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Abstract. Tree automata are traditionally used to study properties of
tree languages and tree transformations. In this paper, we consider tree
automata as the basis for modular and extensible recursion schemes.
We show, using well-known techniques, how to derive from standard
tree automata highly modular recursion schemes. Functions that are de-
fined in terms of these recursion schemes can be combined, reused and
transformed in many ways. This flexibility facilitates the specification of
complex transformations in a concise manner, which is illustrated with
a number of examples.

1 Introduction

Functional programming languages are an excellent tool for specifying abstract
syntax trees (ASTs) and defining syntax-directed transformations on them: al-
gebraic data types provide a compact notation for both defining types of ASTs
as well as constructing and manipulating ASTs. As a complement to that, re-
cursively defined functions on algebraic data types allow us to traverse ASTs
defined by algebraic data types.

For example, writing an evaluation function for a small expression language
is easily achieved in Haskell [19] as follows:

data Exp = Val Int | Plus Exp Exp

eval :: Exp → Int
eval (Val i) = i
eval (Plus x y) = eval x + eval y

Unfortunately, this simple approach does not scale very well. As soon as we
have to implement more complex transformations that work on more than just
a few types of ASTs, simple recursive function definitions become too inflexible
and complicated.

Specifying and implementing such transformations is an everyday issue for
compiler construction and thus has prompted a lot of research in this area. One
notable approach to address both sides is the use of attribute grammars [15, 22].
These systems facilitate compact specification and efficient implementation of
syntax-directed transformations.



In this paper, we take a different but not unrelated approach. We still want
to implement the transformations in a functional language. But instead of writ-
ing transformation functions as general recursive functions as the one above,
our goal is to devise recursion schemes, which can then be used to define the
desired transformations. The use of these recursion schemes will allow us reuse,
combine and reshape the syntax-directed transformations that we write. In ad-
dition, the embedding into a functional language will give us a lot of flexibility
and expressive power such as a powerful type system and generic programming
techniques.

As a starting point for our recursion schemes we consider various kinds of tree
automata [3]. For each such kind we show how to implement them in Haskell.
From the resulting recursion schemes we then derive more sophisticated and
highly modular recursion schemes. In particular, our contributions are the fol-
lowing:

– We implement bottom-up tree acceptors (Section 2), bottom-up tree trans-
ducers (Section 4) and top-down tree transducers (Section 5) as recursion
schemes in Haskell. While the implementation of the first two is well-known,
the implementation of the last one is new but entirely straightforward.

– From the thus obtained recursion schemes, we derive more modular variants
(Section 3) using a variation of the well-know product automaton construc-
tion (Section 3.1) and Swierstra’s data types à la carte [23] (Section 3.2).

– We decompose the recursion schemes derived from bottom-up and from top-
down tree transducer into a homomorphism part and a state transition part
(Section 4.5 and Section 5.3). This makes it possible to specify these two
parts independently and to modify and combine them in a flexible manner.

– We derive a recursion scheme that combines both bottom-up and top-down
state propagation (Section 6).

– We illustrate the merit of our recursion schemes by a running example in
which we develop a simple compiler for a simple expression language. Util-
ising the modularity of our approach, we extend the expression language
throughout the paper in order to show how the more advanced recursion
schemes help us in devising an increasingly more complex compiler. In addi-
tion to that, the high degree of modularity of our approach not only simplifies
the construction of the compiler but also allows us to reuse earlier iterations
of the compiler.

Apart from the abovementioned running example, we also include a number of
independent examples illustrating the mechanics of the presented tree automata.

The remainder of this paper is structured as follows: we start in Section 2
with bottom-up tree acceptors and their implementation in Haskell. In Section 3,
we introduce two dimensions of modularity that can be exploited in the recursion
scheme obtained from bottom-up tree acceptors. In Section 4, we will turn to
bottom-up tree transducers, which, based on a state that is propagated upwards,
perform a transformation of an input term to an output term. In Section 4.5 we
will then introduce yet another dimension of modularity by separating the state
propagation in tree transducers from the tree transformation. This will also allow



us to adopt the modularity techniques from Section 3. In Section 5, we will do
the same thing again, however, for top-down tree transducers in which the state
is propagated top-down rather than bottom-up. Finally, in Section 6, we will
combine both bottom-up and top-down state transitions.

The library of recursion schemes that we develop in this paper is available as
part of the compdata package [2]. Additionally, this paper is written as a literate
Haskell file1, which can be directly loaded into the GHCi Haskell interpreter.

2 Bottom-Up Tree Acceptors

The tree automata that we consider in this paper operate on terms over some
signature F . In the setting of tree automata, a signature F is simply a set of
function symbols with a fixed arity and we write f/n ∈ F to indicate that f is
a function symbol in F of arity n. Given a signature F and some set X , the set
of terms over F and X , denoted T (F ,X ), is the smallest set T such that X ⊆ T
and if f/n ∈ F and t1, . . . , tn ∈ T then f(t1, . . . , tn) ∈ T . Instead of T (F , ∅) we
also write T (F) and call elements of T (F) terms over F . Tree automata run on
terms in T (F).

Each of the tree automata that we describe in this paper consists at least
of a finite set Q of states and a set of rules according to which an input term
is transformed into an output term. While performing such a transformation,
these automata maintain state information, which is stored in the intermediate
results of the transformation. To this end each state q ∈ Q is considered as a
unary function symbol and a subterm t is annotated with state q by writing q(t).
For example, f(q0(a), q1(b)) represents the term f(a, b), where the two subterms
a and b are annotated with states q0 and q1, respectively.

The rules of the tree automata in this paper will all be of the form l→ r with
l, r ∈ T (F ′,X ), where F ′ = F ] {q/1 | q ∈ Q}. The rules can be read as term
rewrite rules, i.e. the variables in l and t are placeholders that are instantiated
with terms when the rule is applied. Running an automaton is then simply a
matter of applying these term rewrite rules to a term. The different kinds of tree
automata only differ in the set of rules they allow.

2.1 Deterministic Bottom-Up Tree Acceptors

A deterministic bottom-up tree acceptor (DUTA) over a signature F consists of
a (finite) set of states Q, a set of accepting states Qa ⊆ Q, and a set of transition
rules of the form

f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . , xn)), with f/n ∈ F and q, q1, . . . , qn ∈ Q

The variable symbols x1, . . . , xn serve as placeholders in these rules and states in
Q are considered as function symbols of arity 1. The set of transition rules must
be deterministic – i.e. there are no two different rules with the same left-hand

1 Available from the author’s web site.



side – and complete – i.e. for each f/n ∈ F and q1, . . . , qn ∈ Q, there is a rule
with the left-hand side f(q1(x1), . . . , qn(xn)). The state q on the right-hand side
of the transition rule is also called the successor state of the transition.

By repeatedly applying the transition rules to a term t over F , initial states
are created at the leaves which then get propagated upwards through function
symbols. Eventually, we obtain a final state qf at the root of the term. That is,
an input term t is transformed into qf (t). The term t is accepted by the DUTA
iff qf ∈ Qa. In this way, a DUTA defines a term language.

Example 1. Consider the signature F = {and/2, not/1, tt/0,ff/0} and the DUTA
over F with Q = {q0, q1}, Qa = {q1} and the following transition rules:

ff → q0(ff)

tt→ q1(tt)

not(q0(x))→ q1(not(x))

not(q1(x))→ q0(not(x))

and(q1(x), q1(y))→ q1(and(x, y))

and(q0(x), q1(y))→ q0(and(x, y))

and(q1(x), q0(y))→ q0(and(x, y))

and(q0(x), q0(y))→ q0(and(x, y))

Terms over signature F are Boolean expressions and the automaton accepts
such an expression iff it evaluates to true.

Note that the rules are complete – for each function symbol, every combina-
tion of input states occurs in the left-hand side of some rule – and deterministic
– there are no two rules with the same left-hand side.

The transition rules are applied by interpreting them as rules in a term rewrit-
ing system, where variables are placeholders for terms. For the term and(tt,ff),
we get the following derivation:

and(tt,ff)→ and(q1(tt),ff)→ and(q1(tt), q0(ff))→ q0(and(tt,ff))

The result of this derivation is the final state q0; the term is rejected.
The following picture illustrates a run of the automaton on the bigger term
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For the sake of conciseness, we applied rules in parallel where possible. At first
we apply the rules to the leaves of the term, performing three rewrite steps in
parallel. This effectively produces the initial states of the run. Subsequent rule
applications propagate the states according to the rules until we obtain the final
state at the root of the term.

Note that in both runs, apart from the final state at the root, the result term
is the same as the one we started with. This is expected. The only significant
output of a DUTA run is the final state.



The rules of a DUTA contain some syntactic overhead as they explicitly
copy the function symbol from the left-hand side to the right-hand side. This
formulation serves two purposes: first, it makes it possible to describe the run
of a DUTA as a term reduction as in the above example. Secondly, we will
see that the more sophisticated automata that we will consider later are simply
generalisations of the rules of a DUTA, which for example do not require copying
the function symbol but allow arbitrary transformations.

2.2 Algebras and Catamorphisms

For the representation of recursion schemes in Haskell, we consider data types
as fixed points of polynomial functors:

data Term f = In (f (Term f ))

Given a functor f that represents some signature, Term f constructs its fixed
point, which represents the terms over f . For example, the data type Exp from
the introduction may be instead defined as Term Sig with2

data Sig e = Val Int | Plus e e

The functoriality of Sig is given by an instance of the type class Functor :

instance Functor Sig where
fmap f (Val i) = Val i
fmap f (Plus x y) = Plus (f x ) (f y)

The function eval from the introduction is defined by a simple recursion
scheme: its recursive definition closely follows the recursive definition of the data
type Exp. This recursion scheme is known as catamorphism (or also fold). Given
an algebra, i.e. a functor f and type a together with a function of type f a → a,
its catamorphism is a function of type Term f → a constructed as follows:

cata :: Functor f ⇒ (f a → a)→ (Term f → a)
cata φ (In t) = φ (fmap (cata φ) t)

In the definition of the algebra for the evaluation function, we make use of
the fact that the arguments of the Plus constructor are already the results of
evaluating the corresponding subexpressions:

evalAlg :: Sig Int → Int
evalAlg (Val i) = i
evalAlg (Plus x y) = x + y

eval :: Term Sig → Int
eval = cata evalAlg

Programming in algebras and catamorphisms or other algebraic or coalge-
braic recursion schemes is a well-known technique in functional programming
[20]. We shall use this representation in order to implement the recursion schemes
that we derive from the tree automata.
2 Term Sig is “almost” isomorphic to Exp. The only difference stems from the fact

that the constructor In is non-strict.



2.3 Bottom-Up State Transition Functions

If we omit the syntactic overhead of the state transition rules of DUTAs, we see
that DUTAs are algebras – in fact, they were originally defined as such [5]. For
instance, the algebra of the automaton in Example 1 is an algebra that evaluates
Boolean expressions. Speaking in Haskell terms, a DUTA over a signature functor
F is given by a type of states Q , a state transition function in the form of an
F -algebra trans :: F Q → Q , and a predicate acc :: Q → Bool . A term over F is
an element of type Term F . When running a DUTA on a term t of type Term F ,
we obtain the final state cata trans t of the run. Afterwards, the predicate acc
checks whether the final state is accepting:

runDUTA :: Functor f ⇒ (f q → q)→ (q → Bool)→ Term f → Bool
runDUTA trans acc = acc . cata trans

Example 2. We implement the DUTA from Example 1 in Haskell as follows:

data F a = And a a
| Not a
| TT | FF

data Q = Q0 | Q1

acc :: Q → Bool
acc Q1 = True
acc Q0 = False

trans :: F Q → Q
trans FF = Q0
trans TT = Q1
trans (Not Q0 ) = Q1
trans (Not Q1 ) = Q0
trans (And Q1 Q1 ) = Q1
trans (And ) = Q0

The automaton is run on a term of type Term F as follows:

evalBool :: Term F → Bool
evalBool = runDUTA trans acc

The restriction to a finite state space is not crucial for our purposes as we
are not interested in deciding properties of automata. Instead, we want to use
automata as powerful recursion schemes that allow for modular definitions of
functions on terms. Since we are only interested in the traversal of the term
that an automaton provides, we also drop the predicate and consider the final
state as the output of a run of the automaton. We, therefore, consider only the
transition function of a DUTA:

type UpState f q = f q → q

runUpState :: Functor f ⇒ UpState f q → Term f → q
runUpState = cata

With the functions evalAlg from Section 2.2 and trans from Example 2, we
have already seen two simple examples of bottom-up state transition functions.
In practice, only few state transitions of interest are that simple, of course.

In the following, we want to write a simple compiler for our expression lan-
guage that generates code for a simple virtual machine with a single accumulator



register and a random access memory indexed by non-negative integers. At first,
we devise the instructions of the virtual machine:

type Addr = Int
data Instr = Acc Int | Load Addr | Store Addr | Add Addr
type Code = [Instr ]

For simplicity, we use integers to represent addresses for the random access
memory. The four instructions listed above write an integer constant to the
accumulator, load the contents of a memory cell into the accumulator, store
the contents of the accumulator into a memory cell, and add the contents of a
memory cell to the contents of the accumulator, respectively.

The code that we want to produce for an expression e of type Term Sig should
evaluate e, i.e. after executing the code, the virtual machine’s accumulator is
supposed to contain the integer value eval e:

codeSt :: UpState Sig Code
codeSt (Val i) = [Acc i ]
codeSt (Plus x y) = x ++ [Store a ] ++ y ++ [Add a ]

where a = . . .

In order to perform addition, the result of the computation for the first summand
has to be stored into a temporary memory cell at some address a. However, we
also have to make sure that this memory cell is not overwritten by the compu-
tation for the second summand. To this end, we maintain a counter that tells us
which address is safe to use:

codeAddrSt :: UpState Sig (Code,Addr)
codeAddrSt (Val i) = ([Acc i ], 0)
codeAddrSt (Plus (x , a ′) (y , a)) = (x ++ [Store a ] ++ y ++ [Add a ],

1 + max a a ′)

code :: Term Sig → Code
code = fst . runUpState codeAddrSt

While this definition yields the desired code generator, it is not very elegant
as it mixes the desired output state – the code – with an auxiliary state – the
fresh address. This flaw can be mitigated by using a state monad to carry around
the auxiliary state. In this way we can still benefit from computing both states
side by side has, which means that the input term is only traversed once.

This however still leaves the specification of two computations uncomfortably
entangled, which is not only more prone to errors but also inhibits reuse and
flexibility: the second component of the state, which we use as a fresh address, is
in fact the height of the expression and might be useful for other computations:

heightSt :: UpState Sig Int
heightSt (Val ) = 0
heightSt (Plus x y) = 1 + max x y



Moreover, as we extend the expression language with new language features,
we might have to change the way we allocate memory locations for intermedi-
ate results. Thus, separating the two components of the computation is highly
desirable since it would then allow us to replace the heightSt component with a
different one while reusing the rest of the code generator.

The next section addresses this concern.

3 Making Tree Automata Modular

Our goal is to devise modular recursion schemes. In this section, we show how to
leverage two dimensions of modularity inherent in tree automata, viz. the state
space and the signature. For each dimension, we present a well-know technique
to make use of the modularity in the specification of automata. In particular,
we shall demonstrate these techniques on bottom-up state transitions. However,
due to their generality, both techniques are applicable also to the more advanced
tree automata that we consider in later sections.

3.1 Product Automata

A common construction in automata theory combines two automata by simply
forming the cartesian product of their state spaces and defining the state transi-
tion componentwise according to the state transitions of the original automata.
The resulting automaton runs the original automata in parallel. We shall follow
the same idea to construct the state transition codeAddrSt from Section 2.3 by
combining the state transition heightSt with a state transition that computes
the machine code using the state maintained by heightSt .

However, in contrast to the standard product automaton construction, the
two computations in our example are not independent from each other – the code
generator depends on the height in order to allocate memory addresses. There-
fore, we need a means of communication between the constituent automata.

In order to allow access to components of a compound state space, we define
a binary type class ∈ that tells us if a type is a component of a product type
and provides a projection for that component:

class a ∈ b where
pr :: b → a

Using overlapping instance declarations, we define the relation a ∈ b as follows:

instance a ∈ a where pr = id

instance a ∈ (a, b) where pr = fst

instance (c ∈ b)⇒ c ∈ (a, b) where pr = pr . snd

That is, we have a ∈ b if b is of the form (b1, (b2, ...)) and a = bi for some i .
We generalise bottom-up state transitions by allowing the successor state of

a transition to be dependent on a potentially larger state space:



type DUpState f p q = (q ∈ p)⇒ f p → q

The result state of type q for the state transition of the above type may depend
on the states that are propagated from below. However, in contrast to ordi-
nary bottom-up state transitions, these states – of type p – may contain more
components in addition to the component of type q .

Every ordinary bottom-up state transition such as heightSt can be readily
converted into such a dependent bottom-up state transition function by precom-
posing the projection pr :

dUpState :: Functor f ⇒ UpState f q → DUpState f p q
dUpState st = st . fmap pr

A dependent state transition function is the same as an ordinary state tran-
sition function if the state spaces p and q coincide. Hence, we can run such a
dependent state transition function in the same way:

runDUpState :: Functor f ⇒ DUpState f q q → Term f → q
runDUpState f = runUpState f

When defining a dependent state transition function, we can make use of the
fact that the state propagated from below may contain additional components.
For the definition of the state transition function generating the code, we declare
that we expect an additional state component of type Int .

codeSt :: (Int ∈ q)⇒ DUpState Sig q Code
codeSt (Val i) = [Acc i ]
codeSt (Plus x y) = pr x ++ [Store a ] ++ pr y ++ [Add a ]

where a = pr y

Using the method pr of the type class ∈, we project to the desired components
of the state: pr x and the first occurrence of pr y are of type Code whereas the
second occurrence of pr y is of type Int .

The product construction that combines two dependent state transition func-
tions is simple: it takes two state transition functions depending on the same
(compound) state space and combines them by forming the product of their
respective outcomes:

(⊗) :: (p ∈ c, q ∈ c)⇒ DUpState f c p → DUpState f c q
→ DUpState f c (p, q)

(sp ⊗ sq) t = (sp t , sq t)

We obtain the desired code generator from Section 2.3 by combining our two
(dependent) state transition functions and running the resulting state transition
function:

code :: Term Sig → Code
code = fst . runDUpState (codeSt ⊗ dUpState heightSt)



Note that combining state transition functions in this way is not restricted to
such simple dependencies. State transition functions may depend on each other.
The construction that we have seen in this section makes it possible to decompose
state spaces into isolated modules with a typed interface to access them. This
practice of decomposing state spaces is not different from the abstraction and
reuse that we perform when writing mutual recursive functions. Functions which
can be defined in this way are also known as mutumorphisms [6].

There are still two minor shortcomings, which we shall address when we con-
sider other types of automata below. First, the extraction of components from
compound states is purely based on the type information, which can easily result
in confusion of distinct state components that happen to have the same type.
This can be seen in the instance declarations for the type class ∈, which are
overlapping and will simply select the left-most occurrence of a type. Secondly,
we only allow access to the state of the children of the current node. In principle,
this restriction is no problem as we can use the states of the children nodes to
compute the state of the current node. For example, if, in the code generation, we
needed the height of the current expression instead of the height of the right sum-
mand, we could have computed it from the height of both summands. However,
this means that code as well as the corresponding computations are duplicated
since the state of the current node is already computed by the corresponding
state transition.

3.2 Compositional Data Types

We also want to leverage the modularity that stems from the data types on
which we want to define functions. This modularity is based on the ability to
combine functors by forming coproducts:

data (f ⊕ g) e = Inl (f e) | Inr (g e)

instance (Functor f ,Functor g)⇒ Functor (f ⊕ g) where
fmap f (Inl e) = Inl (fmap f e)
fmap f (Inr e) = Inr (fmap f e)

Using the ⊕ operator, we can extend the signature functor Sig with an increment
operation, for example:

data Inc e = Inc e
type Sig ′ = Inc ⊕ Sig

In order to make use of this composition of functors for defining automata
on functors in a modular fashion, we will follow Swierstra’s data types à la carte
[23] approach, which we will summarise briefly below.

The use of coproducts entails that each (sub)term has to be explicitly tagged
with zero or more Inl or Inr tags. In order to add the correct tags automatically,
injections are derived using a type class:

class sub � sup where
inj :: sub a → sup a



Similarly to the type class ∈, we define the subsignature relation � as follows:

instance f � f where inj = id

instance f � (f ⊕ g) where inj = Inl

instance (f � g)⇒ f � (h ⊕ g) where inj = Inr . inj

That is, we have f � g if g is of the form g1 ⊕ (g2 ⊕ ...) and f = gi for some i .
From the injection function inj , we derive an injection function for terms:

inject :: (g � f )⇒ g (Term f )→ Term f
inject = In . inj

Additionally, in order to reduce syntactic overhead, we assume, for each signature
functor such as Sig or Inc, smart constructors that comprise the injection, e.g.:

plus :: (Sig � f )⇒ Term f → Term f → Term f
plus x y = inject (Plus x y)

inc :: (Inc � f )⇒ Term f → Term f
inc x = inject (Inc x )

Using these smart constructors, we can write, for example, inc (val 3‘plus‘val 4)
to denote the expression inc(3 + 4).

For writing modular functions on compositional data types, we use type
classes. For example, for recasting the definition of the heightSt state transition
function, we introduce a new type class and make it propagate over coproducts:

class HeightSt f where
heightSt :: UpState f Int

instance (HeightSt f ,HeightSt g)⇒ HeightSt (f ⊕ g) where
heightSt (Inl x ) = heightSt x
heightSt (Inr x ) = heightSt x

The above instance declaration lifts instances of HeightSt over coproducts in a
straightforward manner. Subsequently, we will omit these instance declarations
as they always follow the same pattern and thus can be generated automatically
like instances declarations for Functor .

We then instantiate this class for each (atomic) signature functor separately:

instance HeightSt Sig where
heightSt (Val ) = 0
heightSt (Plus x y) = 1 + max x y

instance HeightSt Inc where
heightSt (Inc x ) = 1 + x

Due to the propagation of instances over coproducts, we obtain an instance of
HeightSt for Sig ′ for free.



With the help of the type class HeightSt , we eventually obtain an extensible
definition of the height function.

height :: (Functor f ,HeightSt f )⇒ Term f → Int
height = runUpState heightSt

Since we have instantiated HeightSt for the signature Sig ′ and all its subsig-
natures, the function height may be given any argument of type Term f , where
f is the Sig ′ or any of its subsignatures. Moreover, by simply providing further
instance declarations for HeightSt , we can extend the domain of height to further
signatures.

4 Bottom-Up Tree Transducers

A compiler usually consists of several stages that perform diverse kinds of trans-
formations on the abstract syntax tree, e.g. renaming variables or removing
syntactic sugar. Representing syntax trees as terms, i.e. values of type Term f ,
such transformations are functions of type Term f → Term g that map terms
over some signature to terms over a potentially different signature. Tree trans-
ducers are a well-established technique for specifying such transformations [3, 7].
Moreover, there are a number of composition theorems that permit the compo-
sition of certain tree transducers such that the transformation function denoted
by the composition is equal to the composition of the transformation functions
denoted by the original tree transducers [7]. These composition theorems permit
us to perform deforestation [26], i.e. eliminating intermediate results by fusing
several stages of a compiler to a single tree transducer [16, 25], thus making tree
transducers an attractive recursion scheme.

4.1 Deterministic Bottom-Up Tree Transducers

A deterministic bottom-up tree transducer (DUTT ) defines – like a DUTA –
for each function symbol a successor state. But, additionally, it also defines an
expression that should replace the original function symbol. More formally, a
DUTT from signature F to signature G consists of a set of states Q and a set of
transduction rules of the form

f(q1(x1), . . . , qn(xn))→ q(u), with f ∈ F and q, q1, . . . , qn ∈ Q

where u ∈ T (G,X ) is a term over signature G and the set of variables X =
{x1, . . . , xn}. Compare this to the state transition rules of DUTAs, which are
simply a restriction of the transduction rules above with u = f(x1, . . . , xn), thus
only allowing the identity transformation. By repeatedly applying its transduc-
tion rules in a bottom-up fashion, a run of a DUTT transforms an input term
over F into an output term over G plus – similarly to DUTAs – a final state at
the root.



Example 3. Consider the signature F = {and/2, not/1,ff/0, tt/0, b/0} and the
DUTT from F to F with Q = {q0, q1, q2} and the following transduction rules:

tt→ q1(tt)

ff → q0(ff)

b→ q2(b)

not(q0(x))→ q1(tt)

not(q1(x))→ q0(ff)

not(q2(x))→ q2(not(x))

and(q(x), p(y))→ q0(ff) if q0 ∈ {p, q}

and(q1(x), q1(y))→ q1(tt)

and(q1(x), q2(y))→ q2(y)

and(q2(x), q1(y))→ q2(x)

and(q2(x), q2(y))→ q2(and(x, y))

The signature F allows us to express Boolean expression containing a sin-
gle Boolean variable b. When applied to such an expression, the automaton
performs constant folding, i.e. it evaluates subexpression if possible. With the
states q0 and q1 it signals that a subexpression is false respectively true; q2
indicates uncertainty. For example, applying the automaton to the expression
and(not(b), not(and(ff, b))) yields the following derivation:
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not

b

not

and

ff b

and

not

q2

b

not

and

q0

ff
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and
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not

b
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ff
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q1

tt

q2

not

b
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The rules for the constant symbols do not perform any transformation in this
example and simply provide initial states. Then the first real transformation is
performed, which collapses the subterm rooted in and to q0(ff). The run of the
automaton is completed as soon as a state appears at the root, the final state of
the run.

4.2 Contexts in Haskell

In order to, represent transduction rules in Haskell, we need a representation of
the set T (F ,X ) of terms over signature F and variables X . We call such extended
terms contexts. These contexts appear on the right-hand side of transduction
rules of DUTTs. We obtain a representation of contexts by simply extending the
definition of the data type Term by an additional constructor:

data Context f a = In (f (Context f a)) | Hole a

We call this additional constructor Hole as we will use it also for things other
than variables. For example, the holes in a context may be filled by other contexts
over the same signature. The following function substitutes the contexts in the
holes into the surrounding context.

appCxt :: Functor f ⇒ Context f (Context f a)→ Context f a
appCxt (Hole x ) = x
appCxt (In t) = In (fmap appCxt t)



Context f is in fact the free monad of the functor f with Hole and appCxt as
unit and multiplication operation, respectively. The functoriality of Context f is
given as follows:

instance Functor f ⇒ Functor (Context f ) where
fmap f (Hole v) = Hole (f v)
fmap f (In t) = In (fmap (fmap f ) t)

Recall that the set of terms T (F) is defined as the set T (F , ∅) of terms
without variables. We can do the same in the Haskell representation and replace
our definition of the type Term with the following:

data Empty
type Term f = Context f Empty

Here, Empty is simply an empty type.3 This definition of Term allows us to use
terms and context in a uniform manner. For example, the function appCxt de-
fined above can also be given the type Context f (Term f )→ Term f . Moreover,
this encoding allows us to give a more general type for the injection function:

inject :: (g � f )⇒ g (Context f a)→ Context f a

The definition of inject remains the same. The same also applies to smart con-
structors; for example, the smart constructor plus has now the more general
type

plus :: (Sig � f )⇒ Context f a → Context f a → Context f a

Most of the time we are using very simple contexts that only consist of a
single functor application as constructed by the following function:

simpCxt :: Functor f ⇒ f a → Context f a
simpCxt t = In (fmap Hole t)

4.3 Bottom-Up Transduction Functions

The transduction rules of a DUTT use placeholder variables x1, x2, etc. in order
to refer to arguments of function symbols. These placeholder variables can then
be used on the right-hand side of a transduction rule. This mechanism makes it
possible to rearrange, remove and duplicate the terms that are matched against
these placeholder variables. On the other hand, it is not possible to inspect
them. For instance, in Example 3, not(q0(ff)) → q1(tt) would not be a valid
transduction rule as we are not allowed to pattern match on the arguments of
not. We can only observe the state.

3 Note that in Haskell, every data type – including Empty – is inhabited by ⊥. Thus
the definition of Term is not entirely accurate. However, for the sake of simplicity,
we prefer this definition over a more precise one such as in [1].



When representing transduction rules as Haskell functions, we have to be
careful in order to maintain this restriction on DUTTs. In their categorical rep-
resentation, Hasuo et al. [11] recognised that the restriction due to placeholder
variables in the transduction rules can be enforced by a naturality condition.
Naturality, in turn, can be represented in Haskell’s type system as paramet-
ric polymorphism. Following this approach, we represent DUTTs from signature
functor f to signature functor g with state space q by the following type:

type UpTrans f q g = ∀ a . f (q , a)→ (q ,Context g a)

In the definition of tree automata, states are used syntactically as a unary func-
tion symbol – an argument with state q is written as q(x) in the left-hand side.
In the Haskell representation, we use pairs and simply write (q , x ).

In the type UpTrans, the type variable a represents the type of the place-
holder variables. The universal quantification over a makes sure that placeholders
can only be used if they appear on the left-hand side and that they cannot be
inspected.

Example 4. We implement the DUTT from Example 3 in Haskell. At first we
define the signature and the state space.

data F a = And a a | Not a | TT | FF | B
data Q = Q0 | Q1 | Q2

For the definition of the transduction function, we use the smart constructors
and , not, tt , ff and b for the constructors of the signature F . These smart
constructors are defined as before, e.g.

and :: (F � f )⇒ Context f a → Context f a → Context f a
and x y = inject (And x y)

The definition of the transduction function is a one-to-one translation of the
transduction rules of the DUTT from Example 3.

trans :: UpTrans F Q F

trans TT = (Q1 , tt); trans (Not (Q0 , x )) = (Q1 , tt)
trans FF = (Q0 ,ff ); trans (Not (Q1 , x )) = (Q0 ,ff )
trans B = (Q2 , b); trans (Not (Q2 , x )) = (Q2 , not (Hole x ))

trans (And (q , x ) (p, y))
| q ≡ Q0 ∨ p ≡ Q0 = (Q0 ,ff )

trans (And (Q1 , x ) (Q1 , y)) = (Q1 , tt)
trans (And (Q1 , x ) (Q2 , y)) = (Q2 ,Hole y)
trans (And (Q2 , x ) (Q1 , y)) = (Q2 ,Hole x )
trans (And (Q2 , x ) (Q2 , y)) = (Q2 , and (Hole x ) (Hole y))

Since we do not constrain ourselves to finite state spaces, DUTTs do not add
any expressive power to the state transition functions of DUTAs. Each DUTT



can be transformed into an algebra whose catamorphism is the transformation
denoted by the DUTT:

runUpTrans :: (Functor f ,Functor g)⇒ UpTrans f q g
→ Term f → (q ,Term g)

runUpTrans trans = cata (appCxt ′ . trans)
where appCxt ′ (x , y) = (x , appCxt y)

For instance, we run the DUTT from Example 4 as follows:

foldBool :: Term F → (Q ,Term F )
foldBool = runUpTrans trans

As we have seen in Section 3.1, a tree acceptor with a compound state space
comprises several computations which may be disentangled in order to increase
modularity. A tree transducer intrinsically combines two computations: the state
transition and the actual transformation of the term. We will see in Section 4.5
how to disentangle these two components. Before that, we shall look at a special
case of DUTTs.

4.4 Tree Homomorphisms

To simplify matters, Bahr and Hvitved [1] focused on tree transducers with a
singleton state space, also known as tree homomorphisms [3]:

type Hom f g = ∀ a . f a → Context g a

runHom :: (Functor f ,Functor g)⇒ Hom f g → Term f → Term g
runHom hom = cata (appCxt . hom)

Tree homomorphisms can only transform the tree structure uniformly without
the ability to maintain a state. Nonetheless, tree homomorphisms provide a use-
ful recursion scheme. For example, desugaring, i.e. transforming syntactic sugar
of a language to the language’s core operations, can in many cases be imple-
mented as a tree homomorphism. Reconsider the signature Sig ′ = Inc⊕Sig that
extends Sig with an increment operator. The increment operator is only syntac-
tic sugar for adding the value 1. The corresponding desugaring transformation
can be implemented as a tree homomorphism:

class DesugHom f g where
desugHom :: Hom f g

-- instance declaration lifting DesugHom to coproducts omitted

desugar :: (Functor f ,Functor g ,DesugHom f g)⇒ Term f → Term g
desugar = runHom desugHom

instance (Sig � g)⇒ DesugHom Inc g where
desugHom (Inc x ) = Hole x ‘plus‘ val 1

instance (Functor g , f � g)⇒ DesugHom f g where
desugHom = simpCxt . inj



The first instance declaration states that as long as the target signature g
contains Sig , we can desugar the signature Inc to g by mapping inc(x) to x+ 1.
Using overlapping instances, the second instance declaration then defines the
desugaring for all other signatures f – provided f is contained in the target
signature – by leaving the input untouched.

The above instance declarations make it now possible to use the desugar
function with type Term Sig ′ → Term Sig . That is, desugar transforms a term
over signature Sig ′ to a term over signature Sig .

As an ordinary recursive Haskell function we would implement desugaring as
follows:

data Exp = Val Int | Plus Exp Exp
data Exp′ = Val ′ Int | Plus ′ Exp′ Exp′ | Inc′ Exp′

desugExp :: Exp′ → Exp
desugExp (Val ′ i) = Val i
desugExp (Plus ′ e f ) = desugExp e ‘Plus‘ desugExp f
desugExp (Inc′ e) = desugExp e ‘Plus‘ Val 1

Note that we have to provide two separate data types for the input and
output types of the function instead of using the compositionality of signatures.
Moreover, the function desugar is applicable more broadly. It can be used as a
function of type Term (f ⊕ Inc) → Term f for any signature f that contains
Sig , i.e. for which we have Sig � f . Apart from these advantages in modularity
and extensibility we also obtain all the advantages of using a transducer, which
we shall discuss in more detail in Section 7.

4.5 Combining Tree Homomorphisms with State Transitions

We aim to combine the simplicity of tree homomorphisms and the expressivity
of bottom-up tree transducers. To this end, we shall devise a method to combine
a tree homomorphism and a state transition function to form a DUTT. This
construction will be complete in the sense that any DUTT can be constructed
in this way.

At first, compare the types of automata that we have considered so far:

type Hom f g = ∀ a . f a → Context g a
type UpState f q = f q → q
type UpTrans f q g = ∀ a . f (q , a)→ (q ,Context g a)

We can observe from this – admittedly suggestive – comparison that a bottom-
up tree transducer is roughly a combination of a tree homomorphism and a state
transition function. Our aim is to make use of this observation by decomposing
the specification of a bottom-up tree transducer into a tree homomorphism and
a bottom-up state transition function. Like for the product construction of state
transition functions from Section 3.1, we have to provide a mechanism to deal
with dependencies between the two components. Since the state transition is



independent from the tree transformation, we only need to allow the tree ho-
momorphism to access the state information that is produced by the bottom-up
state transition.

A stateful tree homomorphism can thus be (tentatively) defined as follows:

type QHom f q g = ∀ a . f (q , a)→ Context g a

Since q appears to the left of the function arrow but not to the right, functions of
the above type have access to the states of the arguments, but do not transform
the state themselves. However, we want to make it easy to ignore the state if
it is not needed as the state is often only needed for a small number of cases.
This goal can be achieved by replacing the pairing with the state space q by an
additional argument of type a → q .

type QHom f q g = ∀ a . (a → q)→ f a → Context g a

We can still push this interface even more to the original tree homomorphism
type Hom by turning the function argument into an implicit parameter [18]:

type QHom f q g = ∀ a . (?state :: a → q)⇒ f a → Context g a

In a last refinement step, we add an implicit parameter that provides access to
the state of the current node as well:

type QHom f q g = ∀ a . (?above :: q , ?below :: a → q)⇒ f a → Context g a

Functions with implicit parameters have to be invoked in the scope of appro-
priate bindings. For functions of the above type this means that ?below has to
be bound to a function of type a → q and ?above to a value of type q . We shall
use the following function to make implicit parameters explicit:

explicit :: ((?above :: q , ?below :: a → q)⇒ b)→ q → (a → q)→ b
explicit x ab be = x where ? above = ab; ?below = be

In particular, given a stateful tree homomorphism h of type QHom f q g , we
thus obtain a function explicit h of type q → (a → q)→ f a → Context g a.

The use of implicit parameters is solely for reasons of syntactic appearance
and convenience. One can think of implicit parameters as reader monads with-
out the syntactic overhead of monads. If, in the definition of a stateful tree
homomorphism, the state is not needed, it can be easily ignored. Hence, tree
homomorphisms are, in fact, also syntactic special cases of stateful tree homo-
morphisms.

The following construction combines a stateful tree homomorphism of type
QHom f q g and a state transition function of type UpState f q into a tree
transducer of type UpTrans f q g , which can then be used to perform the
desired transformation:

upTrans :: (Functor f ,Functor g)⇒
UpState f q → QHom f q g → UpTrans f q g



upTrans st hom t = (q , c) where
q = st (fmap fst t)
c = fmap snd (explicit hom q fst t)

runUpHom :: (Functor f ,Functor g)⇒
UpState f q → QHom f q g → Term f → (q ,Term g)

runUpHom st hom = runUpTrans (upTrans st hom)

Often the state space accessed by a stateful tree homomorphism is compound.
Therefore, it is convenient to have the projection function pr built into the
interface to the state space:

above :: (?above :: q , p ∈ q)⇒ p
above = pr ? above

below :: (?below :: a → q , p ∈ q)⇒ a → p
below = pr . ?below

In order to illustrate how stateful tree homomorphisms are programmed, we
extend the signature Sig with variables and let bindings:

type Name = String
data Let e = LetIn Name e e | Var Name
type LetSig = Let ⊕ Sig

We shall implement a simple optimisation that removes let bindings whenever
the variable that is bound is not used in the scope of the let binding. To this
end, we define a state transition that computes the set of free variables:

type Vars = Set Name

class FreeVarsSt f where
freeVarsSt :: UpState f Vars

instance FreeVarsSt Sig where
freeVarsSt (Plus x y) = x ‘union‘ y
freeVarsSt (Val ) = empty

instance FreeVarsSt Let where
freeVarsSt (Var v) = singleton v
freeVarsSt (LetIn v e s) = if v ‘member ‘ s then delete v (e ‘union‘ s)

else s

Note that the free variables occurring in the right-hand side of a binding are
only included if the bound variable occurs in the scope of the let binding. The
transformation itself is simple:

class RemLetHom f q g where
remLetHom :: QHom f q g

instance (Vars ∈ q ,Let � g ,Functor g)⇒ RemLetHom Let q g where
remLetHom (LetIn v s) | ¬ (v ‘member ‘ below s) = Hole s



remLetHom t = simpCxt (inj t)

instance (Functor f ,Functor g , f � g)⇒ RemLetHom f q g where
remLetHom = simpCxt . inj

The homomorphism removes a let binding whenever the bound variable is not
found in the set of free variables. Otherwise, no transformation is performed.
Notice that the type specifies that the transformation depends on a state space
that at least contains a set of variables. In addition, we make use of overlapping
instances to define the transformation for all signatures different from Let . We
then obtain the desired transformation function by combining the stateful tree
homomorphism with the state transition computing the free variables:

remLet :: (Functor f ,FreeVarsSt f ,RemLetHom f Vars f )
⇒ Term f → Term f

remLet = snd . runUpHom freeVarsSt remLetHom

In particular, we can give remLet the type Term LetSig → Term LetSig but also
Term (Inc ⊕ LetSig)→ Term (Inc ⊕ LetSig).

4.6 Refining Dependent Bottom-Up State Transition Functions

The implicit parameters ?below and ?above of stateful tree homomorphisms pro-
vide an interface to the states of the children of the current node as well as the
state of the current node itself. The same interface can be given to dependent
bottom-up state transition functions as well. We therefore redefine the type of
these state transitions from Section 3.1 as follows:

type DUpState f p q = ∀ a . (?below :: a → p, ?above :: p, q ∈ p)⇒ f a → q

While the definition of the product operator ⊗ remains the same, we have to
change the other functions slightly to accommodate this change:

dUpState :: Functor f ⇒ UpState f q → DUpState f p q
dUpState st = st . fmap below

upState :: DUpState f q q → UpState f q
upState st s = res where

res = explicit st res id s

runDUpState :: Functor f ⇒ DUpState f q q → Term f → q
runDUpState = runUpState . upState

Note that definition of res in upState is cyclic and thus crucially depends on
Haskell’s non-strict semantics. This also means that dependent state transition
functions do not necessarily yield a terminating run since one can create a cyclic
dependency by defining a state transition that depends on its own result such
as the following:

loopSt :: DUpState f p q
loopSt = above



The definition of the code generator from Section 3.1 is easily adjusted to
the slightly altered interface of dependent state transitions. Since we intend to
extend the code generator in Section 6, we also turn it into a type class:

class CodeSt f q where
codeSt :: DUpState f q Code

code :: (Functor f ,CodeSt f (Code, Int),HeightSt f )
⇒ Term f → (Code,Addr)

code = runDUpState (codeSt ⊗ dUpState heightSt)

instance (Int ∈ q)⇒ CodeSt Sig q where
codeSt (Val i) = [Acc i ]
codeSt (Plus x y) = below x ++ [Store a ] ++ below y ++ [Add a ]

where a = below y

Note that the access to the state of the current node – via above – solves one
of the minor issues we have identified at the end of Section 3.1. In order to obtain
the state of the current node, we do not have to duplicate the corresponding state
transition anymore. Moreover, we can use the same interface when we move to
top-down state transitions in the next section.

5 Top-Down Automata

Operations on abstract syntax trees are often dependent on a state that is prop-
agated top-down rather than bottom-up, e.g. typing environments and variable
bindings. For such operations, recursion schemes derived from bottom-up au-
tomata are not sufficient. Hence, we shall consider top-down automata as a
complementary paradigm to overcome this restriction.

Unlike the bottom-up case, we will not start with acceptors but with trans-
ducers. Our interest for bottom-up acceptors was based on the fact that such
automata produce an output state. For top-down acceptors this application van-
ishes since such automata rather consume an input state than produce an output
state. We will however come back to top-down state transition in order to make
the state transition of top-down transducer modular – using the same stateful
tree homomorphisms that we introduced in Section 4.5.

5.1 Deterministic Top-Down Tree Transducers

Deterministic top-down tree transducers (DDTTs) are able to produce transfor-
mations that depend on a top-down flow of information. They work in a fash-
ion similar to bottom-up tree transducers but propagate their state downwards
rather than upwards. More formally, a DDTT from signature F to signature G
consists of a set of states Q, an initial state q0 ∈ Q and a set of transduction
rules of the form

q(f(x1, . . . , xn))→ u with f ∈ F and q ∈ Q



where u ∈ T (G, Q(X )) is a term over G and Q(X ) = {p(xi) | p ∈ Q, 1 ≤ i ≤ n}.
That is, the right-hand side is a term that may have subterms of the form p(xi)
with xi a variable from the left-hand side and p a state in Q. In other words,
each occurrence of a variable on the right-hand side is given a successor state.

In order to run a DDTT on a term t ∈ T (F), we have to provide an initial
state q0 and then apply the transduction rules to q0(t) in a top-down fashion.
Eventually, this yields a result term t′ ∈ T (G).

Example 5. Consider the signature F = {or/2, and/2, not/1, tt/0,ff/0, b/0} and
the DDTT from F to F with the set of states Q = {q0, q1}, initial state q0 and
the following transduction rules:

q0(b)→ b q0(tt)→ tt q0(ff)→ ff

q1(b)→ not(b) q1(tt)→ ff q1(ff)→ tt

q0(not(x))→ q1(x)

q1(not(x))→ q0(x)

q0(and(x, y))→ and(q0(x), q0(y)) q0(or(x, y))→ or(q0(x), q0(y))

q1(and(x, y))→ or(q1(x), q1(y)) q1(or(x, y))→ and(q1(x), q1(y))

Terms over F are Boolean expressions with a single Boolean variable b. The
above DDTT transforms such an expression into negation normal form by mov-
ing the operator not inwards. For instance, applied to the Boolean expression
not(and(not(b), or(tt, b))), the automaton yields the following derivation:
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In order to start the run of a DDTT, the initial state q0 has to be explicitly
inserted at the root of the input term. The run of the automaton is completed
as soon as all states in the term have vanished; there is no final state.

5.2 Top-Down Transduction Functions

Similar to bottom-up tree transducers, we follow the placeholders-via-naturality
principle of Hasuo et al. [11] in order to represent top-down transduction func-
tions:

type DownTrans f q g = ∀ a . (q , f a)→ Context g (q , a)

Now the state comes from above and is propagated downwards to the holes of the
context, which defines the actual transformation that the transducer performs.

Running a top-down tree transducer on a term is a straightforward affair:



runDownTrans :: (Functor f ,Functor g)⇒ DownTrans f q g → q
→ Term f → Term g

runDownTrans tr q t = run (q , t) where
run (q , In t) = appCxt (fmap run (tr (q , t)))

A top-down transducer is run by applying its transduction function – tr (q , t) –
then recursively running the transformation in the holes of the produced context
– fmap run – and finally joining the context with the thus produced embedded
terms – appCxt .

Example 6. We implement the DDTT from Example 5 in Haskell as follows:

data F a = Or a a | And a a | Not a | TT | FF | B
data Q = Q0 | Q1

trans :: DownTrans F Q F

trans (Q0 ,TT ) = tt ; trans (Q0 ,B) = b
trans (Q1 ,TT ) = ff ; trans (Q1 ,B) = not b

trans (Q0 ,FF ) = ff ; trans (Q0 ,Not x ) = Hole (Q1 , x )
trans (Q1 ,FF ) = tt ; trans (Q1 ,Not x ) = Hole (Q0 , x )

trans (Q0 ,And x y) = Hole (Q0 , x ) ‘and ‘ Hole (Q0 , y)
trans (Q1 ,And x y) = Hole (Q1 , x ) ‘or ‘ Hole (Q1 , y)

trans (Q0 ,Or x y) = Hole (Q0 , x ) ‘or ‘ Hole (Q0 , y)
trans (Q1 ,Or x y) = Hole (Q1 , x ) ‘and ‘ Hole (Q1 , y)

The definition of the transduction function trans is a one-to-one translation of
the transduction rules of the DDTT from Example 5. Note, that we use the smart
constructors or , and , not, tt , ff and b on the right-hand side of the definitions.
We apply the thus defined DDTT to a term of type Term F as follows:

negNorm :: Term F → Term F
negNorm = runDownTrans trans Q0

5.3 Top-Down State Transition Functions

Unfortunately, we cannot provide a full decomposition of DDTTs into a state
transition and a homomorphism part in the way we did for DUTTs in Section 4.5.
Unlike in DUTTs, the state transition in a DDTT is inherently dependent on
the transformation: since a placeholder variable may be copied on the right-hand
side, each copy may be given a different successor state! For example, a DDTT
may have a transduction rule

q0(f(x))→ g(q1(x), q2(x))

which transforms a function symbol f into g and copies the argument of f .
However, the two copies are given different successor states, viz. q1 and q2.



In order to avoid this dependency of state transitions on the transformation,
we restrict ourselves to DDTTs in which successor states are given to placeholder
variables and not their occurrences. That is, for each two occurrences of subterms
q1(x) and q2(x) on the right-hand side of a transduction rule, we require that
q1 = q2. The DDTT given in Example 5 is, in fact, of this form.

The top-down state transitions we are aiming for are dual to bottom-up state
transitions. The run of a bottom-up state transition function assigns a state to
each node by an upwards state propagation, performing the same computation
as an upwards accumulation [8]. The run of a top-down state transition function,
on the other hand, should do the same by a downwards state propagation and
thus perform the same computation as a downwards accumulation [9, 10].

However, representing top-down state transitions is known to be challeng-
ing [8, 9, 10]. A first attempt yields the type ∀ a . (q , f a) → f q . This type,
however, allows apart from the state transition also a transformation. The result
is not required to have the same shape as the input. For example, the following
equation (partially) defines a function bad of type ∀ a . (Q ,Sig a)→ Sig Q :

bad (q ,Plus x y) = Val 1

In order to assign a successor state to each child of the input node without
permitting changes to its structure, we use explicit placeholders to which we can
assign the successor states:

type DownState f q = ∀ i .Ord i ⇒ (q , f i)→ Map i q

The type Map i q represents finite mappings from type i to type q . Since such
finite mappings are implemented by search trees, we require that the domain
type i is of class Ord , which provides a total ordering.

The idea is to produce, from a state transition function of the above type, a
function of type ∀ a . (q , f a)→ f q that does preserve the structure of the input
and only produces the successor states. This is achieved by injecting unique
placeholders of type i into a value of type f a – one for each child node. We can
then produce the desired value of type f q from the mapping of type Map i q
given by the state transition function. A placeholder that is not mapped to a
state explicitly is assumed to keep the state of the current node by default.

To work with finite mappings, we assume an interface with ∅ denoting the
empty mapping, x 7→ y the singleton mapping that maps x to y , m ∪ n the left-
biased union of two mappings m and n, and a lookup function lookup :: Ord i ⇒
i → Map i q → Maybe q . Moreover, we define the lookup with default as follows:

findWithDefault :: Ord i ⇒ q → i → Map i q → q
findWithDefault def i m = case lookup i m of

Nothing → def
Just q → q

At first, we need a mechanism to introduce unique placeholders into the
structure of a functorial value. To this end, we will use the standard Haskell
type class Traversable that provides the method



mapM :: (Traversable f ,Monad m)⇒ (a → m b)→ f a → m (f b)

which allows us to apply a monadic function to the components of a functorial
value and then sequence the resulting monadic effects. Every polynomial functor
can be made an instance of Traversable. Declarations to that effect can be derived
automatically.

Ultimately, we want to number the elements in a functorial value to make
them unique placeholders. To this end, we introduce a type of numbered values.

newtype Numbered a = Numbered (Int , a)

unNumbered :: Numbered a → a
unNumbered (Numbered ( , x )) = x

instance Eq (Numbered a) where
Numbered (i , ) ≡ Numbered (j , ) = i ≡ j

instance Ord (Numbered a) where
compare (Numbered (i , )) (Numbered (j , )) = compare i j

The instance declarations allow us to use elements of the type Numbered a as
placeholders.

With the help of the mapM combinator, we define a function that numbers
the components in a functorial value by counting up using a state monad:

number :: Traversable f ⇒ f a → f (Numbered a)
number x = fst (runState (mapM run x ) 0) where

run b = do n ← get
put (n + 1)
return (Numbered (n, b))

where runState :: State s a → s → (a, s) runs a state monad with state type s,
put :: s → State s m () sets the state and get :: State s s queries the state inside
a state monad.

Using the above numbering combinator to create unique placeholders, we
construct the explicit top-down propagation of states from a mapping of place-
holders to successor states. Since the mapping of placeholders to successor states
is partial, we also have to give a default state:

appMap :: Traversable f ⇒ (∀ i .Ord i ⇒ f i → Map i q)
→ q → f a → f (q , a)

appMap qmap q s = fmap qfun s ′ where
s ′ = number s
qfun k = (findWithDefault q k (qmap s ′), unNumbered k)

Finally, we can combine a top-down state transition function with a state-
ful tree homomorphism by propagating the successor states using the appMap
combinator. As the default state, we take the state of the current node, i.e. by
default the state remains unchanged.



downTrans :: Traversable f ⇒ DownState f q → QHom f q g
→ DownTrans f q g

downTrans st f (q , s) = explicit f q fst (appMap (curry st q) q s)

runDownHom :: (Traversable f ,Functor g)⇒ DownState f q
→ QHom f q g → q → Term f → Term g

runDownHom st h = runDownTrans (downTrans st h)

Note that we use the same type of stateful tree homomorphisms that we intro-
duced for bottom-up state transitions. The roles of ?above and ?below are simply
swapped: ?above refers to the state propagated from above whereas ?below pro-
vides the successor states of the current subterm. Stateful tree homomorphisms
are ignorant of the direction in which the state is propagated.

Example 7. We reconstruct the DDTT from Example 6 by defining the state
transition and the transformation separately:

state :: DownState F Q
state (Q0 ,Not x ) = x 7→ Q1
state (Q1 ,Not x ) = x 7→ Q0
state = ∅
hom :: QHom F Q F
hom TT = if above ≡ Q0 then tt else ff
hom FF = if above ≡ Q0 then ff else tt
hom B = if above ≡ Q0 then b else not b
hom (Not x ) = Hole x
hom (And x y) = if above ≡ Q0 then Hole x ‘and ‘ Hole y

else Hole x ‘or ‘ Hole y
hom (Or x y) = if above ≡ Q0 then Hole x ‘or ‘ Hole y

else Hole x ‘and ‘ Hole y

Note that in the definition of the state transition function, we return the empty
mapping for all constructors different from Not . Consequently, the input state
for these constructors is propagated unchanged by default.

By combining the state transition function and the stateful homomorphism,
we obtain the same transformation function as in Example 6.

negNorm ′ :: Term F → Term F
negNorm ′ = runDownHom state hom Q0

Instead of introducing explicit placeholders in order to distribute the succes-
sor state, we could have also simply taken the encoding we first suggested, i.e.
via a function ρ of type ∀ a . (q , f a) → f q , and required as (an unchecked)
side condition that ρ must preserve the shape of the input. This approach was
taken in Gibbons’ generic downwards accumulations [10] in which he requires
the accumulation operation to be shape preserving.



Alternatively, we could have also adopted Gibbons’ earlier approach to down-
wards accumulations [9], which instead represents the downward flow of infor-
mation as a fold over a separately constructed data type called path. This path
data type is constructed as the fixed point of a functor that is constructed from
the signature functor. Unfortunately, this functor is quite intricate and not easy
to program with in practice. Apart from that, it would be difficult to construct
this path functor for each signature functor in Haskell.

In the end, our approach yields a straightforward representation of downward
state transitions that is easy to work with in practise. Moreover, the ability to
have a default behaviour for unspecified transitions makes for compact specifi-
cations as we have seen in Example 7. However, this default behaviour may also
lead to errors more easily due to forgotten transitions.

5.4 Making Top-Down State Transition Functions Modular

Analogously to bottom-up state transition functions, we also define a variant of
top-down state transition functions that has access to a bigger state space whose
components are defined separately.

type DDownState f p q = ∀ i . (Ord i , ?below :: i → p, ?above :: p, q ∈ p)
⇒ f i → Map i q

Translations between ordinary top-down state transitions and their gener-
alised variants are produced as follows:

dDownState :: DownState f q → DDownState f p q
dDownState f t = f (above, t)

downState :: DDownState f q q → DownState f q
downState f (q , s) = res where

res = explicit f q bel s
bel k = findWithDefault q k res

Similarly to their bottom-up counterparts, dependent top-down state transi-
tion functions that depend on the same state space can be combined to form a
product state transition:

(~) :: (p ∈ c, q ∈ c)⇒ DDownState f c p → DDownState f c q
→ DDownState f c (p, q)

(sp ~ sq) t = prodMap above above (sp t) (sq t)

prodMap :: Ord i ⇒ p → q → Map i p → Map i q → Map i (p, q)

This construction is based on the pointwise product of mappings defined by
prodMap, which we do not give in detail here. Since the mappings are partial,
we have to provide a default state that is used in case only one of the mappings
has a value for a given index. In accordance with the default behaviour of top-
down state transition functions, this default state is the state from above.



As an example, we will define a transformation that replaces variables bound
by let expressions with de Bruijn indices. For the sake of demonstration, we will
implement this transformation using two states: the scope level, i.e. the number
of let-bindings that are in scope, and a mapping from bound variables to the
scope level of their respective binding site.

The scope level state simply counts the nesting of let bindings:

class ScopeLvlSt f where
scopeLvlSt :: DownState f Int

instance ScopeLvlSt Let where
scopeLvlSt (d ,LetIn b) = b 7→ (d + 1)
scopeLvlSt = ∅

instance ScopeLvlSt f where
scopeLvlSt = ∅

Here we use the fact that if a successor state is not defined for a subexpression,
then the current state is propagated by default.

The state that maintains a mapping from variables to the scope level of their
respective binding site is dependent on the scope level state:

type VarLvl = Map Name Int

class VarLvlSt f q where
varLvlSt :: DDownState f q VarLvl

instance (Int ∈ q)⇒ VarLvlSt Let q where
varLvlSt (LetIn v b) = b 7→ ((v 7→ above) ∪ above)
varLvlSt = ∅

instance VarLvlSt f q where
varLvlSt = ∅

Note that the first occurrence of above is of type Int – derived from the type
constraint Int ∈ q – whereas the second occurrence is of type VarLvl – derived
from the type constraint VarLvl ∈ q in the type DDownState f q VarLvl .

Since we want to replace explicit variables with de Bruijn indices, we have
to replace the signature Let with the following signature in the output term:

data Let ′ e = LetIn ′ e e | Var ′ Int
type LetSig ′ = Let ′ ⊕ Sig

The actual transformation is defined as a stateful tree homomorphism:

class DeBruijnHom f q g where
deBruijnHom :: QHom f q g

instance (VarLvl ∈ q , Int ∈ q ,Let ′ � g)⇒ DeBruijnHom Let q g where
deBruijnHom (LetIn a b) = letIn ′ (Hole a) (Hole b)
deBruijnHom (Var v) = case lookup v above of

Nothing → error "free variable"



Just i → var ′ (above − i)

instance (Functor f ,Functor g , f � g)⇒ DeBruijnHom f q g where
deBruijnHom = simpCxt . inj

Note that we issue an error if we encounter a variable that is not bound by
a let expression. Otherwise, we create the de Bruijn index by subtracting the
variable’s scope level from the current scope level.

Finally, we have to tie the components together by forming the product state
transition and providing an initial state:

deBruijn :: Term LetSig → Term LetSig ′

deBruijn = runDownHom stateTrans deBruijnHom init
where init = (∅, 0) :: (VarLvl , Int)

stateTrans :: DownState LetSig (VarLvl , Int)
stateTrans = downState (varLvlSt ~ dDownState scopeLvlSt)

Due to its open definition, we can give the function deBruijn also the type
Term (Inc ⊕ LetSig)→ Term (Inc ⊕ LetSig ′), for example.

6 Bidirectional State Transitions

We have seen recursion schemes that use an upwards flow of information as well
as recursion schemes that use a downwards flow of information. Some compu-
tations, however, require the combination of both. For example, if we want to
extend the code generator from Section 4.6 to also work on let bindings, we
need to propagate the generated code upwards but the symbol table for bound
variables downwards.

In this section, we show two ways of achieving this combination.

6.1 Avoiding the Problem

The issue of combining two directions of information flow is usually circumvented
by splitting up the computation in several runs instead. For the code generator,
for instance, we can introduce a preprocessing step that translates let bindings
into explicit assignments to memory addresses and variables into corresponding
references to memory addresses.

This preprocessing step is easily implemented by modifying the stateful tree
homomorphism from Section 5.4 that transforms variables into de Bruijn indices.
Instead of de Bruijn indices we generate memory addresses.

At first, we define the signature that contains explicit addresses for bound
variables:

data LetAddr e = LetAddr Addr e e | VarAddr Addr
type AddrSig = LetAddr ⊕ Sig



The following stateful homomorphism then transforms a term over a sig-
nature containing Let into a signature containing LetAddr instead. The homo-
morphism depends on the same state as the de Bruijn homomorphism from
Section 5.4:

class AddrHom f q g where
addrHom :: QHom f q g

instance (VarLvl ∈ q , Int ∈ q ,LetAddr � g)⇒ AddrHom Let q g where
addrHom (LetIn x y) = letAddr above (Hole x ) (Hole y)
addrHom (Var v) = case lookup v above of

Nothing → error "free variable"

Just a → varAddr a

instance (Functor f ,Functor g , f � g)⇒ AddrHom f q g where
addrHom = simpCxt . inj

By combining all components of the computation including the state transi-
tion functions varLvlSt and scopeLvlSt from Section 5.4, we obtain the desired
transformation:

toAddr :: Addr → Term LetSig → Term AddrSig
toAddr startAddr = runDownHom stateTrans addrHom init

where init = (∅, startAddr) :: (VarLvl , Int)
stateTrans :: DownState LetSig (VarLvl , Int)
stateTrans = downState (varLvlSt ~ dDownState scopeLvlSt)

The additional argument of type Addr allows us to control from which address
we should start when assigning addresses to variables.

The actual code generation can then proceed on the signature LetAddr in-
stead of Let :

instance CodeSt LetAddr q where
codeSt (LetAddr a s e) = below s ++ [Store a ] ++ below e
codeSt (VarAddr a) = [Load a ]

To this end, we must also extend the HeightSt type class, which is used by the
code generator:

instance HeightSt LetAddr where
heightSt (LetAddr x y) = 1 + max x y
heightSt (VarAddr ) = 0

Now, we can use the function code from Section 4.6 with the type

code :: Term AddrSig → (Code,Addr)

Combining this function with the above defined transformation toAddr , yields
the desired code generator:



codeLet :: Term LetSig → Code
codeLet t = c

where t ′ = toAddr (addr + 1) t
(c, addr) = code t ′

When combining the two functions toAddr and code, we have to be careful
to avoid clashes in the use of addresses for storing intermediate results on the
one hand and for storing results of let bindings on the other hand. To this
end, we use the result addr of the code generator function code, which is the
highest address used for intermediate results, to initialise the address counter
for the transformation toAddr . This makes sure that we use different addresses
for intermediate results and bound variables.

6.2 A Direct Implementation

An alternative approach performs the bottom-up and the top-down computa-
tions side-by-side, taking advantage of the non-strict semantics of Haskell. This
approach avoids the construction of an intermediate syntax tree that contains
the required information.

For implementing a suitable recursion scheme, we make use of the fact that
both bottom-up as well as top-down state transition functions in their dependent
form share the same interface to access other components of the state space via
the implicit parameters ?above and ?below .

The following combinator runs a bottom-up and a top-down state transition
function that both depend on the product of the state spaces they define:

runDState :: Traversable f ⇒ DUpState f (u, d) u
→ DDownState f (u, d) d → d → Term f → u

runDState up down d (In t) = u where
bel (Numbered (i , s)) =

let d ′ = findWithDefault d (Numbered (i ,⊥)) qmap
in Numbered (i , (runDState up down d ′ s, d ′))

t ′ = fmap bel (number t)
qmap = explicit down (u, d) unNumbered t ′

u = explicit up (u, d) unNumbered t ′

The definition of runDState looks convoluted but follows a simple structure: the
two lines at the bottom apply both state transition functions at the current node.
To this end, the state from above and the state from below is given as (u, d) and
unNumbered , respectively. The latter works as t ′ is computed by first numbering
the child nodes and then using the numbering to lookup the successor states
from qmap as well as recursively applying runDState at the child nodes.

Note that the definition of runDState is cyclic in several different ways and
thus essentially depends on Haskell’s non-strict semantics: the result u of the
bottom-up state transition function is used also as input for the bottom-up state
transition function. Likewise the result qmap of the top-down state transition



function is fed into the construction of t ′, which is given as argument to the
top-down state transition function. Moreover, the definition of both u and qmap
depend on each other.

The above combinator allows us to write a code generator for the signature
LetSig without resorting to an intermediate syntax tree. However, we have to be
careful as this requires combining state transition functions with the same state
space type: both heightSt and scopeLvlSt use the type Int .

However, the ambiguity can be easily resolved by “tagging” the types using
newtype type synonyms. For the scopeLvlSt state transition, we define such a
type like this:

newtype ScopeLvl = ScopeLvl {scopeLvl :: Int }

The tagging itself is a straightforward construction given the isomorphism
between the type and its synonym in the form of a forward and a backward
function:

tagDownState :: (q → p)→ (p → q)→ DownState f q → DownState f p
tagDownState i o t (q , s) = fmap i (t (o q , s))

We thus obtain a tagged variant of scopeLvlSt :

scopeLvlSt ′ :: ScopeLvlSt f ⇒ DownState f ScopeLvl
scopeLvlSt ′ = tagDownState ScopeLvl scopeLvl scopeLvlSt

The state maintained by scopeLvlSt ′ can now be accessed via the function
scopeLvl in any compound state space containing ScopeLvl . A similar combi-
nator can be defined for bottom-up state transitions.

Using the above state, we define a state transition function that assigns a
memory address to each bound variable.

type VarAddr = Map Name Addr

class VarAddrSt f q where
varAddrSt :: DDownState f q VarAddr

instance (ScopeLvl ∈ q)⇒ VarAddrSt Let q where
varAddrSt (LetIn v e) = e 7→ ((v 7→ scopeLvl above) ∪ above)
varAddrSt = ∅

instance VarAddrSt f q where
varAddrSt = ∅

Here, we use again overlapping instance declarations to give a uniform instance
of VarAddrSt for all signatures different from Let .

We can now extend the type class CodeSt for the signature Let :

instance HeightSt Let where
heightSt (LetIn x y) = 1 + max x y
heightSt (Var ) = 0



instance (ScopeLvl ∈ q ,VarAddr ∈ q)⇒ CodeSt Let q where
codeSt (LetIn b e) = below b ++ [Store a ] ++ below e

where a = scopeLvl above
codeSt (Var v) = case lookup v above of

Nothing → error "unbound variable"

Just i → [Load i ]

Again, we have to be careful to avoid clashes in the use of addresses for storing
intermediate results on the one hand and for storing results of let bindings on the
other hand. Similar to our implementation in Section 6.1, we use the output of
the bottom-up state transition to obtain the maximum address used for storing
intermediate results.

Thus, we tie the different components of the computation together as follows:

codeLet ′ :: Term LetSig → Code
codeLet ′ t = c

where (c, addr) = runDState (codeSt ⊗ dUpState heightSt)
(varAddrSt ~ dDownState scopeLvlSt ′)
(∅ :: VarLvl ,ScopeLvl (addr + 1)) t

Note that in both implementations, we could have avoided the use of the
result of the state transition function heightSt to initialise the address counter
for bound variables. The modularity of our recursion schemes makes it possible
to replace the heightSt state transition function with a different one. In this way,
we could avoid clashes by using even address numbers for intermediate results
and odd address numbers for variables.

We already observed that stateful tree homomorphisms cannot discern the
direction in which the state is propagated. Thus we can supply them with a
state using either bottom-up or top-down state transitions. In fact, following the
bidirectional state transitions we considered above, we can provide a stateful
tree homomorphism with a combined state given by both a bottom-up and a
top-down state transition function. Such a transformation can for example be
used to rename apart all bound variables or inline simple let bindings.

7 Discussion

We have seen that with some adjustments tree automata can be turned into
highly modular recursion schemes. These recursion schemes allow us to take ad-
vantage of two orthogonal dimensions of modularity: modularity in the state
that is propagated and – courtesy of Swierstra’s [23] data types à la carte –
modularity in the structure of terms. In addition to that, we also showed how to
decompose transducers into a homomorphism and into a state transition part.
This high level of modularity makes our automata-based recursion schemes es-
pecially valuable for constructing modular compilers as we have illustrated in
our running example. However, we should point out that there are many more
aspects to consider when constructing compilers in a modular fashion [4].



The dependent forms of bottom-up and top-down state transitions that we
have developed in this paper are nothing else than the synthesised and inher-
ited attributes known from attribute grammars [22]. In fact, the combinator
runDState that runs both a bottom-up and a top-down state transition can
be seen as a run of an attribute grammar with corresponding synthesised and
inherited attributes. Viera et al. [24] have developed a Haskell library that allows
to specify such attribute grammars in Haskell in a very concise way.

We also obtain an added value by using a powerful functional language for
the embedding of our recursion schemes. One immediate benefit that we obtain
is the use of further generic programming techniques. For example, the heightSt
state transition function could have been defined entirely generically, without
having to extend the definition for every new signature.

Why Tree Transducers? In principle, tree transducers offer no increase in
expressiveness over (dependent) bottom-up state transition functions since we
allow for infinite state spaces anyway. However, due to their additional structure
they provide at least two advantages.

First of all, tree transducers are very flexible in the way they can be manipu-
lated in order to form new transformations. For example, we can extend a given
signature functor f with annotations of some type a by using the construction

data (f :&: a) e = f e :&: a

A term over the signature (f :&: a) is similar to a term over f but it additionally
contains annotations of type a at every subterm. We can provide a combinator
that modifies a tree transducer from F to G into one from F :&: A to G :&: A
that propagates the annotations from the input term to the output term [1].

Secondly, tree transducers can be composed. That is, given two bottom-
up (respectively top-down) tree transducers – one from F to G , the other one
from G to H , we can generically construct a bottom-up (respectively top-down)
transducer from F to H whose transformation is equal to the composition of the
transformations denoted by the original transducers [7]. The resulting transducer
then only has to traverse the input term once and avoids the construction of the
intermediate term [26]. Note that tree homomorphisms can be considered both
a special case of bottom-up and of top-down tree transducers and can thus be
composed with either kind.

The two abovementioned features also set tree transducers apart from other
generic programming approaches such as Scrap your Boilerplate [13, 12, 17] or
Uniplate [21]. We do not give the full technical details of the two features here
but the implementation can be found in the compdata package [2].

Extensions & Future Work While we only considered single recursive data
types, this restriction is not essential: following the construction of Yakushev
et al. [27] and Bahr and Hvitved [1], our recursion schemes can be readily ex-
tended to work on mutually recursive data types as well.



Note that the runDState combinator of Section 6.2 constructs the product of
the two state spaces u and d . Consequently, if u is a compound state space, we
obtain a product type that is not a right-associative nesting of pairs which we
require for the type class ∈ to work properly. However, this can be remedied by
a more clever encoding of compound state spaces as heterogeneous lists [14] or
generating instance declarations for products of a limited number of components
via Template Haskell.

The transducers that we have considered here have one severe limitation. This
limitation can be seen when looking at the implementation of these transducers
in Haskell: the parametric polymorphism of the type for placeholder variables
prevents us from using these placeholder variables in the state transition. This
would allow us to store and retrieve subterms that the placeholder variables
are instantiated with. The ability to do that is necessary in order to perform
“non-local” transformations such as inlining of arbitrary let bindings or applying
substitutions. However, we can remedy this issue by making the state a functor.
The type of bottom-up respectively top-down transducers would then look as
follows:

type UpTrans f q g = ∀ a . f (q a, a)→ (q (Context g a),Context g a)
type DownTrans f q g = ∀ a . (q a, f a)→ Context g (q (Context g a), a)

We can then, for example, instantiate q with Map Var such that the state is
a substitution, i.e. a mapping from variables to terms (respectively term place-
holders).

The above types represent a limited form of macro tree transducers [7]. Wile
the decomposition of such an extended bottom-up transducer into a homomor-
phism and a state transition function is again straightforward, the decomposition
of an extended top-down transducer is trickier: at least the representation with
explicit placeholders that we used for dependent top-down state transition func-
tions does not straightforwardly generalise to polymorphic states.

Note that the abovementioned limitation only affects transducers, not state
transition functions. We can, of course, implement inlining and substitution as
a bidirectional state transition. However, if we want to make use of the nice
properties of transducers, we have to move to the extended tree transducers
illustrated above.
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[14] Kiselyov, O., Lämmel, R., Schupke, K.: Strongly typed heterogeneous col-
lections. In: Haskell 2004: Proceedings of the ACM SIGPLAN workshop on
Haskell. pp. 96–107. ACM Press (2004)

[15] Knuth, D.E.: Semantics of context-free languages. Theory Comput. Syst.
2(2), 127–145 (1968)
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