithm in Depth

The algorithm is depicted for producers in Alg. 1, for consumers in Alg. 2 and Alg. 3, and for TO
in Alg. 4. Producers use Reed-Solomon codes to reduce the communication costs of transferring
an arbitrarily large value. The value v, whose length in bits is denoted by lv, is split into NP

blocks of size lv
B
, such that any subset of B blocks is sufficient to retrieve the original value, where

1 ≤ B ≤ NP − FP and B < lv. There is a function RS-ENC(v,NP , B, ω) that, given the correct
value v, the number of producers NP , the number of blocks B, and the word size ω, returns a vector
v containing the NP blocks, where 2ω > NP . Let hv denote the vector containing the hashes of
each of the blocks from v. The inverse function RS-DEC (v′, NP , B, ω,hv) is defined as follows: if
there are at least B blocks from v

′ whose hash is in hv, then it returns the value v; otherwise, it
returns ⊥. We consider that all arithmetic operations are performed over elements of the Galois
Field GF (2ω).

We consider that each process is unequivocally identified by an index, between 0 and NP −1 for
producers, and between 0 and NC−1 for consumers. Each consumer cj uses a deterministic function
prodset cj to determine the set of producers that are supposed to send it their blocks, defined in
such a way that each consumer is related to exactly B + FP producers (in this way distributing
load among producers). A possible mapping function is the following: prodset cj = {pi ∈ P|i ∈
[k...(k + B + FP − 1) mod NP], k = j(B + FP) mod NP}. It is useful to define the function that
establishes the inverse relation consetpi = {cj ∈ C|pi ∈ prodset cj} for each producer pi. These
definitions ensure that each consumer is able to receive at least B blocks from non-Byzantine
producers, therefore being able to retrieve the correct value. In addition, the load is distributed
across the producers such that ∀p∈P : #consetp = n ⇒ ∀p′∈P\{p} : n− 1 ≤ #consetp′ ≤ n+ 1.

Each producer p starts by storing the set of blocks from v by invoking RS-ENC. Note that each
producer will only be required to transmit one of these blocks (each producer transmits a different
block). However, each producer is still required to send hv. Therefore, each producer then sets the
vector hashes to hv (Alg. 1, lines 4-7). Then, p transfers its block along with hv to all consumers

4

of consetp in a Block message (lines 8-10), while sending Summary messages to the remaining
consumers only containing hv (lines 11-13). Both these messages are signed with the public key
of the producer. Notice that, in the Block message, it is not necessary to sign the block, for the
signature of the hashes already authenticates the block.

Algorithm 1: NBART (p ∈ P)

01 upon init() do

02 blocks := [⊥]NP ;
03 hashes :=[⊥]NP ;

04 upon produce(p, v) do

05 blocks := RS-ENC(value,NP ,B,ω);
06 forall i ∈ P do

07 hashes[i] := hash(blocks[i]);
08 signature := sp(Block||hashes);
09 forall c ∈ consetp do

10 send(p, c, [Block, blocks[p], hashes, signature]);
11 signature := sp(Summary||hashes);
12 forall c ∈ C \ consetp do

13 send(p, c, [Summary, hashes, signature]);

In turn, each consumer c keeps all the received data blocks in a vector blocks and the received
vectors of hashes (along with the signatures) in hashvecs. In addition, there is a set missing that
keeps the identities of the producers that have not yet sent any signed information. Finally, correc-
thashvec is the correct vector of hashes, that is, the vector that is sent by at least FP +1 producers,
and correctproducers stores, for each producer, the value ⊥ if it has not yet sent any message, or
the signature of the message sent by the producer.

Each consumer uses the functions verifysig(i,d) and verifyhash(b,h) to verify the signature
by i of d and the hash of b when compared to h, respectively. Consumer c is in one of three
states: init, gotHashes, and consumed. c is in state init when hashvecs does not contain a majority
(FP + 1) of identical vectors of hashes. The function minimumHashes (Alg. 2, lines 8-12) marks
the transition between init and gotHashes, by setting correcthashvec to a non-null value, when the
required majority of hashes is gathered by c. Procedure consume-and-report (lines 16-23) makes
the transition from gotHashes to consumed when the consumer gathers at least B correct blocks
and, therefore, the invocation of RS-DEC returns a non-null value. In this case, the consumer
consumes the value (line 19) and prepares a report intended to TO (lines 20-23), which is sent by
invoking the procedure report (lines 13-15). This report contains the vector correcthashvec and the
signature of all the producers that already sent correct messages to c, i.e., messages that contained
correcthashvec.

Whenever a consumer c receives a Block message from a producer that belongs to missing ∩
prodset c (Alg. 3, line 1), c removes p from missing if the signature is valid (lines 2-3) and, according
to its state, performs one of the following actions: i) If c is still in state init, then it stores the
received information in the appropriate vectors and invokes minimumHashes (lines 4-8), in order
to verify if it has already gathered a majority of identical vectors of hashes. If that is the case, then
c invokes consume-and-report (lines 9-10). ii) If c is in state gotHashes, then it adds the received
vector of hashes along with the signature to hashvecs, stores the block, and invokes consume-and-
report (lines 11-15). iii) If c is in state consumed, then it adds the signature of the producer to
correctproducers and reports the information received from producers to TO (lines 16-18).

An almost identical approach is followed by c whenever it receives a Summary message, aside
from the fact that in this case c does not expect to receive any block (lines 19-33).

5

Algorithm 2: NBART (c ∈ C): Part I

01 upon init do

02 value :=⊥;
03 correcthashvec := ⊥;
04 hashvecs :=[⊥]NP ;
05 blocks := [⊥]NP ;
06 missing := P;
07 correctproducers := [⊥]NP ;

08 function minimumHashes(hashvecs) is

09 if ∃h : #{p|hashvecs[p] = 〈h, ∗〉} ≥ FP + 1 then

10 return h;
11 else

12 return ⊥;

13 procedure report is

14 signature := sc(Report||correcthashvec||correctproducers);
15 send(c, TO, [Report, correcthashvec, correctproducers, signature]);

16 procedure consume-and-report is

17 value := RS-DEC(blocks, NP , B, ω, correcthashvec);
18 if value 6= ⊥ then

19 consume(c, value);
20 forall p ∈ P do

21 if hashvecs[p] = 〈correcthashvec,signature〉 then

22 correctproducers[p] := signature;
23 report ();

The trusted observer only waits for Reportmessages from consumers to include all the received
information in the array evidence (lines 3-5). In addition, TO repeatedly tries to produce the
evidence about the transfer whenever it receives new information (line 6).

3.3 Predicates

We now define the predicates hasProd and hasAck. It is said that producer p is certified by consumer
c ∈ consetp iff evidence[c] = 〈hv, report〉 and report[p] = sp(Block,hv). We say that producer p is
certified by consumer c ∈ C\consetp iff evidence[c] = 〈hv, report〉 and report[p] = sp(Summary,hv).
Let P̄ ⊆ P and C̄ ⊆ C be the greatest sets that fulfil the following conditions: i) for each p ∈ P̄ and
c ∈ C̄, p is certified by c; and ii) for each c ∈ C̄, c invokes consume(c,v).

With this in mind, we now define the predicates as follows:

– For the predicates to be true for any process, #P̄ ≥ NP − FP and #C̄ ≥ NC − FC ;

– hasProd(evidence,p) is true iff p ∈ P̄ ;

– hasAck(evidence,c) is true iff c ∈ C̄.

3.4 Correctness

In this section, the correctness of the above algorithm is proven in an asynchronous environment,
assuming that NP ≥ 2FP + 1, NC ≥ FC + 1, and that all non-Byzantine processes follow the
algorithm. In the following two lemmas, we start by showing that the consumers eventually gather
enough information to consume the correct value.

Lemma 1. For each non-Byzantine consumer c ∈ C, minimumHashes eventually returns exactly
one vector h

∗ 6= ⊥ and h
∗ = hv.

6

Algorithm 3: NBART (c ∈ C): Part II

01 upon deliver(p, c, [Block, pblock, phashes, msgsig]) ∧ p ∈ missing ∩ prodset c do

02 if verifysig(p, Block||phashes, msgsig) then

03 missing := missing \ {p};
04 if verifyhash(pblock, phashes[p]) then

05 if correcthashvec = ⊥ then

06 hashvecs[p] := 〈phashes, msgsig〉;
07 blocks[p] := pblock;
08 correcthashvec := minimumHashes(hashvecs);
09 if correcthashvec 6= ⊥ then

10 consume-and-report ();
11 else if value = ⊥ then

12 if phashes = correcthashvec then

13 hashvecs[p] := 〈phashes, msgsig〉;
14 blocks[p] := pblock;
15 consume-and-report ();
16 else if phashes = correcthashvec then

17 correctproducers[p] := msgsig;
18 report ();

19 upon deliver(p, c, [Summary, phashes, msgsig]) ∧ p ∈ missing ∩ P \ prodset c do

20 if verifysig(p, Summary||phashes, msgsig) then

21 missing := missing \ {p};
22 if correcthashvec = ⊥ then

23 hashvecs[p] := 〈phashes, msgsig〉;
24 correcthashvec := minimumHashes(hashvecs);
25 if correcthashvec 6= ⊥ then

26 consume-and-report ();
27 else if value = ⊥ then

28 if phashes = correcthashvec then

29 hashvecs[p] := 〈phashes, msgsig〉;
30 consume-and-report ();
31 else if phashes = correcthashvec then

32 correctproducers[p] := msgsig;
33 report ();

Proof. Every non-Byzantine consumer receives hv from all non-Byzantine producers, eventually.
SinceNP ≥ 2FP+1, only the vector hv can be sent by FP+1 producers. Therefore,minimumHashes
only returns a non-null vector h∗ if h∗ = hv and this occurs eventually. Also, when correcthashvec
becomes non-null, c never invokes minimumHashes again. ⊓⊔

Lemma 2. For each consumer c ∈ C, c eventually invokes consume(c,v), and only once.

Proof. It follows from Lemma 1 that, for each non-Byzantine consumer c, correcthashvec is eventu-
ally set to hv, and c eventually starts invoking consume-and-report. By the fact that producers send
their blocks to all consumers of conset , and by the conditions NP ≥ B+FP and #prodset c = B+FP ,
c eventually receives B blocks, correct according to hv. Hence, RS-ENC eventually returns v, and
only v by the property of non-collision of hash functions. A trivial inspection of the algorithm shows
that, once value is set to v 6= ⊥, c consumes v and never invokes consume-and-report again. ⊓⊔

Lemma 3. For each non-Byzantine producer p and each non-Byzantine consumer c ∈ consetp,
eventually c certifies p.

Proof. According to the algorithm, p always sends a Block message containing its block and
sp(Block||hv) to all c ∈ consetp, whereas p sends a Summary message to all c ∈ C \ consetp,
containing sp(Summary||hv). If c receives this information when it is still in one of the states init
and gotHashes, then, by Lemma 2, c eventually sends a report to TO containing this information.
If c is already in state consumed, then c immediately sends the report containing this information
when it receives the message from p. Either way, c eventually certifies p. ⊓⊔

7

Algorithm 4: NBART (trusted observer TO)

01 upon init do

02 evidence := [⊥]NC ;

03 upon deliver(c, TO, [Report, hashesvec, producers, signature]) do

04 if verifySig(c, Report||hashesvec||producers, signature) then

05 evidence[c] := 〈hashesvec,producers〉;
06 certify(TO, evidence);

Lemma 4. There exist sets P̄ and C̄ of non-Byzantine producers and non-Byzantine consumers,
respectively, such that: i) #P̄ ≥ NP − FP and #C̄ ≥ NC − FC ; ii) for each p ∈ P̄ and c ∈ C̄, c
eventually certifies p; and iii) for each c ∈ C̄, c eventually invokes consume(c,v), where v is the
correct value.

Proof. i) follows from the fact that there are NP −FP non-Byzantine producers and NC −FC non-
Byzantine consumers; ii) follows from Lemma 3; and iii) follows from Lemma 2. ⊓⊔

The next theorem concludes the proofs of correctness by showing that each NBART property
is fulfilled by the presented algorithm.

Theorem 5. The proposed algorithm solves NBART in an asynchronous environment, assuming
that all non-Byzantine processes follow the algorithm.

Proof. The proof is performed individually for each property:

– (Validity): By Lemmas 1 and 2 and by the non-collision property of hash functions, c consumes
the correct value, which is produced by all non-Byzantine producers.

– (Integrity): Follows from Lemma 2.

– (Agreement): It follows directly from Validity and the fact that all non-Byzantine producers
send a block corresponding to the same value.

– (Eventual Consumption): Follows from Lemma 2.

– (Evidence): TO invokes certify(evidence) whenever it receives new information, either from
producers or consumers. Thus, whenever hasProd(evidence,p) and hasAck(evidence,c) become
true for each non-Byzantine producer p and non-Byzantine consumer c respectively, TO invokes
certify(evidence).

– (Producer and Consumer Certification): Follows from Lemma 4.

⊓⊔

3.5 Complexity Analysis

The algorithm is evaluated in terms of message and bit complexity. The message complexity is
O(NPNC) due to NC messages sent by each producer that contain the signature of hv. However,
since the value may be arbitrarily large, the size of each message may vary significantly, so it is
interesting to also evaluate the number of bits exchanged, that is, the bit complexity. For this
analysis, let lv, ls, and lh denote the bit length of the value, a signature and an hash. The bit
complexity is O(NC(B + FP)

lv
B

+ NPNC(ls + NP lh)). Notice that, if B ≥ O(FP) and lv ≫ ls, lh,
then the bit complexity is O(NC), which is asymptotically optimal, since there must be at least a
value transfer per consumer.

8

4 Game Theoretic Analysis

The purpose of this analysis is to show that it is in every Rational process interest to follow the
algorithm. We take into consideration some degree of arbitrary collusion.

4.1 Definitions

The algorithm is modelled as a coalitional game Γ = (I,T , ΣI , (�t)t∈T , (ui)i∈I):

– I = P ∪ C ∪ {TO} is the set of players.
– T is the set of non-empty subsets of I \ {TO}, which contains all the possible coalitions. Each

coalition t ∈ T may contain simultaneously producers and consumers, represented by tP = t∩P
and tC = t ∩ C, respectively.

– ΣI is a set containing all the profile of pure strategies σI followed by all players of I. Σt for
t ∈ T denotes the set of all collusion strategies the players of t may follow.

– �t is a preference relation on ΣI ×ΣI . We assume that �t is transitive and reflexive. We can
define the relation of strict preference ≻t as: for any two profiles of strategies σ

∗
I ,σ

′
I ∈ ΣI ,

σ
∗
I ≻t σ

′
I iff ¬(σ′

I �t σ
∗
I). If σ

∗
I ≻t σ

′
I , then all the players of t will always follow σ

∗
I over σ′

I .
– ui is the utility function of each player i ∈ I, defined as ui(σI) = βi(σI)−αi(σI), where βi(σI)

are the benefits and αi(σI) the costs i incurs when players obey σI .

Sometimes, we will denote the composition of two profiles σA and σB as σA∪B = (σA,σB),
whereA andB are any two disjoint sets of players. Conversely, ui(σA,σB) is equivalent to ui(σA∪B).
Each producer p obtains a benefit βP iff hasProd(evidence,p) eventually becomes true, whereas each
consumer c obtains a benefit βC iff hasAck(evidence,c) eventually becomes true. It is assumed that
for all p ∈ P, βP > αp(σI), and for all c ∈ C, βC > αc(σI), where σI is the profile of strategies
where all players follow the algorithm.

A coalition t is said to be Rational if the preference relation �t fulfils the following condition:

∀i∈t∀σI∈ΣI ,σ
∗
t∈Σt

ui(σI) ≥ ui(σ
∗
t ,σI\t) ⇒ (σt,σI\t) �t (σ

∗
t ,σI\t).

We assume that the same relation holds, by only replacing ≥ for > and �t for ≻t. It follows that
if #t = 1 and the only player i ∈ t is Rational, then for any two profiles of strategies σ∗

I ,σ
′
I ∈ ΣI ,

σ
∗
I �t σ

′
I iff ui(σ

∗
I) ≥ ui(σ

′
I). On the contrary, if #t = 1 and the player i ∈ t is Altruistic, then t

is also said to be Altruistic and it is true that (σt,σ
∗
I\t) ≻t (σ

∗
I) for all σ

∗
I ∈ ΣI and considering

that σI denotes the profile of strategies where all players follow the algorithm. In any other case,
t is Byzantine, implying that �t is arbitrary due to the Byzantine behaviour of some player from
t. It is important to notice that, if t is Byzantine, then all players of t are also considered to be
Byzantine, even if some of them have Rational intentions. A coalition t is said to be a producer
(t ∈ TP) if tP 6= ∅ and it is said to be a consumer (t ∈ TC) if tC 6= ∅. The purpose of these definitions
is to model scenarios of arbitrary collusion where, for instance, a producer p never executes any
local function to produce the value. Instead, it requests the hash of the blocks to other player i,
signs this information, and sends it to i. Then, i may transfer the block and the signature of p to
all the consumers that expect this information, as if it were sent by p.

For simplicity, we model Byzantine behaviour as a single coalition composed by up to FP + FC

players. We consider an arbitrary number of non-Byzantine coalitions, as long as each coalition is
never composed by more than NP

T producers and NC
T consumers. The distinction between producers

and consumers will allow us a more refined analysis of the bounds on the minimum number of
producers and consumers. If we only considered a single parameter, the bounds would be stricter
than necessary. As it will be shown later, we now require the following conditions to hold for the
algorithm to be tolerant to collusion: NP ≥ max(FP , N

P
T) + FP + 1 and NC ≥ FC +NC

T + 1.

9

4.2 Expected Utility and Solution Concept

We use the notion of Byzantine-aware utility function for risk-averse players introduced in [11]. An
improvement of this work for models where players may be risk-seekers is left for future work. Let
FP and FC denote the set of Byzantine producers and consumers, respectively, and let πP ∈ ΠP

and πC ∈ ΠC be the corresponding profiles of strategies. Let us denote by σI\F ,πC ,πC
the profile of

strategies where all non-Byzantine players follow the strategy specified by σI , Byzantine producers
follow the strategies of πP and Byzantine consumers obey the strategies of πC . The expected utility
of each player i ∈ I \ F is defined as follows:

ūi(σM) = min
FP :#FP≤FP ,FC :#FC≤FC

◦ min
πP∈ΠP ,πC∈ΠC

◦ui(σ
′
M\F ,πC ,πC

). (1)

Recall that, since we consider communication costs, a solution concept as strong as (k, t)-
robustness is impossible in our case. To overcome this impossibility result, we use the concept of
k-resilience combined with the Byzantine aware utility function defined above. However, we still
cannot ensure that no player from a coalition t can increase its utility regardless of whether some
other player obtains a lower utility or not. What we intend to show is that, regardless of the
preferred collusion strategy of each coalition, the chosen strategies fulfil the NBART properties.

In order to formalise this intuition, we define the observable behaviour of each coalition t ∈ T
for the profile of strategies σt as a multi-set of events triggered in each player i ∈ I \ t that are
influenced by σt, which we denote by φi(σt). For any player i ∈ I \ t, the delivery of a message
sent by some player j ∈ t is an event. In addition, there are two events triggered in TO, namely
produce(p,v) for each p ∈ tP and consume(c,v) for each c ∈ tC . Henceforth, the meaning of a
producer producing a value or a consumer consuming a value is that the corresponding event is
eventually triggered in TO.

We say that collusion profile σ∗
t ∈ Σt is compliant with the profile σI = (σt,σI\t) if ∀i∈I\tφi(σ

∗
t) =

φi(σt). The set of profiles of strategies compliant with σI is denoted by Σt(σI), where σt ∈ Σt(σI).
The solution concept we use in this work, named n collusion tolerance (n-cotolerance), is similar to
the concept of k-resilience, aside from the fact that we do not require that players in collusion follow
the algorithm exactly; only that they follow a profile of strategies from Σt(σI). More precisely:

Definition 6. For any n ∈ N, a profile of strategies σI is n-cotolerant iff for all t ∈ T such
that #t ≤ n, for all σ∗

t ∈ Σt(σI) such that (σ∗
t ,σI\t) �t σI, and for all σ′

t ∈ Σt \ Σt(σI),
(σ∗

t ,σI\t) ≻t (σ
′
t,σI\t).

The above definition is generic and may be of independent interest. In order to apply it to the
NBART problem, we additionally need to capture the distinction between producers and consumers.
Therefore, we introduce two parameters x, y ∈ N, that establish the limit on the number of producers
and consumers within the coalition respectively, such that n ≥ x, y and n ≤ x + y. With this
definition, if n = 1, then there is no collusion among non-Byzantine players. Henceforth, we will
say that a profile of strategies σI is (n, x, y)-cotolerant iff it is n-cotolerant, n ≥ x, y and n ≤ x+y,
and for all t ∈ T #tP ≤ x and #tC ≤ y.

4.3 Tolerance to Collusion

The purpose of this section is twofold: i) show that, considering that σI denotes the profile of
strategies where all players follow the algorithm, for any combination of Byzantine and Rational
collusions, and any coalition t, if all players of t follow a profile of strategies from Σt(σI), then the
NBART properties are fulfilled; and ii) show that any profile of strategies σ∗

t ∈ Σt is preferable to σt

only if σ∗
t ∈ Σt(σI). The proofs of this section rely on the assumption that NP ≥ max(FP , N

P
T) +

FP + 1 and NC ≥ FC +NC
T + 1.

10

We find it useful to identify the following corollary that states that in any coalition t, pro-
duce(p,v) must be invoked for all p ∈ tP , which follows from the fact that produce(p, v) ∈ φTO(σt).

Corollary 7. For any t ∈ TP , if t follows a profile of strategies from Σt(σI), then for each p ∈ tP ,
p invokes produce(p, v).

Let ǫ : Σt → ENC be a function that for each profile σ
∗
I returns an instance of the data

structure evidence ∈ ENC stored by TO when it produces evidence about the transfer, by replacing
any entrance corresponding to a Byzantine player by the value ⊥, i.e., if c ∈ FC and e = ǫ(σ∗

I),
then e[c] = ⊥, and if p ∈ FP , then e[c][p] = ⊥ for all c ∈ C \ FC .

We state the following proposition that ǫ depends only on the observable behaviour of each
player:

Proposition 8. For any t ∈ T and for any profile σ
∗
I ∈ ΣI, if φTO(σ∗

I) = φTO(σI), then
ǫ(σ∗

I) = ǫ(σI).

We show in the following theorem that if each coalition t follows a strategy from Σt(σ
∗
t), then

the algorithm tolerates collusion. Fix any arbitrary f ∈ F such that #fP ≤ FP and #fC ≤ FC . By
assumption, NP ≥ max(FP , N

P
T) + FP + 1 and NC ≥ FC + NC

T + 1, and let l denote an arbitrary
partition of I \ ({TO}∪ f) such that, for any t ∈ l, #tP ≤ NP

T and #tC ≤ NC
T . We use the notation

#(e,m) to denote the frequency of element e in the multi-set m.

Theorem 9. For some arbitrary partition l, and for any σ∗
I = ((σ∗

t)t∈l,σ∗
t∈Σt(σI), (πp)p∈fP , (πc)c∈fC),

if all players follow σ
∗
I , then the NBART properties are fulfilled.

Proof. Notice that, in this scenario, it is also true that: 1) NP ≥ 2FP + 1 and 2) NC ≥ FC + 1.
Let us fix some arbitrary t ∈ TC ∩ l and c ∈ tC . The correctness is proved for each of the NBART
properties:

– (Validity): consume(c,v) ∈ φTO(σ∗
t), where v must be a value for which there are FP + 1

signatures of hv, otherwise φTO(σ∗
I) 6= φTO(σI) and σ

∗
t /∈ Σt(σI). By 1) and Corollary 7,

there is only one value that fulfils these restrictions, which is the value produced by all non-
Byzantine producers.

– (Integrity): Since the players of t follow σ
∗
t and σ

∗
t ∈ Σt(σI), #(consume(c, v), φTO(σ∗

t)) = 1.

– (Agreement): It follows directly from Validity and Corollary 7.

– (Eventual Consumption): Since φc(σ
∗
I) = φc(σI), t receives blocks from all the non-Byzantine

producers from prodset c \ tP . If #(prodset c \ tP) ≥ FP +B, then c eventually gathers B blocks
corresponding to the correct value, otherwise, #tP ≥ 1 and by Corollary 7 some producer of t
produces the value. In either case, by the definition of Σt(σI), c must invoke consume(c,v).

– (Evidence): It follows from the fact that TO is Altruistic.

– (Producer and Consumer Certification): By the definition of Σt(σ
∗
t), φTO(σ∗

I) = φTO(σI).
By Theorem 5 and by 1) and 2), if all players follow σI , then the properties NBART 6-7 are
fulfilled for e = ǫ(σI). It follows from Proposition 8 that ǫ(σ∗

I) = e. Since the value of the
predicates only depends on e, then these properties also hold in this new scenario.

⊓⊔

We now provide the proofs that the profile of strategies σI where all players follow the algorithm
is (NP

T + NC
T , N

P
T , NC

T)-cotolerant for NP ≥ max(FP , N
P
T) + FP + 1 and NC ≥ FC + NC

T + 1. The
following two lemmas show that, for each t ∈ T the expected benefit is 0 for all i ∈ t, whenever
players of t follow a profile of strategies from Σt \Σt(σI). Recall that we assume that the players
are risk averse. Therefore, the analysis is done assuming worst case Byzantine behaviour.

11

Lemma 10. For any t ∈ TC, let σ
′
t ∈ Σt \ Σt(σI) be any profile of strategies where t does not

ensure that for all c ∈ tC and p ∈ P, c certifies p and invokes consume(c, v), and, for each, p ∈ tP
p invokes produce(p, v). Then, for all i ∈ t, β̄i(σ

′
t,σI\t) = 0.

Proof. Assume worst case Byzantine behaviour. If n ≥ 1 producers are not certified by all consumers
of t, those n producers are certified by less than NC − FC consumers. Since #tP < NP − FP ,
#P̄ ≤ NP − n − FP < NP − FP . Conversely, if consumers from tC do not consume the correct
value, then it is true that #C̄ < NC − FC , due to the fact that #tC < NC − FC . By the definition
of the predicates, for all p ∈ tP and c ∈ tC , hasProd(evidence,p) and hasAck(evidence,c) are false.
Therefore, for all i ∈ t β̄i(σ

′
t,σI\t) = 0. ⊓⊔

Lemma 11. For any t ∈ T , let σ′
t ∈ Σt \Σt(σI). Then, for all i ∈ t, β̄i(σ

′
t,σI\t) = 0.

Proof. Assume worst case Byzantine behaviour. By the definition of Σt(σI), there exists j ∈
I \ (F ∪ t) such that φj(σ

′
t) 6= φj(σt), which implies that not all expected events are triggered

in j for some player i ∈ t, some consumer does not consume the correct value, or some producer
does not produce the correct value. If j is a consumer or a producer, then it follows directly from
Lemma 10 that, for all i ∈ t, β̄i(σ

′
t,σI\t) = 0. If j is TO, then either 1) i is a producer, and i is

not certified by some consumer or does not produce the value; or 2) i is a consumer, and i does not
certify some player or does not consume the value. In both cases, by Lemma 10, it is true that for
all i ∈ t, β̄i(σ

′
t,σI\t) = 0. ⊓⊔

The following theorem concludes that the proposed algorithm is (NP
T +NC

T , N
P
T , NC

T)-cotolerant.

Theorem 12. Let σI ∈ ΣI denote the profile of strategies where all players follow the algorithm.
Then, σI is (NP

T +NC
T , N

P
T , NC

T)-cotolerant.

Proof. Let t ∈ T be any coalition such that #tP ≤ NP
T and #tC ≤ NC

T . By Theorem 9, for all
p ∈ tP , β̄p(σI) = βP and for all c ∈ tC , β̄c(σI) = βC . Therefore, for all i ∈ t, β̄i(σI) > ᾱi(σI) and
ūi(σI) > 0. Furthermore, it follows from Lemma 11 that for all σ′

t ∈ Σt \Σt(σI), β̄i(σ
′
t,σI\t) = 0.

Therefore, ūi(σ
′
t,σI\t) ≤ 0 < ūi(σI), which implies that σI ≻t (σ

′
t,σI\t). Consequently, for all

σ
∗
t ∈ Σt(σI), if (σ

∗
t ,σI\t) �t σI , then (σ∗

t ,σI\t) ≻t (σ
′
t,σI\t). This allows us to conclude that σI

is (NP
T +NC

T , N
P
T , NC

T)-cotolerant. ⊓⊔

4.4 Discussion

Some important consequences result from Theorems 9 and 12. One is that σI is (1, 1, 1)-cotolerant.
By the definition of �t for any t ∈ T such that #t = 1 and by the fact that Σt(σI) = {σI}, σI is
a Nash equilibrium.

Another important result is that no producer p ∈ tP from any non-Byzantine coalition t can
avoid sending the expected Summary and Block messages to consumers not from tC . The same
applies to Report messages sent by consumers to TO. Therefore, for any i ∈ t, the expected utility
of delaying messages to players not from t is at most as high as the utility of following the algorithm.
Therefore, by the promptness principle, players never delay messages between different coalitions.
Concerning the messages exchanged between players from the same coalition, we do not guarantee
that players do not incur any communication delays. Though, if these messages are mandatory to
ensure that all players of the coalition are rewarded, then, if there is any delay, it must be finite,
otherwise, the expected utility is the same as not sending these messages, i.e., at most 0.

Acknowledgements

This work was partially supported by the FCT (INESC-ID multi annual funding through the
PIDDAC Program fund grant and by the project PTDC/EIA-EIA/102212/2008).

12

References

1. Anderson, D.: Boinc: A system for public-resource computing and storage. In: Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing. GRID’04, Pittsburgh, PA, USA, IEEE (November 2004) 4–10

2. Aiyer, S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: BAR fault tolerance for cooperative
services. In: Proceedings of the 20th ACM Symposium on Operating Systems Principles. SOSP’05, Brighton,
United Kingdom, ACM (October 2005) 45–58

3. Vilaça, X., Leitão, J., Correia, M., Rodrigues, L.: N-party BAR transfer. In: Proceedings of the 15th International
Conference On Principles Of Distributed Systems (to appear). OPODIS’11, Toulouse, France (December 2011)

4. Eliaz, K.: Fault-tolerant implementation. Review of Economic Studies 69(3) (August 2002) 589–610
5. Moscibroda, T., Schmid, S., Wattenhofer, R.: On the topologies formed by selfish peers. In: Proceedings of the

25th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. PODC’06, Denver,
CO, USA, ACM (July 2006) 133–142

6. Wong, E.L., Clement, A., Levy, I., Alvisi, L., Dahlin, M.: Regret freedom isn’t free. In: Proceedings of the
15th International Conference On Principles Of Distributed Systems (to appear). OPODIS’11, Toulouse, France
(December 2011)

7. Aumann, R.J.: Acceptable points in General Cooperative n-person Games. In: Contributions to the Theory of
Games IV. Number 40 in Annals of Mathematics Studies. Princeton University Press, Princeton (1959) 287–324

8. Bernheim, B., Peleg, B., Whinston, M.: Coalition-proof nash equilibria i. concepts. Journal of Economic Theory
42(1) (June 1987) 1–12

9. Moreno, D., Wooders, J.: Coalition-proof equilibrium. Games and Economic Behavior 17(1) (November 1996)
80–112

10. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game theory: robust mechanisms
for rational secret sharing and multiparty computation. In: Proceedings of the 25th Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing. PODC’06, Denver, CO, USA, ACM (July 2006)
53–62

11. Clement, A., Napper, J., Li, H., Martin, J.P., Alvisi, L., Dahlin, M.: Theory of BAR games. In: Proceedings of the
26th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. PODC’07, Portland,
OR, USA, ACM (August 2007) 358–359

12. Li, H., Clement, A., Wong, E., Napper, J., Roy, I., Alvisi, L., Dahlin, M.: BAR gossip. In: Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation. OSDI’06, Seattle, WA, USA, USENIX
Association (November 2006) 191–204

13. Li, H., Clement, A., Marchetti, M., Kapritsos, M., Robison, L., Alvisi, L., Dahlin, M.: Flightpath: Obedience
vs choice in cooperative services. In: Proceedings of the 8th USENIX Symposium on Operating Systems Design
and Implementation. OSDI’08, San Diego, CA, USA, USENIX Association (December 2008) 355–368

14. Mokhtar, S., Pace, A., Quéma, V.: FireSpam: Spam resilient gossiping in the BAR model. In: Proceedings of
the 29th IEEE International Symposium on Reliable Distributed Systems. SRDS’10, New Delhi, India, IEEE
(October 2010) 225–234

15. Wong, E.L., Leners, J.B., Alvisi, L.: It’s on me! the benefit of altruism in BAR environment. In: Proceedings of
the 25th International Symposium on Distributed Computing. DISC’10, Cambridge, USA, Springer (September
2010) 406–420

16. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure Distributed Programming. 2nd
edition edn. Springer-Verlag New York, Inc. (2011)

13

	Asynchrony and Collusion in the N-party BAR Transfer Problem

