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Abstract. Operational support is a specific type of process mining that
assists users while process instances are being executed. Examples are
predicting the remaining processing time of a running insurance claim
and recommending the action that minimizes the treatment costs of a
particular patient. Whereas it is easy to evaluate prediction techniques
using cross validation, the evaluation of recommendation techniques is
challenging as the recommender influences the execution of the process.
It is therefore impossible to simply use historic event data. Therefore,
we present an approach where we use a colored Petri net model of user
behavior to drive a real workflow system and real implementations of
operational support, thereby providing a way of evaluating algorithms
for operational support before implementation and a costly test using
real users. In this paper, we evaluate algorithms for operational support
using different user models. We have implemented our approach using
Access/CPN 2.0.

1 Introduction

Some business processes are unstructured or only very loosely structured. This is
the case where a process has never been formalized or where the process requires
a lot of freedom. Examples of such processes are processes in small very agile
companies, or processes in disaster handling or healthcare, where flexibility and
experience plays a more prominent role than a strictly structured process. While
such freedom may be good for an experienced user, it may not provide enough
support for less experienced users. Using process mining, it is possible to provide
operational support [3] for running processes of this kind. Under operational
support, users are provided with on-line information about the running process,
and can even be given recommendations about the next actions to be taken in
order to arrive at a goal [15].

In [I1], we defined a meta-model for operational support. Here, a client sends
a partial execution trace along with a query to an operational support service.
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A query is simply a question to which a response is received. Operational support
allows four types of queries. A simple query checks the performance of the current
partial execution trace, for example, what is the total time since the start of
current execution? A compare query compares the performance of the current
partial trace to other similar traces. For example, is the execution time of the
current trace to this point higher or lower than the average? A predict query
looks into the future of traces similar to the current and uses that to provide
predictions about the current trace. For example, what is the expected total
execution time for this trace? Finally, a recommend query gives the best possible
next action to be done based on the current partial trace. For example, what is
the best action to execute in order to complete the execution as fast as possible?

It is easy to evaluate algorithms for the first two types of queries (simple
and compare). These are basically lookup functions combined with standard
operators computing average, variance, etc. As shown in [I4] it is also possible
to evaluate predict queries using cross-validation. For example, when using k-
fold cross-validation, the set of process instances is partitioned in k parts. k — 1
parts are used to learn a predictive model. The instances in the remaining part
are used to evaluate the quality of the predictive model. Because historic data
is used, it is possible to compare the predicted value with the real value. This
experiment can be repeated k times thus providing insight into the quality of
the predictive algorithm.

Algorithms providing recommendations are much more difficult to evaluate.
Since recommendations influence the execution, it is impossible to directly use
historical data. Users will change their behavior based on these recommenda-
tions, so it is impossible to simply use the observed behavior where users got no
recommendations.

Here, we introduce a general setting for testing recommendations as shown
in Fig. Il At the bottom right we have a User. The user is executing a process.
The process may be implemented using a Workflow System and as shown here
or it may be ad-hoc. The user consults Operational Support to get advice about
which step to execute. The idea we present here is to model the user using a
colored Petri net (CPN) [§] model and have that model interact directly with a
real workflow system, i.e., Declare [2L[7] and real implementations of operational
support in the ProM framework [I3}[19]. That way we do not need real users,
making the approach much more affordable, yet still interact with real systems,
so we get realistic results. Using real systems instead of modeled counter-parts
also makes it much easier to do the modeling, as we only have to focus on the
user behavior, and not on replicating already existing systems and algorithms.
Our approach also allows rapid prototyping of algorithms by implementing them
using a CPN model and directly integrating them in a real tool for operational
support. We can then use the algorithms directly in tools acting as clients for
operational support, including workflow systems and our testing platform.

The contribution of this paper is two-fold: First and most importantly, we
present the test suite modeled in colored Petri nets that provides a means to
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test simple algorithms for operational support in a cost-effective way. The al-
gorithms we present here are not intended as real examples of algorithms for
providing operational support, but only to illustrate the test-suite. Second, we
provide a framework based on colored Petri nets making it very easy to prototype
algorithms for operational support. Through log generation of the CPN model,
we are able to also provide an evaluation of simple recommendation algorithms
for operational support in a simple but non-trivial setting.

The term operational support refers to a collection of process mining tech-
niques [I] executed while people are still working on cases. Several papers de-
scribe techniques to predict the remaining total execution time of running cases.
See [3L4] for pointers to such techniques. Another type of operational support,
more relevant for this paper, is providing recommendations. In [16] simple ad-hoc
models are created to support recommendation. In [I7], case-based reasoning is
applied to find similar cases. See [14] for a more general overview of recom-
menders. To the best of the authors’ knowledge, there is no preexisting work
on unified testing recommenders except for ad-hoc testing of individual recom-
menders compared to no support.

In [I1] a generic framework for operational support based on queries is pro-
posed. This is used in this paper. In [19] the operational support service of ProM
is modeled and analyzed using CPN Tools [6]. The integration of CPN Tools with
other components was described in [I8]. In [9] it was shown how CPN compo-
nents and workflow components can be exchanged for testing and simulation.
This approach will also be followed in this paper.
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We use Declare [2l[7] as an example of a workflow system. It is selected because
it allows more flexibility than procedural approaches to process modeling and
therefore benefits from recommendation techniques.

The remainder of the paper is organized as follows: In Sect. [2, we provide
the background needed to understand the remainder of the paper including a
running example. In Sect. Bl we discuss the user model, focusing on the modeling
of the time needed to execute tasks. In Sect. d, we discuss the recommendation
algorithms tested in this paper including presenting a generic CPN model that
can be used as a starting point for rapid prototyping of operational support
algorithms. Section [{] provides a description of the experiments carried out to
evaluate the algorithms described using the various user models. Finally, Sect.
summarizes our conclusions and provides directions for future work.

2 Background

In this section we provide the background needed to understand the rest of this
paper. We briefly introduce the Declare language which is an example of a work-
flow language that we use for modeling our running example. We also introduce
an architecture for operational support. We summarize the Access/CPN 2.0 [I§]
library for running a CPN model together with software components.

Running Example and Declare. Consider the example in Fig. 2l modeling a
study process. This example is created in Declare [7], which is a workflow system
based on a declarative language. Compared to conventional procedural workflow
systems, Declare allows for much more flexibility [2]. In Declare, tasks are shown
as rectangles and can initially be executed in any order. Tasks are constrained by
constraints, shown as arcs. We shall not go into details about the constraints of
Declare but refer the interested reader to [2[7]. Here, we just supply an abstract
overview of the behavior of the model. Basically, a student can choose either an
academic or a practical path to a degree. A student can initially either choose
to go to HighSchool or to get a job (Work). Going to high school allows students
to be admitted for a BSc (the academic path). Alternatively, a student may
decide to get a job. Having had a job allows the student to enter two practical
supplementary courses (PCoursel and PCourse2). In order to be admitted to the
four theoretical courses (TCoursel-TCourse4), a student must both have had a
job and also been to high school. Having completed all six supplemental courses
is a prerequisite to Qualify for starting a master’s study. A student is also allowed
to start a master’s study if he has completed a BSc. Out of the two master’s
degrees offered, only one can be completed (for financial reasons). Only after
completing a master’s degree in business information systems (MSc, BIS) can a
student become a true Master of BPM.

In our example, we can optimize towards at least two goals: getting a master’s
degree as fast as possible or becoming a master of BPM. The difficulty for a
student is that he has at any point a lot of freedom. For example, he can at
any point in time decide to get a job which may open new possibilities. During
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the execution many activities may be allowed (e.g., after going to high school
and having a job, BSc, the 6 courses and Work are allowed actions), making
it difficult to select the best action to take. Operational support aims to assist
users in making such decisions. For example, based on historic information we
can recommend particular actions in a given context.

Operational Support Architecture.
Operational support can be implemented
in many ways. For example, one way is just
to suggest executing a random task and
another way is to look at what students

did before. In order to support any present :
and future algorithms in a coherent way,
we use the architecture for operational sup- Client OS Service
port shown in Fig.[Bl Here, a Client commu-
nicates with a Workflow System and with
the operational support service (OS Ser-
vice; OSS in the following). The OSS for- pig. 3. Architecture of the opera-
wards requests to a number of operational tional support in ProM

support providers (OS providers; providers
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responses from the providers which it sends back to the Client. In [19] we
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s N
1 public interface Provider extends Serializable {
2 boolean accept (Session s);
3 void destroy(Session s);
5 <R, L> Recommendation<R> recommend ( Session s,
6 XLog availableltems , L query);
8 void updateTrace(Session session, XTrace trace);
0 )
N o

Listing 1. Provider interface

presented a protocol and architecture making it possible to access different al-
gorithms using a common protocol and this architecture. In [11] we defined a
common meta-model for operational support, allowing a common interface to
all algorithms.

In order to implement an algorithm for the operational support service, we
need to implement the interface in Listing [Il The interface also has methods for
the other kinds of queries, but we have hidden them as we are not interested in
them here. accept and destroy control the life-cycle of the provider, and recom-
mend handles actual queries. Queries get a set of all availableltems to pick among
and a query to optimize towards. The result is a Recommendation, which basically
is an event recommended to execute. updateTrace is called whenever the client
has executed more events. All methods have an additional session parameter
which can be used to store case-local data.

Cosimulation Using Access/CPN 2.0. Our goal is to take a model similar
to the one in Fig.[Mland refine the User using a sub-module described as a colored
Petri net. This is already supported by CPN Tools [6], a tool for editing and
analysis of colored Petri nets. Furthermore, we want to use the actual Declare
workflow system as a replacement for the substitution transition Workflow System
and the actual implementation of operational support in ProM as a replacement
for the Operational Support substitution transitions. Access/CPN 2.0 [1§] is a
library for interaction between CPN models and Java programs, and supports
exactly this kind of interaction.

Using Access/CPN 2.0, it is possible to implement a simple interface and have
the library run a cosimulation, where the model is executed and synchronized
with the Java code.

3 User Behavior Modeling

In this section, we show how we model user behavior. Our model is a con-
crete implementation of the abstract testing platform in Fig. [l The model is
parameterized and allows different user behaviors. While we allow configurabil-
ity of probabilities of completing or cancelling a current task, more interesting
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configuration options include which timing model to use and whether a user uses
operational support. Our entire model comprises 14 pages, 127 places, and 41
transitions.

The top level of our model can be
seen in Fig. @ It consists of the Work-
flow System (left) and the User (right).
The workflow system has exposes a num-
ber of Instances of the process to be exe-

Instances (1)H1'(1,"Study")
NAMEDINSTANCE
Consistent (1 H1'(1,true)

INSTANCExBOOL

cuted (cf. instance 1 for the Study process Close

in Fig. @). For each instance, it also indi- NAMEDINSTANCE

cated whether the instance is Consistent, offers [BH 1. {Jratianosool)++
i.e., if it can safely be terminated. Further- ¥ Wiy

more, the workflow system also exposes a Workflow

number of Offers which are concrete tasks System wI User
that can be executed by users. For exam- becare User

WI

ple, from the study model shown in Fig.
initially the possible offers for instance 1
are HighSchool and Work as seen as tokens
on the Offers place. A user can pick an of-
fer and inform the workflow system that
is has Selected that work item. The work-
flow system then either approves or rejects
the request. If the request is Rejected, it Fig. 4. Workflow system and user
is dropped. Otherwise if the request is Ap-

proved, the user starts working, for example, from Fig. @l HighSchool has been
approved by the workflow system and is seen as a token on the Approved place.
At some point, the user either cancels work or completes it, i.e., the workflow
system is informed using Cancelled and Completed places. When an instance is
consistent, i.e.; all the required work items offered to the user have been com-
pleted then the user can Close the instance.

Approved (1)1 (1,"HighSchool")@0

WI

Cancelled
WI
Completed

WI

3.1 User Model

A user is modeled as shown in Fig.[ll Users are generated on-demand (depending
on the instances that have sent from the workflow system) by the Assign page,
which generates users as needed up to a certain threshold (Vacancies). A user
starts off being Idle. An idle user can select to Pick Item and start working.
This can be done using the aid of Operational Support. After a task has been
Requested, it can be executed (or cancelled), making sure to inform the workflow
system accordingly. Alternatively, an idle user can Close a consistent instance
(i.e., an instance where all the required work items have been completed).

The operational support service can handle recommendation requests (Re-
commend) and provide Responses. Furthermore, the OSS can be notified when
the user has decided to End Session, which is useful for clean-up. After a user has
executed an event it is sent to Add Event to allow the operational support service
to construct an execution trace. The operational support service is implemented
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as a Java module using Access/CPN 2.0 [I8]. It comprises 683 lines of code, 227
of which handles a very flexible interface to CPN models allowing formatting of
queries in many ways and 143 lines of GUI integration code, making the actual
interface just over 300 lines.

Pick Item Model. In Fig. [l we see that an idle user first needs to decide
whether to use support or not. We do this before actually asking for support due
to efficiency of simulation. While a more realistic scenario would be to ask for
support and use that as a guide, we can see this as just another algorithm for
support, and we use the No Support to model a completely clueless user picking
at random. The probability for whether support is used or not is configurable.
No matter which branch we pick, we end up with a new work item on Selected
and transferring control to Requested. It is only when we use support that we
send Recommend requests to operational support and get Responses.

When we use operational support, we need a list of all enabled events for
a given instance. We thus do as in Fig. [t we first Select Instance, i.e., which
instance of the process to work on. Then we build a list of all events enabled in
that instance (Populate Offers for the Selected Instance). From Fig. [7 Selected
Instance will be populated by High School and Work. When we have added all
events to the list, we can Perform Query, sending the list of enabled events to
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Fig. 6. Pick item model

Recommend of the operational support service (cf. token on the Recommend in
Fig.[d). We are then Waiting for a Response, and when it arrives, we blindly Pick
Recommended, inform the workflow system of which task we have Selected and
transition to the Requested state. For the modelling notations we use here are

discussed in [5].
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Fig. 7. Implementation of picking using operational support
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Task Execution. Task execution (Fig.[R])
at the abstract level starts when a task is
Requested. If the workflow system Rejected
the request, it is Aborted and the user re-
turns to the Idle state. If the request is Ap-
proved, it is Executed, the workflow system
is informed of success (Completed) or fail-
ure (Cancelled), and the operational sup-
port service is notified if a new task was
executed (Add Event). We have four differ-
ent implementations of Execute: one with
constant execution times, one where execu-
tion times are sampled from a probability
distribution, one where execution time is Fig. 8. Abstract task execution
dependent on the previously executed task,

and one where execution time is dependent

on the stress level of the user.

WI RESOURCE

Constant Time or Sample from Probability Distribution. The first two imple-
mentations can be treated together as constant time can be viewed as a specific
probability distribution. Here, we assume that the execution time for tasks is
independent of what was done before and the stress level of the user. Thus, we
start in the Requested state in Fig. @l Due to the timing model of CPN mod-
els, we need to make the decision of whether to Cancel Work or to Complete
Work as soon as we Start Work. Thus, we pick a random number and if it is
below a configurable threshold (Cancel Rate) then Cancel is selected, otherwise
In Progress (cf. user 1 is executing Work in Fig.[d). This module is only enabled
if the Timing Model is PROB. We get the timing information from shared Time
Database and Cancel Database, which contain the timing information for suc-
cessfully executing and the penalty for cancelling an activity. If we Cancel Work,
we inform the workflow system and go to the Idle state, and when we Complete
Work, we inform the operational support service as well as the workflow system
before transitioning to the Idle state. The transitions all have a guard binding
transtype, which indicated when a work item is started, and either cancelled or
completed. This is used to subsequently import a simulation log into ProM for
further analysis.

Batch Processing. The idea of this timing model is that if one executes similar
tasks one after another, then one becomes faster due to step-up time reduction
and learning effects. To model this “conveyor belt effect”, we need to keep track
of the last executed task and how many times we have executed the same task.
In our example, we consider all the practical courses to be similar enough to
use batch processing and all theoretical courses as well. In Fig. we see the
start of the module for batch processing (the remainder is the same as in Fig.[d).
Instead of just one start transition, we now have two: one to Start New Work and
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Fig. 9. Task execution model based on a probability distribution

one to Start Batch Work. The apparent complexity is due to the two transitions
doing almost the same. Both have access to the two configuration options and
two databases as the Start Work transition in Fig. [0 The place Last keeps track
of which task we executed last and how many times we have executed a similar
task. We read the last task from Last and compare it to the current task to
execute. If they are the same, we Start Batch Work and if they are not the same,
we Start New Work. In both cases, we update Last accordingly and if we execute
batch work, we let the timing be dependent on how many times we have executed
the same task.

Ezecution Time influenced by Workload. According to “Yerkes-Dodson Law of
Arousal”, the execution speed increases as the stress increases up to a certain
optimal level beyond which the performance decreases [T0,12,20]. In our model
we let the execution time be dependent on the number of tasks offered in the
queue for a user. This can be modeled as in Fig. [l Like for batch processing,
we only see the initial fragment as the remainder is the same as in Fig. [Ql The
basic idea is that we need to count how many tasks are in Offers. This is the
same construction as we used to build a list of all tasks for operational support
in Fig. [, and has therefore been hidden in a substitution transition Count Tasks
for legibility. Otherwise, Start Work is the same as in the simple case, except
we compute the execution time with an extra parameter, namely the number of
available tasks (ct) on the Count place for each instance (i).
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Fig. 10. Task execution model implementing batch processing
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Fig. 11. Task execution taking workload into account

4 Recommendation Algorithms

In this section, we describe the four recommendation algorithms evaluated using
simulation. Two of the algorithms are completely general and require no con-
figuration, one is general but requires configuration, and one only works for our
running example.

We can implement an algorithm by directly implementing the interface in
Listing [l For simple algorithms, this includes a lot of overhead, which may not
be needed for quick testing. For this reason, we have created a generic implemen-
tation of the Provider interface using Access/CPN 2.0. This just requires that
implementers make a simple CPN model. The generic connector comprises 505
lines of Java code including 206 lines of GUI integration code, making for just
under 300 lines of logic.

To make it easy for implementers to get started, we have developed a tem-
plate model which can be used to very quickly prototype operational support
algorithms. The model comprises 7 pages, 30 places and 12 transitions, but a
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user typically only has to worry about a single page. In the remainder of this
section, we introduce our generic template model, how to implement the two
simplest providers using this framework, we give a brief overview of a more ad-
vanced provider and show how we developed a provider specific for our running
example. The reason for going through the operational support service instead
of just incorporating the providers directly in the model is to improve reusabil-
ity. First of all, we can use any provider from any model and do not have to
copy one algorithm from one test model to another. Second, we can use the al-
gorithms immediately and directly from any tool allowing operational support.
This decoupling makes it easy to test algorithms on humans interacting with a
workflow system if we do not want to just rely on simulation results.

4.1 Provider Model

The provider model quite closely re-
flects the interface in Listing [l At
the top level (Fig. [[2]) we handle Ac-
cept calls (corresponding to the accept
method) and the kind of query (cor-
responding to recommend). The up-
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Response

SxS BOOL

Setup

:
i

EVENTS

Simple Simple
dateTrace method is not represented Query Response G
explicitly; instead the Traces place
contains all currently active partial Compare Compare

Query Response

traces. The destroy method is not

. Query
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handled by the plug-in. Query Response
Provider setup just decides whether

to accept or ignore a session. The de- Recommend Recommend
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ﬂl 'U' 'U'

fault implementation unconditionally
accepts sessions. The Query module
separates each of the four kinds of
queries to their own pages.

uery |

Fig. 12. Top model of a provider

Random Provider. The random provider just recommends a random enabled
task from the list of available tasks. Thus, we expect this provider to have the
same behavior as using no operational support at all and is put here as a base-
line to compare with the more advanced recommendation techniques. The full
implementation is shown in Fig. I3l We receive a request on Recommend Query.
The request contains evts, a list of available tasks. Our response is just a random
event picked using pickRandomEvent if it exists, or a dummy response otherwise
(so we always provide an answer).

Batch Provider. The batch recommender always recommends, if possible, the
same event as the one executed last. If this is not possible, it just recommends
a random event. This is intended to work together with the batch timing, where
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Recommend™ (d, evts, done) Random evt Recommend
Query recommender Response
Q input evts; R
output evt;
action
if evts =[]
then event ""
else pickRandomEvent(evts)

Fig. 13. Random recommender

EVENTS

(q, evts, done)

Recommend
Query

Q

Recommend
Response

[Out] R

input (evts, trace);

output evt;

action

if evts =[]

then event ""

else pickBatchEvent(trace,evts)

Fig. 14. Batch recommender

executing similar tasks together is faster than executing them interleaved with
others. The implementation of the batch provider shown in Fig.[Idlis very similar
to the random provider, except we now also make use of the execution Trace and
use the pickBatchEvent function to pick the event that is similar to the last
executed one if one exists, and otherwise a random event.

Model-Specific Provider. The authors are very familiar with the running
example, and therefore have an idea of the best way to execute it. We can
encode this knowledge in a model-specific recommender. While the previous two
recommenders work with any model, they are also not very intelligent or good
at finding optimal executions (see also the next section on experiments). By
making a model-specific recommender, we can make one that is better, but less
generally applicable.

Creating a recommender using our framework is very simple, so we can im-
plement a strategy recommending the academic route directly as in Fig. The
implementation has a set of events that should always be recommended with
high priority if offered (Preferred). The transition Preferred Activity checks if a
preferred event is among the offered ones and if so recommends it. The transition
has high priority and will thus be selected before others. If no preferred activity
is available, we just return the first (Other Activity). This exploits a known best
(at least in some settings) implementation and the fact that all the events are
only offered once in this model.

4.2 Log-Based Recommender

We want a recommender that provides better advice than guessing randomly,
but at the same time, we would like to avoid models or situation specific
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Fig. 15. Model-specific recommender

recommenders. For this purpose the log-based recommender is designed. This
provider uses a historical log as guidance for providing recommendations. The
idea is that we have a predicate selecting traces from the log we consider to be
the same as the current one. We then compute a value on all such traces and
return the next event of the trace which yields the best result. In our example,
we would consider all traces with the same sequence of completed events similar
to the current trace. Our computation would be the complete execution time,
and our order would prefer shorter execution times.

The log-based provider is implemented in Java and comprises 513 lines of
code, all of which is logic. Furthermore, this provider depends on a complicated
library for querying XML documents using XQuery as discussed in [I1]. All in
all, we do not want to duplicate this code in a CPN model.

5 Experiments

In this section we outline how we have used our testing platform (described in
Sect. [3)) to test the various providers described in Sect. dl First of all, we per-
form tests with the random recommender for all timing models to demonstrate
that this yields the same as not using operational support. Also, we use this to
eliminate the simplest timing model (constant time for execution) from future
tests. Then we evaluate the batch and model-specific recommenders for the re-
maining timing models. Finally, we evaluate the log-provider using “historical
logs” generated by the random provider. We evaluate the providers according to
our two goals: shortest execution time and highest success rate, where a trace is
successful if the task Master of BPM is executed.
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Table 1. Random Provider

Support Time Model
CONST PROB BATCH WL

o 0 3998 4029 3941 2206
g 50 4024 3971 3905 2207
) 90 4014 3994 4015 2220

100 4034 4071 4043 2205
@ 0 9.0 10.3 10.8 9.2
9 50 11.5 11.2 11.1  10.5
5] 90 11.0 10.8 10.9 11.2
n 100 10.7 11.4 11.5 10.2

5.1 Random Provider

Our first test is more a sanity test to test that everything works; if tasks are
picked at random with the same probability, it should not matter whether we use
support or not. Furthermore, we expect the execution time to be the same for
the timing models using constant time as a probability distribution. Finally, we
expect the success rate to be nearly the same for all executions, independently
of how much support is used and which timing model is used.

In Table [l we see the results of our first experiments. The table is split in
two: the top part shows the average execution time for a trace and the bottom
part the success rate as defined above. We show results for each timing model
(CONST = execution time for each task is a constant, PROB = execution is
independent and identically distributed, BATCH = execution time is dependent
on whether you execute the same task more than once, and WL = execution
time decreases as stress increases) and for four different values of support. Here,
0% support means that we always chose at random and 100% support means we
always ask operational support for advice. All numbers represent 1000 traces.

We see that the support percentage has no effect on either the execution time
or the success rate for the tasks with the same time model. We also see that
the CONST and PROB time models have the same behavior: the execution time
and the success rate are very similar for those. The BATCH time model also has
similar though slightly lower execution time whereas the WL time model has a
significantly shorter average execution time. The reason for this is that they are
allowed to execute tasks faster (if randomly batching or having more tasks in
the work list). The qualitative measurement, the success rate does not change
(as expected as we only change how long tasks take, not how they are selected).

5.2 Batch Provider

For our second test we want to evaluate the simple batch heuristics. We do not
need to perform executions for 0% support (it is the same as the numbers in
Table [I]). We have also removed the simple time model, CONST as it yields the
same results as PROB and is very far from reality. The results are summarized
in Table 2
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Table 2. Batch Provider Table 3. Model-specific Provider
Support Time Model Support Time Model
PROB BATCH WL PROB BATCH WL
© 50 4085 3996 2372 ) 50 4047 4001 2376
g 90 4178 4095 2595 £ 90 3866 3766 2797
& 100 4198 4134 2641 & 100 3793 3711 2946
% 50 11.5 11.8 11.5 % 50 31.0 30.8 32.3
g 90 8.5 13.4 12.5 g 90 45.8 46.5 46.1
£ 100 12.8 15.4 14.4 £ 100 47.3 51.9 51.2

We see generally and sometimes even significantly larger execution times us-
ing the batch provider compared to using the random provider (from Table [I]).
Surprisingly, we also see the execution time increase when the support rate goes
up and even for the BATCH time model, which would be expected to benefit from
batching. The reason is that while the batch provider recommends batching to-
gether similar tasks, it also suggests repeating working as we see in Fig. 2] Work
and Master of BPM are the only tasks that can be executed more than once.
Thus, this provider does not force progress, and may even prevent it, leading to
longer execution times even though individual tasks are executed faster.

5.3 Model-Specific Provider

This is the same test as the one performed for the batch provider, except we now
evaluate the provider specially tailored to our model. The results are summarized
in Table B

We see that for the simple timing models, this provider significantly outper-
forms the previous, as it successfully picks the shortest path to an education. We
also see that when timing is workload-dependent, this provider performs worse.
The reason is that while the expected time to get a BSc is 3 years and the sum
of the time to take the 6 courses (half a year each) and get a qualifying job (1
year) is 4 years, it is faster to take the 6 courses as the concurrent workload is
faster. Thus our smart solution is suboptimal in this case. Regarding the qual-
itative results, we see that following recommendations leads to higher success
rates. The reason the success rate approaches 50 and not 100 is that we do not
control when an execution ends, so after executing MSc, BIS (or MSc, ES if we
do not listen to operational support) we have a 50% chance of terminating the
execution and a 50% chance of continuing.

5.4 Log Provider

Here we need some historical data. As this is a model created for demonstration
purposes, we do not have any such data. We can, however, generate an execution
log using our model. We simply allow CPN Tools to generate a simulation log
and import it into ProM. In Tables [ and [l we see the results of using the log
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Table 4. Log Provider (Running Time) Table 5. Log Provider (Success)
Support Time Model Support Time Model

PROB BATCH WL PROB BATCH WL
o) 50 3073 3026 1674 ] 50 4096 4081 2327
§ 90 2191 2032 1110 =2 90 3920 4639 2278
& 100 1957 1642 957 = 100 3832 4909 2257
% 50 9.6 57 7.0 q@ 50 24.5 14.8 15.5
S 90 4.1 10.2 1.3 S 90 45.8 28.7 17.5
Uﬂ) 100 0.4 13.6 0 mS 100 48.2 44.5 24.0

provider. We have in all cases used a log generated using random selection, but
we make sure to use a log generated using the same time model as the one used to
generate the results. We use the log provider to optimize for shortest execution
time (Table M) and for highest chance of obtaining a Master of BPM (Table. [H]).
This is a good indication of what happens when seeding a recommender with
actual historical data from the group of people about to execute the process in
a similar situation.

We see that when optimizing for shortest running time we in all cases obtain
significantly shorter running time when using support than when we do not. Also,
the running time is in all cases much shorter than for all previous providers. The
success rate is very low, however. This is because it is possible to make a shorter
run by picking MSc, ES as this does not enable Master of BPM. When optimizing
for success, we see that the success rate increases and is as good as for the hand-
crafted provider. The running time is higher than when we optimize for running
time, but the success rate increases and is comparable to the success rate of
the hand-crafted provider. The success rate for the workload timing model is
surprisingly low, which is because the workload path favors the practical path,
which needs to execute more tasks, and hence the historical data may not contain
a trace with the same interleaving of the courses.

In Table [6] we have shown the results of

runs using logs generated using a different Table 6. Using foreign providers
timing model. This is an indication of how

well a recommender seeded with randomly Source Time Model
generated data using the correct model but PROB BATCH WL
with wrong assumptions about the user be- PROB 1957 1772 1011
havior. In other words, this is an indication BATCH 1643 1642 1007

o . . WL 1632 1609 957
of the stability of the simulation results.

We have not shown the value of the suc-
cess rate as it is the same as the one measured in Table @ as we can become a
Master of BPM using both the academic and practical track.

We see that it does not matter much if the log is generated from data with a
BATCH or WL time model. Surprisingly, we get the shortest execution times in
all cases when using data generated with a timing model taking the workload into
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account. In fact, the log generated using a simple probability measure performs
worse even when used for the matching time model. This is because there are
other logs favoring a trace that is also beneficial for this timing model.

6 Conclusion and Future Work

In this paper, we have presented a CPN model for testing operational support
providers. The model is connected to the Declare workflow system and the op-
erational support service in ProM using Access/CPN 2.0, making it possible to
test real systems with a model of a user. Our user model is parameterizable,
and can exhibit four different kinds of timing behavior. We have also presented
a CPN model which can be used to quickly prototype an operational support
provider for integration in ProM and subsequent use in both our testing platform
and existing clients of the operational support service. We believe that using this
approach is also useful in other settings where an algorithm modifies the domain
it is doing computations on.

We have used our test suite to test four different recommendation providers.
We see that contrary to what is often observed, simple algorithms fail compared
to more sophisticated adaptive algorithms. We also see that a hand-crafted algo-
rithm using domain knowledge does not necessarily outperform a smart general
algorithm when the domain knowledge builds on wrong assumptions (here about
the user behavior). Even simple algorithms designed to exploit certain traits of
models (like speedup in batch processing) may fail if the assumption is correct,
if some other aspect is ignored (like the need to work towards termination and
not just focus on batching tasks together). We also see that our log provider,
which uses historical data, is surprisingly stable and handles situations when
input data does not completely correctly reflect reality, making seeding such
algorithms with generated data possible. We also see that if the algorithm pro-
viding recommendations is not optimal, user deviations can be a good idea.
Even for the log provider, which proved very efficient, deviations may benefit
execution in the long run as users may reach completely new and more efficient
ways of executing the process by chance, making it possible to provide better
recommendations in the future.

Our experiments show that experimental results may deviate quite a bit from
expectations, making testing invaluable. We of course need to validate that sim-
ulated results show the same tendencies as real life and future work includes
testing recommendations in real life. We also see that the winner by far was
the most sophisticated algorithm, making future research into even better al-
gorithms very interesting. One caveat of the current implementation is that it
completely fails to provide recommendations if the historical data does not con-
tain a similar trace (which is quite likely after executing 5-8 tasks). This can
be alleviated by using a model annotated with timing information for providing
recommendations instead of just a flat log.
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