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Abstract. Recent research has pointed out the importance of the in-
equational exchange law (P ∗Q) ; (R∗S) ≤ (P ;R)∗ (Q ;S) for concurrent
processes. In particular, it has been shown that this law is equivalent to
validity of the concurrency rule for Hoare triples. Unfortunately, the law
does not hold in the relationally based setting of algebraic separation
logic. However, we show that under mild conditions the reverse inequa-
tion (P ; R) ∗ (Q ; S) ≤ (P ∗ Q) ; (R ∗ S) still holds there. Separating
conjunction ∗ in that calculus can be interpreted as true concurrency on
disjointly accessed resources. From the reverse exchange law we derive
slightly restricted but still reasonably useful variants of the concurrency
rule. Moreover, using a corresponding definition of locality, we obtain
also a variant of the frame rule. By this, the relational setting can also
be applied for modular and concurrency reasoning. Finally, we present
several variations of the approach to further interpret the results.

Keywords: True concurrency, relational semantics, Hoare logic, concurrent sep-
aration logic, locality, frame rule

1 Introduction

Algebraic techniques nowadays have found widespread application, especially
in the area of program logics. In particular, separation logic [14] has proved to
be very useful in the domain of modular and concurrency reasoning [1, 12] —
although originally it was only developed to facilitate reasoning about shared
mutable data structures. For this logic there are already different abstract ap-
proaches that capture corresponding calculi [2, 4]. Recent investigations on these
topics resulted in a general algebraic structure called Concurrent Kleene Alge-
bra [8]. A central concept of that algebra is that it allows easy soundness proofs
of important rules like the concurrency and frame rules used in logics for con-
currency and modular reasoning.

The concurrency and frame rules have the form

{P1}Q1 {R1} {P2}Q2 {R2}

{P1 ∗ P2 }Q1 ∗Q2 {R1 ∗R2}
(conc)

{P}Q {R}

{P ∗ S }Q {R ∗ S}
(frame) .



Here Q and Qi denote programs while all other letters denote assertions. Now the
separating conjunction ∗, as it is called in the literature, is used in the conclusion
of these rules to ensure disjointness of states or resources characterised by as-
sertions. When used on programs, such as the Qi above, separating conjunction
can be interpreted as concurrent execution of programs.

Interestingly, it has been shown in [7] that validity of the exchange law

(P1 ∗ P2) ; (Q1 ∗Q2) ≤ (P1 ;Q1) ∗ (P2 ;Q2) ,

for programs Pi and Qi and validity of the concurrency rule are equivalent. An
analogous connection holds between the small exchange law

(P1 ∗ P2) ;Q1 ≤ (P1 ;Q1) ∗ P2

and the frame rule. In these laws, semicolon denotes sequential composition,
while ≤ denotes a partial ordering expressing refinement. The exchange laws
can be seen as an abstract characterisation of the interplay between sequential
and concurrent composition. Each of them expresses that the program on the
right-hand side has fewer sequential dependences than the one on the left-hand
side.

Several models for algebraic structures obeying those laws exist; details may
be found in [8, 7]. However, they either do not model concurrency adequately
enough or fail to satisfy other important laws in connection with nondetermin-
istic choice. The purpose of the present paper is to investigate an extension of
the relational model of separation logic presented in [4] by a generalised sepa-
rating conjunction. As a relational structure it copes well with nondeterminacy;
moreover, it allows the re-use of a large and well studied body of algebraic laws
in connection with assertion logic. Surprisingly, it turns out that, although the
model satisfies neither of the mentioned exchange laws, it validates an exchange
law with the reversed refinement order. Moreover, this entails variants of the
concurrency and frame rules with similarly simple soundness proofs as in the
original Concurrent Kleene Algebra approach. Also, we establish an analogous
equivalence between the concurrency rule and the reverse exchange law as in [7].
Hence, the relational calculus can be applied in reasoning about programs in-
volving true concurrency and modularity. To underpin this further, we also study
a number of variations of our main relational model and discuss their adequacy
and usefulness.

2 Basic Definitions and Properties

We start by repeating some basic definitions from [4] and some direct conse-
quences. Summarised, the central concept of this paper is a relational structure
enriched by an operator that ensures disjointness of program states or executions.
Notationally, we follow [4, 7].

Definition 2.1 A separation algebra is a partial commutative monoid (Σ, •, u);
the elements of Σ are called states and denoted by σ, τ, . . .. The operator • de-
notes state combination and the empty state u is its unit. A partial commutative

2



monoid is given by a partial binary operation satisfying the unity, commutativity
and associativity laws w.r.t. the equality that holds for two terms iff both are de-
fined and equal or both are undefined. The induced combinability or disjointness
relation # is defined by

σ0#σ1 ⇔df σ0 • σ1 is defined .

As a concrete example one can instantiate the states to heaps. For this we set
Σ =df IN ; IN, i.e., the set of partial functions from naturals to naturals.
Moreover • =df ∪ and u =df ∅, the empty heap. A possible combinability
relation for this domain would be h0#h1 ⇔df dom(h0) ∩ dom(h1) = ∅ for
heaps h0, h1. More concrete examples can be found in [2].

Definition 2.2 We assume a separation algebra (Σ, •, u). A command is a re-
lation P ⊆ Σ ×Σ between states. Relational composition is denoted by ; . The
command skip is the identity relation between states. A test is a subidentity,
i.e., a command P with P ⊆ skip. In the remainder we will denote tests by
lower case letters p, q, . . . . A particular test that characterises the empty state
u is provided by emp =df {(u, u)}. Moreover, the domain of a command P ,
represented as a test, will also be denoted by dom(P ). It is characterised by the
universal property

dom(P ) ⊆ q ⇔ P ⊆ q ; P .

In particular, P ⊆ dom(P ) ; P and hence P = dom(P ) ; P .

Note that tests form a Boolean algebra with skip as its greatest and ∅ as
its least element. Moreover, on tests ∪ coincides with join and ; with meet. In
particular, tests are idempotent and commute under composition, i.e., p ; p = p
and p ; q = q ; p.

Next we give some definitions to introduce separation relationally. Separating
conjunction of commands can be interpreted as their parallel execution on dis-
joint portions of the state or, in the special case of tests, by asserting disjointness
of certain resources.

Definition 2.3 We will frequently work with pairs of commands. Union, inclu-
sion and composition of such pairs are defined componentwise. The Cartesian
product P ×Q of commands P,Q is given by

(σ1, σ2) (P ×Q) (τ1, τ2) ⇔df σ1 P τ1 ∧ σ2 Q τ2 .

We assume that ; binds tighter than × . It is clear that skip × skip is the
identity of composition. Note that × and ; satisfy an equational exchange law:

P ;Q × R ; S = (P ×R) ; (Q× S) . (1)

Definition 2.4 Tests in the set of product relations are again subidentities; as
before they are idempotent and commute under ; . The Cartesian product of
tests is a test again. However, there are other tests, such as the combinability
check # [4], on pairs of states:

(σ1, σ2) # (τ1, τ2) ⇔df σ1#σ2 ∧ σ1 = τ1 ∧ σ2 = τ2 .
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Definition 2.5 We define split � and its converse join � as in [4] by

σ� (σ1, σ2) ⇔df (σ1, σ2)� σ ⇔df σ1#σ2 ∧ σ = σ1 • σ2 .

Lemma 2.6 We have # = � ; � ∩ skip and hence # ⊆ � ; �. Moreover
# ;� = � and symmetrically � ; # = �.

One might conjecture skip×skip ⊆� ;� at first. However, this is not true, since
the left-hand side of the inequation also considers incombinable pairs of states
which are not included in the right-hand side according to Lemma 2.6. We will see
in the next section that this fact requires us to impose an additional compatibility
condition on commands for proving soundness of the reverse exchange law, i.e.,
the exchange law with the inequation reversed.

Definition 2.7 Generalising [4], we define the parallel composition (separating
conjunction) of commands as P ∗Q =df � ; (P ×Q) ;� .

By this definition, a relation σ (P ∗Q) τ holds iff σ can be split as σ = σ1 •σ2
with disjoint parts σ1, σ2 on which P and Q can act and produce results τ1, τ2
that are again disjoint and combine to τ = τ1•τ2. Hence P ∗Q may be viewed as a
program that runs P and Q in a truly concurrent fashion as indivisible actions, at
least conceptually. An actual implementation may still do this in an interleaved
or even truly concurrent fashion, as long as non-interference is guaranteed. We
note that for tests p, q the command p∗q is a test again. Moreover, ∗ is associative
and commutative and emp is its unit. Finally, there is the following interplay
between ∗ and the domain operator.

Lemma 2.8 For commands P,Q we have dom(P ∗Q) ⊆ dom(P ) ∗ dom(Q).

The proof can be found in the Appendix.

3 Compatibility and the Reverse Exchange Law

According to the general results in [7], soundness of the concurrency rule in the
relational setting would follow immediately if the exchange law

(P ∗Q) ; (R ∗ S) ⊆ (P ;R) ∗ (Q ; S)

with relational inclusion ⊆ as the refinement order were to hold there.
However, as also shown in [7], we have

Lemma 3.1 The exchange law implies skip ⊆ emp .

On the other hand, by definition emp ⊆ skip, so that by antisymmetry skip
and emp would be equal, a contradiction.

Therefore the exchange law is not valid in the relational setting. Instead, and
surprisingly, we were only able to show soundness of a restricted variant of the
exchange law with the reversed inclusion order. The proof uses a restriction on
pairs (P,Q) of commands: when P and Q start from combinable pairs of input
states they produce combinable pairs of output states, or the other way around.
This is formalised as follows.
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Definition 3.2 Commands P and Q are forward compatible iff

# ; (P ×Q) ⊆ (P ×Q) ; # .

Symmetrically P and Q are backward compatible iff (P×Q);# ⊆ #;(P×Q) . Two
commands are called compatible iff they are forward and backward compatible,
i.e., # ; (P ×Q) = (P ×Q) ; # .

Again for a more concrete example of such commands we recapitulate our
instantiation of states to heaps described in Section 2. Intuitively two compatible
commands would work on disjoint portions of a heap, e.g. by only altering dis-
joint ranges of heap cells. Hence they ensure disjointness before and after their
execution. In the following we list a few consequences of Definition 3.2.

Lemma 3.3 All test commands are compatible with each other.

Proof. For test commands p, q the relation p×q is a test in the algebra of relations
on pairs. Since # is a test there, too, they commute, which means forward and
backward compatibility of p and q. ut

Since the combinability check # is a test on pairs of commands, it induces
some useful closure properties.

Corollary 3.4 If P,Q are forward compatible and R ⊆ P then also R,Q are
forward compatible. This result also holds for backward compatibility, hence com-
patibility is downward closed, too.

Proof. We assume ; binds tighter than ∩ . Now we show the following more
general result: Let C,D,E be relations on pairs of states such that C is a test. If
C is an invariant of D, i.e., C ;D ⊆ D ;C, and E ⊆ D then C is also an invariant
of E. For this we calculate

C ; E = C ; (D ∩ E) = C ;D ∩ C ; E ⊆ D ; C ∩ C ; E =
D ∩ C ; E ; C = C ; E ; C ⊆ E ; C .

The last but one step follows since C is a test. A proof can e.g. be found in [10].
Now the main claim follows by setting C = #, D = P ×Q and E = R×Q. ut

We note that this proof extends to arbitrary test semirings.

Corollary 3.5 Let P,Q and R,S be forward compatible. Then also P ; R and
Q ; S are forward compatible. Again the same holds for backward compatibility.

Proof.

# ; (P ;R×Q ; S) = # ; (P ×Q) ; (R× S) ⊆ (P ×Q) ; # ; (R× S) ⊆
(P ×Q) ; (R× S) ; # = (P ;R×Q ; S) ; # .

ut
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Now we are ready for the central result mentioned at the beginning of this
section. For forward or backward compatible commands we are able to prove
soundness of a variant of the reverse exchange law using the inclusion order.
Note that validity of the exchange law in [7] is proved for arbitrary predicate
transformers. In the next section we will see that specialising validity of the
reversed law to compatible commands does not impose any restrictions on our
treatment.

Lemma 3.6 (Reverse Exchange) If P,Q are forward compatible or R,S are
backward compatible then

(P ;R) ∗ (Q ; S) ⊆ (P ∗Q) ; (R ∗ S) .

In particular, if P,R or Q,S are tests the inequation holds.

Proof. We assume that P and Q are forward compatible.

(P ;R) ∗ (Q ; S)

= {[ definition of ∗ ]}
� ; (P ;R×Q ; S) ;�

= {[ ; /× exchange (1) ]}
� ; (P ×Q) ; (R× S) ;�

= {[ Lemma 2.6 ]}
� ; # ; (P ×Q) ; (R× S) ;�

⊆ {[ forward compatibility ]}
� ; (P ×Q) ; # ; (R× S) ;�

⊆ {[ Lemma 2.6 ]}
� ; (P ×Q) ;� ;� ; (R× S) ;�

= {[ definition of ∗ ]}
(P ∗Q) ; (R ∗ S) .

The proof for backward compatibility and R,S is symmetric. ut

The reverse exchange law expresses an increase in granularity: while in the
left-hand side program P ;R and Q ;S are treated as indivisible, they are split in
the right-hand side program, at the expense of a “global” synchronisation point
marked by the semicolon (which is the reason for the compatibility requirement).

4 Hoare Triples and the Concurrency Rule

To prepare our variant of the concurrency rule we now define Hoare triples in
our setting.

Definition 4.1 For general commands P,Q,R, the general Hoare triple [7] is
defined as

P {Q}R ⇔df P ;Q ⊆ R .
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For tests p, r and arbitrary command Q the standard Hoare triple [9] {p}Q {r}
is defined by

{p}Q {r} ⇔df p ;Q ⊆ Q ; r .

General Hoare triples also admit programs as assertions, in contrast to the
standard ones that only allow tests to denote pre- and postconditions. As shown
in [4], we have the relationship

{p}Q {r} ⇔ (U ; p){Q} (U ; r)

where U denotes the universal relation. Hence our results for standard Hoare
triples can be immediately translated into ones for general triples. The compo-
sition U ; p maps a test p to a command that makes no assumption about its
starting state. Intuitively, starting from an arbitrary state that command will
end up in one satisfying p. Trivially, a symmetrical command p ; U makes no
restriction on the ending state or codomain.

Next we turn to the definition of properties and conditions that will allow
us to prove variants of the concurrency rule for standard Hoare triples using the
reverse exchange law.

The following observation is trivial, but useful for our first variant of the
concurrency rule.

Corollary 4.2 {p}Q {r} ⇔ {p} p ;Q {r}.

Proof. By idempotence of test p,

{p}Q {r} ⇔ p ;Q ⊆ Q ; r ⇔ p ; p ;Q ⊆ Q ; r ⇔ {p} p ;Q {r} .

ut

The command p ; Q can be viewed as asserting the precondition p before
executing Q.

The condition we need for our first variant of the concurrency rule is that the
commands Qi enforce the preconditions pi in that all their starting states satisfy
the respective pi. Algebraically this is expressed by the formula Qi ⊆ pi ; Qi,
which is equivalent to Qi = pi ;Qi and to dom(Qi) ⊆ pi. This restriction is not
essential: by Cor. 4.2 and the idempotence of tests we can always replace Qi by
Q′i =df pi ;Qi to achieve this.

Lemma 4.3 (Concurrency Rule I)

{p1}Q1 {r1} {p2}Q2 {r2} dom(Q1) ⊆ p1 dom(Q2) ⊆ p2

{p1 ∗ p2 }Q1 ∗Q2 { r1 ∗ r2}

Proof. (p1 ∗ p2) ; (Q1 ∗Q2)

⊆ {[ p1 ∗ p2 a test, hence a subidentity ]}
Q1 ∗Q2
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⊆ {[ Qi ⊆ pi ;Qi ]}
(p1 ;Q1) ∗ (p2 ;Q2)

⊆ {[ by {pi}Qi {ri} ]}
(Q1 ; r1) ∗ (Q2 ; r2)

⊆ {[ reverse exchange law (Lemma 3.6), since r1 and r2 are tests
and hence compatible by Lemma 3.3 ]}

(Q1 ∗Q2) ; (r1 ∗ r2) .
ut

Note that compatibility of the commands Qi is not needed.
The proof might suggest that the preconditions pi do not really matter, since

they are discarded in the first step. However, they are re-introduced in the next
step and hence indeed do matter.

A brief discussion of the relevance and use of this rule can be found at the
end of the next section.

To round off this section, we prove the following result which, together with
Lemma 4.3, provides the analogue of the equivalence between the full exchange
law and the concurrency rule shown in [7].

Lemma 4.4 Validity of Concurrency Rule I implies a special case of the reverse
exchange law: for arbitrary commands Pi and tests ri,

(P1 ; r1) ∗ (P2 ; r2) ⊆ (P1 ∗ P2) ; (r1 ∗ r2) .

Proof. In Concurrency Rule I we set Qi = Pi ; ri and pi = dom(Qi). By this the
premise of the rule becomes valid since

{dom(Qi)}Qi {ri} ⇔ dom(Qi) ;Qi ⊆ Qi ; ri ⇔ Qi ⊆ Qi ; ri

and Qi ; ri = (Pi ; ri) ; ri = Pi ; ri = Qi . Hence, by the conclusion of the rule we
have

(dom(Q1) ∗ dom(Q1)) ; (Q1 ∗Q2) ⊆ (Q1 ∗Q2) ; (r1 ∗ r2) . (†)
Now we calculate:

(P1 ; r1) ∗ (P2 ; r2)

= {[ definitions of Qi ]}
Q1 ∗Q2

= {[ property of domain ]}
dom(Q1 ∗Q2) ; (Q1 ∗Q2)

⊆ {[ by Lemma 2.8 ]}
(dom(Q1) ∗ dom(Q2)) ; (Q1 ∗Q2)

⊆ {[ by (†) ]}
(Q1 ∗Q2) ; (r1 ∗ r2)

= {[ definitions of Qi ]}
((P1 ; r1) ∗ (P2 ; r2)) ; (r1 ∗ r2)

⊆ {[ by ri ⊆ skip ]}
(P1 ∗ P2) ; (r1 ∗ r2) .
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ut

We conclude by showing that the symmetric special case already follows
without assuming reverse exchange or Concurrency Rule I or even mentioning
the notion of compatibility.

Lemma 4.5 For arbitrary commands Qi and tests pi,

(p1 ;Q1) ∗ (p2 ;Q2) ⊆ (p1 ∗ p2) ; (Q1 ∗Q2) .

Proof. We calculate:

(p1 ;Q1) ∗ (p2 ;Q2)

= {[ property of domain ]}
dom((p1 ;Q1) ∗ (p2 ;Q2)) ; ((p1 ;Q1) ∗ (p2 ;Q2))

⊆ {[ by Lemma 2.8 ]}
(dom(p1 ;Q1) ∗ dom(p2 ;Q2)) ; ((p1 ;Q1) ∗ (p2 ;Q2))

= {[ property of domain ]}
((p1 ; dom(Q1)) ∗ (p2 ; dom(Q2))) ; ((p1 ;Q1) ∗ (p2 ;Q2))

⊆ {[ by dom(Qi) ⊆ skip and pi ⊆ skip ]}
(p1 ∗ p2) ; (Q1 ∗Q2) .

ut

Since Lemma 2.8 holds analogously for the codomain operator, this proof
could also be adapted to a direct proof of the property in Lemma 4.4.

Finally, the special case of reverse exchange mentioned in Lemma 4.5 in turn
implies Lemma 2.8:

dom(P ∗Q) ⊆ dom(P ) ∗ dom(Q)

⇔ {[ universal characterisation of domain ]}
P ∗Q ⊆ (dom(P ) ∗ dom(Q)) ; (P ∗Q)

⇐ {[ special case of reverse exchange ]}
P ∗Q ⊆ (dom(P ) ; P ) ∗ (dom(Q) ;Q)

⇔ {[ property of domain ]}
P ∗Q ⊆ P ∗Q

⇔ {[ reflexivity of ⊆ ]}
TRUE .

5 Another Concurrency Rule

We now present a second variant of the concurrency rule. Its main idea is inspired
by a more special property given in [4], which will also figure again in the next
section.

Definition 5.1 Two commands Q1, Q2 have the concurrency property iff

(dom(Q1)× dom(Q2)) ;� ;Q1 ∗Q2 ⊆ (Q1 ×Q2) ;� . (2)
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This property is “angelic” in the sense that whenever two combinable states
σ1 and σ2 provide enough resource for the execution of the programs Qi then
each Qi will be able to acquire its needed resource from the joined state σ1 • σ2.

To see that this is not always possible, we present a concrete example again
in the heap model (mentioned in Section 2) with two commands that do not
satisfy the concurrency property. Consider

Q1 =df ([1] := 1) ∪ ([2] =: 1) and Q2 =df ([1] := 2) ∪ ([2] := 2)

where [x] := y represents a command that changes the content of the heap cell
x to y and ∪ denotes non-deterministic choice. Clearly, the commands show
interference with each other since both may access the same heap locations.

To see that Q1 and Q2 do not satisfy the concurrency property, first note
dom(Q1) = dom(Q2) = {(h, h) : 1 ∈ dom(h) ∨ 2 ∈ dom(h)}. Next, we consider
heaps h1 = {(1, 0)} and h2 = {(2, 0)} with (hi, hi) ∈ dom(Qi). Thus, using h =
h1•h2 and h1#h2, we have (h, h) ∈ dom(Q1∗Q2). Moreover, a possible execution
of Q1 ∗ Q2 is (h, {(1, 1), (2, 2)}). Hence, ((h1, h2), {(1, 1), (2, 2)}) is included in
the left hand side of the instantiated concurrency property but not in the right
hand side since we only have ((h1, h2), {(1, 2), (2, 1)}) there.

We are now interested in relating concurrency property to the exchange law
for concurrent processes. It turns out that the property is sufficient for validat-
ing a special case of the exchange law which we use to prove soundness of the
concurrency rule.

Definition 5.2 We call two commands Q1, Q2 pre-concurrent iff we have for all
tests p1, p2

p1 ⊆ dom(Q1) ∧ p2 ⊆ dom(Q2) ⇒ (p1 ∗ p2) ; (Q1 ∗Q2) ⊆ (p1 ;Q1) ∗ (p2 ;Q2) .

Lemma 5.3 If commands Q1 and Q2 have the concurrency property then they
are pre-concurrent.

Proof. Assume pi ⊆ dom(Qi). Then

(p1 ∗ p2) ; (Q1 ∗Q2)

= {[ definition of ∗, pi ⊆ dom(Qi) for i = 1, 2 ]}
� ; (p1 ; dom(Q1)× p2 ; dom(Q2)) ;� ; (Q1 ∗Q2)

= {[ ; /× exchange (1) ]}
� ; (p1 × p2) ; (dom(Q1)× dom(Q2)) ;� ; (Q1 ∗Q2)

⊆ {[ concurrency property (2) ]}
� ; (p1 × p2) ; (Q1 ×Q2) ;�

= {[ ; /× exchange (1) ]}
� ; (p1 ;Q1 × p2 ;Q2) ;�

= {[ definition of ∗ ]}
(p1 ;Q1) ∗ (p2 ;Q2) .

ut
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Interestingly, this special case of the exchange law already suffices to prove
our second variant of the concurrency rule although the complete exchange law
is needed for the concurrency rule in [7]; note also that the inclusion relations
between the preconditions and the domains of the commands are the reverses of
the ones in Lemma 4.3.

Lemma 5.4 (Concurrency Rule II) Let Q1 and Q2 have the concurrency
property. Then

{p1}Q1 {r1} {p2}Q2 {r2} p1 ⊆ dom(Q1) p2 ⊆ dom(Q2)

{p1 ∗ p2 }Q1 ∗Q2 { r1 ∗ r2}
.

Proof. (p1 ∗ p2) ; (Q1 ∗Q2)

⊆ {[ Lemma 5.3 ]}
(p1 ;Q1) ∗ (p2 ;Q2)

⊆ {[ {pi}Qi {ri} ]}
(Q1 ; r1) ∗ (Q2 ; r2)

⊆ {[ reverse exchange law (Lemma 3.6),
since r1, r2 as tests are compatible ]}

(Q1 ∗Q2) ; (r1 ∗ r2) .

ut

In summary, we have presented two variations of the concurrency rule in
our relational calculus. An advantage of Lemma 4.3 is that it only requires that
the domains of the commands Qi coincide with the respective preconditions,
but needs no connection between the Qi. Contrarily, Lemma 5.4 is more liberal
w.r.t. the preconditions but requires the Qi to have the concurrency property.

Still, usually at least one of the concurrency rules can be applied. Consider,
for instance, parallel mergesort ms [11]:

{array(a, i,m)} ms(a, i,m) {sorted(a, i,m)}
{array(a,m+ 1, j)} ms(a,m+ 1, j) {sorted(a,m+ 1, j)}

{array(a, i,m) ∗ array(a,m+ 1, j) }
ms(a, i,m) ∗ ms(a,m+ 1, j)

{ sorted(a, i,m) ∗ sorted(a,m+ 1, j)}

where array(a, i, j), assuming i < j, asserts that the store range with addresses
a+i to a+j forms an array, i.e., contains elements of equal type, and sorted(a, i, j)
ensures that the content in that range is sorted. It is easy to define ms(a, i,m) in
such a way that its domain is characterised by array(a, i,m). Moreover, in any
reasonable implementation the commands ms(a, i,m) and ms(a,m + 1, j) even
satisfy the concurrency property.

Thus, the concurrency rules in our relational calculus represent a feasible
approach to enable reasoning about disjoint true concurrency.
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6 Locality and the Frame Rule

We now turn to another important proof rule for modular reasoning. Validity
of that rule is based on the concept of locality which describes the behaviour
of programs that only access certain subsets of the available resources. Hence
locality allows embedding a program into a larger context so that any resource
not accessed by that program remains unchanged. This fact is expressed by the
frame rule

{p}Q {q}

{p ∗ r }Q { q ∗ r}
.

To obtain a suitable version of the frame rule in our relational calculus we
first remind the reader of a central result of [7]. A predicate transformer F in
that model is called local iff it satisfies the equation

F ∗ skip = F .

This equation characterises exactly the above-mentioned modularity concept.
Each execution of the program F can be replaced by one that only operates on
the necessary and possible smaller part of the state while the rest of it remains
unchanged (abstractly denoted by the program skip). In the following we derive
the same compact characterisation for commands.

First remember that emp is the unit of ∗ and emp ⊆ skip.

Lemma 6.1 For arbitrary commands Q we have Q ⊆ Q ∗ skip .

Proof. Q = Q ∗ emp ⊆ Q ∗ skip . ut

To get the other inclusion, i.e., Q ∗ skip ⊆ Q, we need an additional assump-
tion about Q. Surprisingly, this inequation can be derived from a property given
in [4] which was called test preservation and used there to prove soundness of
the frame rule.

Definition 6.2 A command Q preserves a test r iff

� ; (Q× r) ; # ⊆ Q ;� ; (skip× r) . (3)

We call a command Q local iff Q preserves all tests.

Formula (3) means that when running Q on a part of the state such that
the remainder of the state satisfies r one might also run Q first on the complete
state and will still find an r-part in the result state.

Preservation of r by Q is an abstraction of the property that Q does not
modify the free variables of r; a more refined version of this definition was given
in [4] and another one was studied in [3]. Locality as preservation of all tests,
does not seem very realistic in that domain. Nevertheless, it turns out to be
equivalent to the algebraic formulation of [7]:
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Theorem 6.3 A command Q is local iff Q ∗ skip ⊆ Q .

The proof can be found in the Appendix.
By Theorem 6.3 we may, as in [7], define local commands as fixpoints of the

localising operation ( · ) ∗ skip.
With this definition of locality we now prove our variant of the frame rule. We

take a similar direction as in Section 4 by defining sufficient conditions needed
for a soundness proof. First notice that in [7] the compact definition of locality
and the full exchange law are used to get validity of the small exchange law for
local predicate transformers. The small exchange law reads

(P ∗Q) ;R ≤ (P ;R) ∗Q

for programs P,Q,R and the refinement order≤ of a locality bimonoid. Moreover
this law is equivalent to soundness of the frame rule in such a structure. In our
approach locality has the same definition, but the small exchange law does not
hold. Therefore again a further sufficient condition is needed to simulate the
relevant part of the small exchange law.

Definition 6.4 Call command Q pre-framed iff for all test commands p, r

p ⊆ dom(Q) ⇒ (p ∗ r) ;Q ⊆ (p ;Q) ∗ r .

The premise p ⊆ dom(Q) informally states that p already ensures enough
resources for the execution of Q. We will see that this is a sufficient condition to
prove soundness of the frame rule. Notice that the conclusion is only a special
case of the small exchange law.

In [4] we used a relational variant of the frame property to prove the frame
rule. We will use it in this paper in a simplified form.

Definition 6.5 A command Q has the frame property iff

(dom(Q)× skip) ;� ;Q ⊆ (Q× skip) ;� .

This property can be derived as a special case of the concurrency property by
setting Q2 = skip and assuming locality for Q1, i.e., Q1 ∗ skip = Q1. Again, this
property is sufficient for pre-framedness.

Lemma 6.6 If Q has the frame property then Q is pre-framed.

Proof. Assume p ⊆ dom(Q). Then

(p ∗ r) ;Q

= {[ assumption ]}
((p ; dom(Q)) ∗ r) ;Q

= {[ definition of ∗ and ; /× exchange (1) ]}
� ; (p× r) ; (dom(Q)× skip) ;� ;Q

⊆ {[ frame property ]}
� ; (p× r) ; (Q× skip) ;�

= {[ ; /× exchange (1) and definition of ∗ ]}
(p ;Q) ∗ r .

13



ut

Now we can easily prove the frame rule.

Lemma 6.7 (Frame Rule) Let Q be local and have the frame property. More-
over, assume p ⊆ dom(Q). Then

{p}Q {q}

{p ∗ r}Q {q ∗ r}
.

Proof. (p ∗ r) ;Q

⊆ {[ p ⊆ dom(Q) and Q pre-framed by Lemma 6.6 ]}
(p ;Q) ∗ r

⊆ {[ by {p}Q {q} ]}
(Q ; q) ∗ r

⊆ {[ r = skip ; r and reverse exchange law (Lemma 3.6),
since r, skip as tests are compatible ]}

(Q ∗ skip) ; (q ∗ r)
⊆ {[ Q local ]}

Q ; (q ∗ r) .
ut

Next, we compare the structure of our proofs with the corresponding ones
in [7] to point out the main differences. Since the small exchange law is not
valid in our relational setting (not even for local commands), it was necessary
to constrain the set of commands considered in the frame rule by an additional
assumption. It turned out in [4] that the relational version of the frame property
was an adequate substitute. We have shown here that this property also relates
to pre-framed commands which already ensure the relevant part of the small
exchange law. Structurally, the proof of this frame rule becomes as simple as the
one for the predicate transformer approach in [7]. Due to the angelic character
of relations, the rule itself needs the additional premise p ⊆ dom(Q).

As a further remark, the approach of [7] requires special functions for the
semantics of Hoare triples. They are called best predicate transformers and are
used as an adequate substitute for assertions. Intuitively these functions simulate
the allocation of resources that are characterised by pre- and postconditions. In
our calculus this can be handled by composing tests with the universal relation.
However, since we have a non-trivial test algebra in the relational setting, tests
by themselves already admit a suitable representation of pre- and postconditions.

7 Dual Correctness Triples

The previous sections presented an approach to include the concurrency and
frame rules in the given relational approach to separation logic [4] by requiring
additional assumptions and hence restricting the proof rules. In this section we
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present some further applications for the reverse exchange law. We link it with
the definitions of triples dual to the ones of Hoare. By this we will again see that
the concurrency and frame rules can be easily derived using the reverse exchange
law.

Definition 7.1 As in [6], for commands P,Q,R we define Plotkin triples by

〈P,Q〉 → R ⇔df R ⊆ P ;Q

and dual partial correctness triples by

P [Q]R ⇔df P ⊆ Q ;R .

Intuitively, the former characterise possible states satisfying the postcondi-
tion R after the execution of Q starting from P while the latter symmetrically
describes possible starting states of P that end in R after the execution of Q.
The notation is inspired by Plotkin’s structural operational semantics [13] in
which 〈C, s〉 → t means that evaluation of term C starting in state s may lead
to term t. According to [6], dual partial correctness triples can e.g. be used as a
method for the generation of test cases. Assuming R represents erroneous final
states of Q then P characterises some conditions that will lead to such error
situations. Plotkin triples can used for a dual application.

Using the relationship between tests and commands given in Section 4, in
our calculus the dual partial correctness triples transform into

(p ; U) [Q] (q ; U) ⇔ p ; U ⊆ Q ; (q ; U) ⇔ p ⊆ (Q ; q) ; U ⇔ p ⊆ dom(Q ; q)

and, symmetrically, Plotkin triples into

〈U ; p ,Q〉 → U ; q ⇔ U ; q ⊆ (U ; p) ;Q ⇔ q ⊆ U ; (p ;Q) ⇔ q ⊆ cod(p ;Q) .

We concentrate on dual partial correctness triples and use the abbreviation
p [[ Q ]] q ⇔df (p ;U) [Q] (q ;U) ⇔ p ⊆ dom(Q ; q). Dual results hold for Plotkin
triples.

The central interest of these new triples lies in the following result.

Lemma 7.2 The concurrency rule for dual partial correctness or Plotkin triples
holds iff the reverse exchange law holds.

A proof for this lemma can be derived dually to [7]. Unfortunately, in our
setting the reverse exchange law does not hold unconditionally. However, we will
see that under an assumption of compatibility the concurrency and frame rules
can still be derived. Note that it was not needed to assume compatibility for
the proof rules with Hoare triples since tests already come with that property.
In contrast, the new triples do not need additional assumptions besides the
compatibility condition.

We begin with an auxiliary result.
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Lemma 7.3 Assume P,Q are forward compatible. Then dom(P ) ∗ dom(Q) =
dom(P ∗Q), i.e., ∗ distributes over domain.

A proof can be found in the Appendix.

Lemma 7.4 If Q1, Q2 are forward compatible then the concurrency rule for dual
partial correctness triples holds, i.e., for tests p1, p2, q1, q2

p1 [[ Q1 ]] q1 p2 [[ Q2 ]] q2

p1 ∗ p2 [[ Q1 ∗Q2 ]] q1 ∗ q2
.

Again this holds also when Q1 and Q2 are backward compatible and Plotkin
instead of dual partial correctness triples are used.

Proof. By assumption we have p1 ⊆ dom(Q1 ; q1), p2 ⊆ dom(Q2 ; q2) and the
restricted variant of the reverse exchange law. Hence

p1 ∗ p2
⊆ dom(Q1 ; q1) ∗ dom(Q2 ; q2)
= dom((Q1 ; q1) ∗ (Q2 ; q2))
⊆ dom((Q1 ∗Q2) ; (R1 ∗R2)) .

ut

We characterised the behaviour of the triples “dual” on purpose since the
calculations given above are symmetric to the algebraic approach of [7]. It is not
hard to see that a further application of the compact characterisation of locality
presented in Section 6 also gives the following result.

Lemma 7.5 If Q is local and forward compatible with skip then the frame rule
for dual partial correctness triples holds, i.e.,

p [[ Q ]] q

p ∗ r [[ Q ]] q ∗ r
.

(A dual result again holds for Plotkin triples).

Proof. Assume p ⊆ dom(Q ; q) for a command Q and test q. Hence

p ∗ r
⊆ dom(Q ; q) ∗ (skip ; r)
= dom(Q ; q) ∗ dom(skip ; r)
= dom((Q ; q) ∗ (skip ; r))
⊆ dom((Q ∗ skip) ; (q ∗ r))
⊆ dom(Q ; (q ∗ r)) .

ut
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8 Further Variations

Both proof rules of the previous section have the restriction that compatible
pairs of commands are needed. The reason for this is that, by Lemma 2.6, in the
relational approach only # ⊆ �;� holds. If we would have skip×skip ⊆ �;�
the proof of the reverse exchange law would not have any restrictions. However
this requires an extension of the definition of � such that the composition �;�
has the same behaviour as skip on incombinable pairs of states.

An idea would be to lift commands to relations between sets containing at
most a single state. The empty set is then the result of joining incombinable
pairs of states. We define Σs =df {{σ} : σ ∈ Σ} ∪ {∅} and, for sets X,Y ∈ Σs,

X ∗s Y � (X,Y ) (4)

where X ∗s Y =df {σ1 • σ2 : σ1 #σ2, σ1 ∈ X,σ2 ∈ Y }. In the special case with
X = {σ1} 6= ∅ and Y = {σ2} 6= ∅ we have that

{σ1} ∗s {σ2}� ({σ1}, {σ2}) .

We denote the lifting of this operation to relations by ∗s again.
This modification allows a relational model of the algebraic structure of a

locality bimonoid defined in [7].

Definition 8.1 A locality bimonoid is an algebraic structure (S,≤, ∗, 1∗, ;, 1;)
where (S,≤) is partially ordered and ∗, ; are monotone operations on S. More-
over, (S, ∗, 1∗) needs to be a commutative monoid and (S, ;, 1;) a monoid. Addi-
tionally, the structure has to satisfy the exchange law and 1 ∗ 1 = 1.

To obtain a relational model for this structure one may interpret the order
≤ as the reverse set inclusion order ⊇ . Of course, by this the mentioned re-
verse exchange law turns into the normal one and the relational approach into
a refinement-based setting. Moreover, we have the following result.

Lemma 8.2 skip is idempotent w.r.t. ∗, i.e., skip ∗ skip = skip .

Proof. Since skip ∗ skip is a test the ⊆ -direction is immediate. ut
In summary, we summarise the following result.

Lemma 8.3 (P(Σs ×Σs), ⊇ , ∗s, emp, ;, skip) forms a locality bimonoid.

Note that by this modification t and u turn into ∩ and ∪ . In particular,
the test subalgebra is used as an algebraic counterpart to model assertions.
Hence, the interpretation of the notion of a test becomes very unnatural, since
e.g. p ∧ q will be identified, unusually, in the algebra with p t q and p ∨ q with
puq. Algebraically these modifications of the model entail simplifications. There
are no additional constraints needed to validate the reverse exchange law and
hence the original concurrency and frame rules hold. The reason for this is the
inequation skip×skip ⊆ �;� that requires the introduction of an extra failure-
state to capture the join of incombinable states. However, considering this extra
failure-state makes the whole approach more complicated and artificial from the
model-theoretical view.
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9 Conclusion

Although neither the full nor small exchange law holds in the relational calculus,
we were still able to obtain reasonable variants of the concurrency and frame
rules. The proofs greatly benefit from the (restricted) reverse exchange law and
hence are almost as simple as the ones in [7]. The advantage of the relational
framework is that it admits choice and the corresponding distributivity laws
without effort by using relational union.

Further work on this approach includes investigations on so-called interfer-
ence relations [5]. The intention with such relations is to provide admissible
behaviour of commands in a concurrent context so that interference between
these commands is excluded. By this we hope to include more concrete models
for the application domain of the presented relational approach.
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10 Appendix: Deferred Proofs

Proof of Lemma 2.8.
For arbitrary σ we have

σ dom(P ∗Q) σ

⇔ {[ definitions of ∗ and domain ]}
∃σ1, σ2, τ1, τ2 . σ1#σ2 ∧ σ = σ1 • σ2 ∧ τ1#τ2 ∧ σ1 P τ1 ∧ σ2 Q τ2

⇒ {[ omitting conjunct τ1#τ2 and shifting quantification over τ1, τ2 ]}
∃σ1, σ2 . σ1#σ2 ∧ σ = σ1 • σ2 ∧ ∃ τ1, τ2 . σ1 P τ1 ∧ σ2 Q τ2

⇔ {[ definition of domain ]}
∃σ1, σ2 . σ1#σ2 ∧ σ = σ1 • σ2 ∧ σ1 dom(P ) σ1 ∧ σ2 dom(Q) σ2

⇔ {[ definition of ∗ ]}
σ (dom(P ) ∗ dom(Q)) σ .

ut

In Def. 6.2 we stated that a command Q preserves a test r iff

� ; (Q× r) ; # ⊆ Q ;� ; (skip× r)

and called a command Q local iff Q preserves all tests.
We first list a few useful properties in connection with these notions.

Lemma 10.1

1. skip preserves skip .
2. For arbitrary Q and r we have

� ; (Q× r) ; # ⊆ (Q ∗ skip) ;� ; (skip× r) .

3. If Q preserves a test r then Q ∗ r ⊆ Q ; (skip ∗ r) .
In particular, skip ∗ skip ⊆ skip . Hence if Q is local then Q ∗ skip ⊆ Q .
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Proof.

1. The claim follows immediately by setting Q = skip = r in Definition 6.2.
2. We calculate:

� ; (Q× r) ; #

= {[ neutrality of skip ]}
� ; (Q ; skip× skip ; r) ; #

= {[ ; /× exchange (1) ]}
� ; (Q× skip) ; (skip× r) ; #

= {[ by Definition 2.4 ]}
� ; (Q× skip) ; # ; (skip× r)

⊆ {[ # ⊆ � ;� and isotony ]}
� ; (Q× skip) ;� ;� ; (skip× r)

= {[ definition of ∗ ]}
(Q ∗ skip) ;� ; (skip× r) .

3. The first claim is immediate from the definition of locality by right-com-
posing both sides of the inclusion with �, isotony and the definition of
∗. Hence the second claim is trivial by isotony. The third claim follows by
setting r = skip and using skip ∗ skip = skip .

ut

We can now give the

Proof of Theorem 6.3
The direction (⇒) is just Lemma 10.1.3. For (⇐) we obtain by Lemma 10.1.3
and the assumption, for arbitrary test r,

� ; (Q× r) ; # ⊆ (Q ∗ skip) ;� ; (skip× r) ⊆ Q ;� ; (skip× r) .

ut

Corollary 10.2 Q ∗ skip ⊆ Q ⇔ � ; (Q× skip) ; # ⊆ Q ;� .

Proof. The direction (⇐ ) follows from isotony. For the other direction we im-
mediately get by definition and isotony � ; (Q × skip) ; � ; � ⊆ Q ; � since
Q ∗ skip ⊆ Q. Now the claim follows from Lemma 2.6 using # ⊆� ;� . ut

Next we turn to Section 7. To prove Lemma 7.3 we first sum up a few results.

Corollary 10.3 # ; (U × U) ;� = � ; U .

For a proof we refer to [4].

Lemma 10.4 If commands P,Q are forward compatible then (P ;U)∗ (Q ;U) =
(P ∗Q) ; U .
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Proof. We calculate

(P ; U) ∗ (Q ; U)

= {[ definition of ∗ ]}
� ; (P ; U ×Q ; U) ;�

= {[ Lemma 2.6, Equation (1) ]}
� ; # ; (P ×Q) ; (U × U) ;�

⊆ {[ P,Q forward compatible ]}
� ; (P ×Q) ; # ; (U × U) ;�

= {[ Corollary 10.3 ]}
� ; (P ×Q) ;� ; U

= {[ definition of ∗ ]}
(P ∗Q) ; U .

The reverse inequation follows similarly from Corollary 10.3 and isotony. ut

Finally we are able to prove Lemma 7.3.

Proof of Lemma 7.3
First note that dom(P ) = P ; U ∩ skip. The same holds for Q. By this we
calculate

dom(P )∗dom(Q) = (P ;U ∩ skip)∗(Q;U ∩ skip) ⊆ (P ;U)∗(Q;U) = (P ∗Q);U .

Moreover dom(P ) ∗ dom(Q) ⊆ skip since both are tests. Hence we can conclude
dom(P ) ∗ dom(Q) ⊆ (P ∗Q) ; U ∩ skip = dom(P ∗Q) .

The reverse inclusion was shown in Lemma 2.8. ut
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