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Abstract. We describe a simple, conceptual forward analysis procedure
for ∞-complete WSTS S. This computes the so-called clover of a state.
When S is the completion of a WSTS X, the clover in S is a finite
description of the downward closure of the reachability set. We show
that such completions are ∞-complete exactly when X is an ω2-WSTS ,
a new robust class of WSTS. We show that our procedure terminates in
more cases than the generalized Karp-Miller procedure on extensions of
Petri nets. We characterize the WSTS where our procedure terminates as
those that are clover-flattable. Finally, we apply this to well-structured
Presburger counter systems.

1 Introduction

Context. Well-structured transition systems (WSTS) [Fin87,Fin90,FS01,AČJT00]
are a general class of infinite-state systems where coverability—given states s, t,
decide whether s ≥ s1 →∗ t1 ≥ t for some s1, t1—is decidable, using a simple al-
gorithm that works backwards. The starting point of the series of papers entitled
Forward analysis for WSTS, part I: Completions [FG09a], and Forward analy-
sis for WSTS, part II: Complete WSTS [FG09b] Simplis our desire to derive
similar algorithms working forwards, namely algorithms computing the cover
↓Post∗(↓ s) of s. While the cover allows one to decide coverability as well, by
testing whether t ∈ ↓Post∗(↓ s), it can also be used to decide the boundedness
problem, i.e., to decide whether the reachability set, Post∗(s), is finite. No back-
ward algorithm can decide this. In fact, boundedness is undecidable in general,
e.g., on reset Petri nets [DFS98]. So the reader should be warned that comput-
ing the cover is not possible for general WSTS. Despite this, the known forward
algorithms are felt to be more efficient than backward procedures in general:
e.g., for lossy channel systems, although the backward procedure always termi-
nates, only a (necessarily non-terminating) forward procedure is implemented
in the TREX tool [ABJ98]. Another argument in favor of forward procedures
is the following: for depth-bounded processes, a fragment of the π-calculus, the
backward algorithm of [AČJT00] is not applicable when the maximal depth of
configurations is not known in advance because, in this case, the predecessor con-
figurations are not effectively computable [WZH10]. But the forward Expand,
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Enlarge and Check algorithm of [GRvB07], which operates on complete WSTS,
solves coverability even though the depth of the process is not known a priori
[WZH10].

State of the Art. Karp and Miller [KM69] proposed an algorithm, for Petri
nets, which computes a finite representation of the cover , i.e., of the downward
closure of the reachability set of a Petri net. Finkel [Fin87,Fin90] introduced
the framework of WSTS and generalized the Karp-Miller procedure to a class of
WSTS. This was achieved by building a non-effective completion of the set of
states, and replacing ω-accelerations of increasing sequences of states (in Petri
nets) by least upper bounds. In [EN98,Fin90] a variant of this generalization
of the Karp-Miller procedure was studied; but no guarantee was given that the
cover could be represented finitely. In fact, no effective finite representations of
downward-closed sets were given in [Fin90]. Finkel [Fin93] modified the Karp-
Miller algorithm to reduce the size of the intermediate computed trees. Geeraerts
et al. [GRvB07] recently proposed a weaker acceleration, which avoids some
possible underapproximations in [Fin93]. Emerson and Namjoshi [EN98] take
into account the labeling of WSTS and consequently adapt the generalized Karp-
Miller algorithm to model-checking. They assume the existence of a compatible
dcpo, and generalize the Karp-Miller procedure to the case of broadcast protocols
(which are equivalent to transfer Petri nets). However, termination is then not
guaranteed [EFM99], and in fact neither is the existence of a finite representation
of the cover. We solved the latter problem in [FG09a].

Abdulla, Collomb-Annichini, Bouajjani and Jonsson proposed a forward pro-
cedure for lossy channel systems [ACABJ04] using downward-closed regular lan-
guages as symbolic representations. Ganty, Geeraerts, Raskin and Van Begin
[GRvB06b,GRvB06a] proposed a forward procedure for solving the coverability
problem for WSTS equipped with an effective adequate domain of limits, or
equipped with a finite set D used as a parameter to tune the precision of an
abstract domain. Both solutions ensure that every downward-closed set has a
finite representation. Abdulla et al. [ACABJ04] applied this framework to Petri
nets and lossy channel systems. Abdulla, Deneux, Mahata and Nylén proposed a
symbolic framework for dealing with downward-closed sets for Timed Petri nets
[ADMN04].

Our Contribution. First, we define a complete WSTS as a WSTS S whose
well-ordering is also a continuous dcpo (a dcpo is a directed complete partial
ordering). This allows us to design a conceptual procedure CloverS that looks
for a finite representation of the downward closure of the reachability set, i.e.,
of the cover [Fin90]. We call such a finite representation a clover (for closure of
cover). This clearly separates the fundamental ideas from the data structures
used in implementing Karp-Miller-like algorithms. Our procedure also termi-
nates in more cases than the well-known (generalized) Karp-Miller procedure
[EN98,Fin90]. We establish the main properties of clovers in Section 4 and use
them to prove CloverS correct, notably, in Section 6.
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Second, we characterize complete WSTS for which CloverS terminates.
These are the ones that have a (continuous) flattening with the same clover. This
establishes a surprising relationship with the theory of flattening [BFLS05]. The
result (Theorem 7), together with its corollary on covers, rather than clovers
(Theorem 8), is the main achievement of this paper.

Third, and building on our theory of completions [FG09a], we characterize
those WSTS whose completion is a complete WSTS in the sense above. They
are exactly the ω2-WSTS , i.e., those whose state space is ω2-wqo (a wqo is a
well quasi-ordering), as we show in Section 5. All naturally occurring WSTS are
in fact ω2-WSTS. We shall also explain why this study is important: despite the
fact that CloverS cannot terminate on all inputs, that S is an ω2-WSTS will
ensure progress, i.e., that every opportunity of accelerating a loop will eventually
be taken by CloverS.

Finally, we apply our framework of complete WSTS to counter systems in Sec-
tion 7. We show that affine counter systems may be completed into ∞-complete
WSTS iff the domains of the monotonic affine functions are upward-closed.

2 Preliminaries

We borrow from theories of order, as used in model-checking [AČJT00,FS01],
and also from domain theory [AJ94,GHK+03]. A quasi-ordering ≤ is a reflexive
and transitive relation on a setX. It is a (partial) ordering iff it is antisymmetric.

We write < for the associated strict ordering (≤ \ ≥), There is also an asso-
ciated equivalence relation ≡, defined as ≤ ∩≥.

A set X with a partial ordering ≤ is a poset (X,≤), or just X when ≤ is
clear. If X is merely quasi-ordered by ≤, then the quotient X/≡ is ordered by
the relation induced by ≤ on equivalence classes. So there is not much difference
in dealing with quasi-orderings or partial orderings, and we shall essentially be
concerned with the latter.

The upward closure ↑E of a set E in X is {y ∈ X | ∃x ∈ E · x ≤ y}. The
downward closure ↓E is {y ∈ X | ∃x ∈ E · y ≤ x}. A subset E of X is upward-
closed if and only if E = ↑E. Downward-closed sets are defined similarly. A
basis of a downward-closed (resp. upward-closed) set E is a subset A such that
E = ↓A (resp. E = ↑A); E has a finite basis iff A can be chosen to be finite.

A quasi-ordering is well iff from any infinite sequence x0, x1, . . . , xi, . . ., one
can extract an infinite ascending chain xi0 ≤ xi1 ≤ . . . ≤ xik ≤ . . ., with
i0 < i1 < . . . < ik < . . .. While wqo stands for well-quasi-ordered set, we
abbreviate well posets as wpos.

An upper bound x ∈ X of E ⊆ X is such that y ≤ x for every y ∈ E. The
least upper bound (lub) of a set E, if it exists, is written lub(E). An element x
of E is maximal (resp. minimal) iff ↑x ∩ E = {x} (resp. ↓x ∩ E = {x}). Write
MaxE (resp. MinE) for the set of maximal (resp. minimal) elements of E.

A directed subset of X is any non-empty subset D such that every pair of
elements of D has an upper bound in D. Chains, i.e., totally ordered subsets,
and one-element sets are examples of directed subsets. A dcpo is a poset in which
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every directed subset has a least upper bound. For any subset E of a dcpo X,
let Lub(E) = {lub(D) | D directed subset of E}. Clearly, E ⊆ Lub(E); Lub(E)
can be thought of E plus all limits from elements of E.

The way below relation � on a dcpo X is defined by x � y iff, for every
directed subset D such that lub(D) ≤ y, there is a z ∈ D such that x ≤ z. Note
that x � y implies x ≤ y, and that x′ ≤ x � y ≤ y′ implies x′ � y′. Write
↓↓E = {y ∈ X | ∃x ∈ E · y � x}, and ↓↓x = ↓↓{x}. X is continuous iff, for every
x ∈ X, ↓↓x is a directed subset, and has x as least upper bound.

When ≤ is a well partial ordering that also turns X into a dcpo, we say that
X is a directed complete well order , or dcwo. We shall be particularly interested
in continuous dcwos.

A subset U of a dcpo X is (Scott-)open iff U is upward-closed, and for any
directed subset D of X such that lub(D) ∈ U , some element of D is already in
U . A map f : X → X is (Scott-)continuous iff f is monotonic (x ≤ y implies
f(x) ≤ f(y)) and for every directed subset D of X, lub(f(D)) = f(lub(D)).
Equivalently, f is continuous in the topological sense, i.e., f−1(U) is open for
every open U .

A weaker requirement is ω-continuity: f is ω-continuous iff lub{f(xn) | n ∈
N} = f(lub{xn | n ∈ N}), for every countable chain (xn)n∈N. This is all we
require when we define accelerations, but general continuity is more natural in
proofs. We won’t discuss this any further: the two notions coincide when X is
countable, which will always be the case of the state spaces X we are interested
in, where the states should be representable on a Turing machine, hence at most
countably many.

The closed sets are the complements of open sets. Every closed set is downward-
closed. On a dcpo, the closed subsets are the subsets B that are both downward-
closed and inductive, i.e., such that Lub(B) = B. An inductive subset of X is
none other than a sub-dcpo of X.

The closure cl(A) of A ⊆ X is the smallest closed set containing A. This
should not be confused with the inductive closure Ind(A) of A, which is obtained
as the smallest inductive subset B containing A. In general, ↓A ⊆ Lub(↓A) ⊆
Ind(↓A) ⊆ cl(A), and all inclusions can be strict. All this nitpicking is irrelevant
whenX is a continuous dcpo, and A is downward-closed inX. In this case indeed,
Lub(A) = Ind(A) = cl(A). This is well-known, see e.g., [FG09a, Proposition 3.5],
and will play an important role in our constructions. As a matter in fact, the fact
that Lub(A) = cl(A), in the particular case of continuous dcpos, is required for
lub-accelerations to ever reach the closure of the set of states that are reachable
in a transition system.

3 A survey on Well-Structured Transition Systems

WSTS were originally thought of as generalizations of Petri nets, in which the
set of states (called markings) of a Petri net with n places, Nn, is abstracted
into a set X equipped with a wpo ≤; the Petri net transitions (which are affine
translations from Nn into Nn) are abstracted to general recursive monotonic
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functions from X to X. WSTS were defined and studied in the first author’s PhD
thesis in 1986, the results were presented at ICALP’87 [Fin87] and published in
[Fin90]. The theory of WSTS has now been used for 25 years as a foundation
for verification in various models, such as (monotonic extensions of) Petri nets,
broadcast protocols, fragments of the pi-calculus fragments, rewriting systems,
lossy systems, timed Petri nets, etc.

3.1 Well-Structured Transition Systems: from 1986 to 1996

A transition system is a pair S = (S,→) of a set S, whose elements are called
states, and a transition relation → ⊆ S × S. We write s → s′ for (s, s′) ∈
→. Let ∗→ be the transitive and reflexive closure of the relation →. We write
PostS(s) = {s′ ∈ S | s→ s′} for the set of immediate successors of the state s.
The reachability set of a transition system S = (S,→) from an initial state s0
is Post∗S(s0) = {s ∈ S | s0

∗→ s}.
We shall be interested in effective transition systems. Intuitively, a transition

system (S,→) is effective iff one can compute the set of successors PostS(s) of
any state s. We shall take this to imply that PostS(s) is finite, and each of its
elements is computable.

An ordered transition system is a triple S = (S,→,≤) where (S,→) is a
transition system and ≤ is a partial ordering on S. We say that (S,→,≤) is
effective if (S,→) is effective and if ≤ is decidable.

We say that S = (S,→,≤) is monotonic (resp. strictly monotonic) iff for all
s, s′, s1 ∈ S such that s → s′ and s1 ≥ s (resp. s1 > s), there exists an s′1 ∈ S
such that s1

∗→ s′1 and s′1 ≥ s′ (resp. s′1 > s′). S is transitive monotonic iff for
all s, s′, s1 ∈ S such that s → s′ and s1 ≥ s, there exists an s′1 ∈ S such that
s1

+→ s′1 and s′1 ≥ s′. S is strongly monotonic iff for all s, s′, s1 ∈ S such that
s→ s′ and s1 ≥ s, there exists an s′1 ∈ S such that s1 → s′1 and s′1 ≥ s′. These
variations on monotonicity were studied in [Fin87,FS01].

Finite representations of Post∗S(s), e.g., as Presburger formulae or finite au-
tomata, usually don’t exist even for monotonic transition systems (not even
speaking of being computable). However, the cover CoverS(s) = ↓Post∗S(↓ s)
(= ↓Post∗S(s) when S is monotonic) will be much better behaved. Note that be-
ing able to compute the cover allows one to decide coverability (t ∈ CoverS(s)?),
and boundedness (is Post∗S(s) finite?). Let us recall that the control-state reach-
ability problem (when the set of states is Q × X with Q a finite set of control
states) can be reduced to coverability. However, the repeated control state reach-
ability problem (does there exist an infinite computation that visits infinitely
often a control state q?) cannot be reduced to coverability.

The eventuality property for a given upward closed set I, is the following
property: EG I is true in a state s0 iff there is a computation from s0 in which
all states are in I. Given two labeled transition systems S1 = (S1,→1) and
S2 = (S2,→2), on the same alphabet Σ, the relation R ⊆ S1×S2 is a simulation
of S1 by S2 if for each (s1, s2) ∈ R, s′1 ∈ S1 and a ∈ Σ, if s1

a→ s′1 then there
exists s′2 ∈ S2 such that s2

a→ s′2 and (s′1, s
′
2) ∈ R. We say that s1 ∈ S1 is
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simulated by s2 ∈ S2 if there is a simulation R ofS1 byS2 such that (s1, s2) ∈ R.
An ordered transition systemS = (S,→,≤) has the effective PredBasis property
if there exists an algorithm which computes ↑ Pre(↑ s) for each s ∈ S; S is
intersection effective if there is an algorithm which computes a finite basis of
↑ s∩ ↑ s′, for all states s, s′ ∈ S.

Definition 1. An ordered transition system S = (S,→,≤) is a Well Structured
Transition System (WSTS) iff S is monotonic and (S,≤) is wpo. A WSTS S =
(S,→,≤) is effective if (S,→) is effective (i.e., Post(s) is finite and computable
for any s) and ≤ is decidable.

In particular, an effective WSTS is finitely banching. Some of the decidability
results do not require this but, for simplicity, we will make this assumption.
Originally, three different definitions of monotonicity (hence six definitions with
the strict variant) were given in [Fin87] and four (resp. eight) were studied in
[FS01].

We now summarize the main decidability results on WSTS obtained between
1986 and 1996.

Theorem 1. The following are decidable:

– Termination, for effective transitive monotonic WSTS [Fin87,FS01].
– Boundedness, for effective strictly monotonic transitive WSTS [Fin87,FS01].
– Coverability (hence control-state reachability), for effective WSTS with ef-

fective PredBasis ([AČJT00], extended in [FS01]).
– Eventuality, for effective strongly monotonic finitely branching WSTS (see

[KS96,AČJT00], extended in [FS01]).
– Simulation of a labeled WSTS by a finite automaton, for intersection effective

and effective strongly monotonic WSTS with effective PredBasis [AČJT00].
– Simulation of a finite automaton by a labeled WSTS, for effective strongly

monotonic WSTS [AČJT00].

The following are undecidable:

– Reachability, for effective strongly strictly monotonic WSTS (Transfer Petri
nets, [DFS98]).

– Repeated control-state reachability (hence LTL), for effective strongly strictly
monotonic WSTS (Transfer Petri nets, [DFS98]). ut

To prove these decidability results we alternatively use forward and backward
algorithms. Termination, boundedness, eventuality and one part of simulation
can be proved by using a forward algorithm that builds the so-called Finite
Reachability Tree (FRT) [Fin87]: we develop the reachability tree until a state
larger than or equal to one of its ancestors is encountered, in which case the
current branch is definitely closed. The place-boundedness problem (to decide
whether a place can contain an unbounded number of tokens) is undecidable for
transfer Petri nets [DFS98], although they are strongly and strictly monotonic
WSTS. It is decidable for Petri nets. This requires a richer structure than the
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FRT, the Karp-Miller tree. The set of labels of the Karp-Miller tree is a finite
representation of the cover.

Almost all the assumptions used above are necessary:

Theorem 2. The following are undecidable:

– Termination, for transitive monotonic WSTS.
– Boundedness, for effective strongly monotonic WSTS.
– Coverability, for effective strongly strictly monotonic WSTS. ut

For termination, Turing machines are transitive monotonic WSTS for which the
termination ordering ≤termination is undecidable, [FS01]. For the second claim,
Reset Petri nets have an undecidable bounded problem, and are effective strongly
monotonic WSTS; but they are not strictly monotonic [DFS98]. For the last
claim, there are WSTS composed of two recursive strictly monotonic functions
from N2 into N2 that are not recursive on N2

ω hence there are no algorithm
computing a PredBasis, [FMP04].

In writing this paper, we realized that the status of eventuality and simulation
is open: for each of these properties, we know of no natural class of WSTS for
which this property would be undecidable.

3.2 WSTS Everywhere: From 1997 to 2012

To the best of our knowledge, there have been no essential new results in the
theory of WSTS between 1997 and 2003 (this does not mean that there are no
interesting results about particular classes of WSTS). Let us just mention two
kinds of results: the study of better quasi ordering (bqo) as an alternative to
wqo [AN00], and the study of specific models such as Reset/Transfer Petri nets
[DFS98], or Lossy Channel Systems [ABJ98]. Moreover, two papers synthesise
the known results and show the possible applications: [AČJT00,FS01].

Many papers appeared during the period 2004-2012. We will not make an
exhaustive list. Here are some of the papers that introduced new points of view,
in our opinion:

2006 P. Ganty, G. Geeraerts, J.-F. Raskin and L. Van Begin proposed [GRvB06a,GRvB06b]
a forward procedure for deciding the coverability problem. This is the first
forward procedure for this problem in the general framework of WSTS. Their
procedure computes a sufficient part (to decide coverability) of the finite rep-
resentation of the cover.

2007 & 2011 P. Abdulla, G. Delzanno, G. Geeraerts, J.-F. Raskin and L. Van
Begin studied [ADB07,GRVB07] the expressive power of WSTS by means
of the set of coverability languages which are well-adapted to WSTS. An-
other, new approach, proposed by R. Bonnet, A. Finkel, S. Haddad and F.
Rosa-Velardo in [BFHRV11], is to use the order type of posets to prove, for
example, that the class of all WSTS with set of states of type Nn are less
expressive than WSTS with set of states of type Nn+1. This strategy unifies
the previous proofs and allows us to compare models of different natures,
such as lossy channel systems and timed Petri nets.
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2004 & 2007 & 2011 R. Lazic, T. Newcomb, J. Ouaknine, A.W. Roscoe, J.
Worrell, F. Rosa-Velardo, D. de Frutos-Escrig studied classes of Petri net
extensions where tokens carry data: data nets, Petri data nets and ν-Petri
nets [LNORW07,VF07,RMF11]. Affine and recursive Petri nets extensions
were studied by A. Finkel, P. McKenzie, C. Picaronny in [FMP04]; affine
well-structured nets are less expressive than ν-Petri nets.

Since 2009 We began in 2009 a series entitled "Forward analysis for WSTS,
Part I: Completions" and "Forward Analysis for WSTS, Part II: Complete
WSTS" in which we provide the missing theoretical fundations of finite rep-
resentations of downward closed sets. This work, based on both order and
topology, allowed us to design a new conceptual Karp and Miller procedure.
Bounded WSTS [CFS11] are a particular recursive class of WSTS for which
the new Karp and Miller procedure terminates.

Since 2010 D. Figueira, S. Figueira, S. Schmitz and Ph. Schnoebelen began the
study of the complexity of general WSTS. They characterized the ordinal
length of bad sequences of vectors of integers (using the Dickson lemma) and
of words (using the Higman lemma) [FFSS11,SS11].

4 Complete WSTS are better

We will now present the recent papers on the computation of a finite represen-
tation of the cover. The material of what follows is a part of [FG09b]. We will
consider transition systems that are functional , i.e., defined by a finite set of
transition functions. This is, as in [FG09a], for reasons of simplicity. However,
our CloverS procedure (Section 6), and already the technique of accelerating
loops (Definition 4) depends on the considered transition system being func-
tional. Formally, a functional transition system (S,

F→) is a labeled transition
system where the transition relation F→ is defined by a finite set F of partial
functions f : S −→ S, in the sense that for every s, s′ ∈ S, s F→ s′ iff s′ = f(s)
for some f ∈ F . If additionally, a partial ordering ≤ is given, a map f : S → S
is partial monotonic iff dom f is upward-closed and for all x, y ∈ dom f with
x ≤ y, f(x) ≤ f(y). An ordered functional transition system is an ordered tran-
sition system S = (S,

F→,≤) where F consists of partial monotonic functions.
This is always strongly monotonic. A functional WSTS is an ordered functional
transition system where ≤ is a well-ordering.

A functional transition system (S,
F→) is effective if every f ∈ F is com-

putable: given a state s and a function f , we can decide whether s ∈ dom f and
in this case, one can also compute f(s).

For example, every Petri net, every reset/transfer Petri net, and in fact every
affine counter system (see Definition 15) is an effective, functional WSTS.

4.1 Complete WSTS and Their Clovers

All forward procedures for WSTS rest on completing the given WSTS to one that
includes all limits. E.g., the state space of Petri nets is Nk, the set of all markings
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on k places, but the Karp-Miller algorithm works on Nk
ω, where Nω is N plus

a new top element ω, with the usual componentwise ordering. We have defined
general completions of wpos, serving as state spaces, and have briefly described
completions of (functional) WSTS in [FG09a]. We temporarily abstract away
from this, and consider complete WSTS directly.

Generalizing the notion of continuity to partial maps, we define:

Definition 2. A partial continuous map f : X → X, where (X,≤) is a dcpo, is
a partial map whose domain dom f is open (not just upward-closed), and such
that for every directed subset D in dom f , lub(f(D)) = f(lub(D)).

This is the special case of a more topological definition: in general, a partial
continuous map f : X → Y is a partial map whose domain is open in X, and
such that f−1(U) is open (in X, or equivalently here, in dom f) for any open U
of Y .

The composition of two partial continuous maps again yields a partial con-
tinuous map.

Definition 3 (Complete WSTS). A complete transition system is a func-
tional transition system S = (S,

F→,≤) where (S,≤) is a continuous dcwo and
every function in F is partial continuous. A complete WSTS is a functional
WSTS that is complete as a functional transition system.

The point in complete WSTS is that one can accelerate loops:

Definition 4 (Lub-acceleration). Let (X,≤) be a dcpo, f : X → X be partial
continuous. The lub-acceleration f∞ : X → X is defined by: dom f∞ = dom f ,
and for any x ∈ dom f , if x < f(x) then f∞(x) = lub{fn(x) | n ∈ N}, else
f∞(x) = f(x).

Note that if x ≤ f(x), then f(x) ∈ dom f , and f(x) ≤ f2(x). By induction, we
can show that {fn(x) | n ∈ N} is an increasing sequence, so that the definition
makes sense.

Complete WSTS are strongly monotonic. One cannot decide, in general,
whether a recursive function f is monotonic [FMP04] or continuous, whether
an ordered set (S,≤) with a decidable ordering ≤, is a dcpo or whether it is a
wpo. To show the latter claim for example, fix a finite alphabet Σ, and consider
subsets S of Σ∗ specified by a Turing machineM with tape alphabet Σ, so that
S is the language accepted byM.

We can also prove that given an effective ordered functional transition system,
one cannot decide whether it is a WSTS, or a complete WSTS, in a similar way.
However, the completion of any functional ω2-WSTS is complete, as we shall
see in Theorem 3.

In a complete WSTS, there is a canonical finite representation of the cover:
the clover (a succinct description of the closure of the cover).

Definition 5 (Clover). Let S = (S,
F→,≤) be a complete WSTS. The clover

CloverS(s0) of the state s0 ∈ S is MaxLub(CoverS(s0)).
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New lubs

CloverŜ(s)

CoverS(s)

x1 x2 x3 x4

“Down”

Fig. 1. The clover and the cover, in a complete space

This is illustrated in Figure 1. The “down” part on the right is meant to illustrate
in which directions one should travel to go down in the chosen ordering. The
cover CoverS(s0) is a downward-closed subset, illustrated in blue (grey if you
read this in black and white). Lub(CoverS(s0)) has some new least upper bounds
of directed subsets, here x1 and x3. The clover is given by just the maximal points
in Lub(CoverS(s0)), here x1, x2, x3, x4.

The fact that the clover is indeed a representation of the cover follows from
the following.

Lemma 1. Let (S,≤) be a continuous dcwo. For any closed subset F of S,
MaxF is finite and F = ↓MaxF .

Proposition 1. Let S = (S,
F→,≤) be a complete WSTS, and s0 ∈ S. Then

CloverS(s0) is finite, and cl(CoverS(s0)) = ↓CloverS(s0).

For any other representative, i.e., for any finite set R such that ↓R =
↓CloverS(s0), CloverS(s0) = MaxR. Indeed, for any two finite sets A,B ⊆ S
such that ↓A = ↓B, MaxA = MaxB. So Clover is the minimal representative
of the cover, i.e., there is no representative R with |R| < |CloverS(s0)|. The
clover was called the minimal coverability set in [Fin93].

Despite the fact that the clover is always finite, it is non-computable in
general (for example for Reset Petri nets) Nonetheless, it is computable on flat
complete WSTS, and even on the larger class of clover-flattable complete WSTS
(Theorem 7 below).

4.2 Completions

Many WSTS are not complete: the set Nk of states of a Petri net with k places
is not even a dcpo. The set of states of a lossy channel system with k channels,
(Σ∗)k, is not a dcpo for the subword ordering either. We have defined general
completions of wpos, and of WSTS, in [FG09a], a construction which we recall
quickly.

The completion X̂ of a wpo (X,≤) is defined in any of two equivalent ways.
First, X̂ is the ideal completion Idl(X) of X, i.e., the set of ideals of X, ordered
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by inclusion, where an ideal is a downward-closed directed subset of X. The
least upper bound of a directed family of ideals (Di)i∈I is their union. X̂ can
also be described as the sobrification S(Xa) of the Noetherian space Xa, but
this is probably harder to understand.

There is an embedding ηX : X → X̂, i.e., an injective map such that x ≤ x′

in X iff ηX(x) ≤ ηX(x′) in X̂. This is defined by ηX(x) = ↓x. This allows us
to consider X as a subset of X̂, by equating X with its image ηX〈X〉, i.e., by
equating each element x ∈ X with ↓x ∈ X̂. However, we shall only do this in
informal discussions, as this tends to make proofs messier.

For instance, if X = Nk, e.g., with k = 3, then (1, 3, 2) is equated with the
ideal ↓(1, 3, 2), while {(1,m, n) | m,n ∈ N} is a limit , i.e. an element of X̂ \X;
the latter is usually written (1, ω, ω), and is the least upper bound of all (1,m, n),
m,n ∈ N. The downward-closure of (1, ω, ω) in X̂, intersected with X, gives back
the set of non-limit elements {(1,m, n) | m,n ∈ N}.

This is a general situation: one can always write X̂ as the disjoint union
X ∪ L, so that any downward-closed subset D of X can be written as X ∩ ↓A,
where A is a finite subset of X ∪L. Then L, the set of limits, is a weak adequate
domain of limits (WADL) for X—we slightly simplify Definition 3.1 of [FG09a],
itself a slight generalization of [GRvB06b]. In fact, X̂ (minus X) is the smallest
WADL [FG09a, Theorem 3.4].

X̂ = Idl(X) is always a continuous dcpo. In fact, it is even algebraic [AJ94,
Proposition 2.2.22]. It may however fail to be well, hence to be a continuous
dcwo, see [FG12b, Section 4.2].

We have also described a hierarchy of datatypes on which completions are
effective [FG09a, Section 5]. Notably, N̂ = Nω, Â = A for any finite poset, and∏̂k

i=1Xi =
∏k

i=1 X̂i. Also, X̂∗ is the space of word-products on X. These are
the products, as defined in [ABJ98], i.e., regular expressions that are products
of atomic expressions A∗ (A ∈ Pfin(X̂), A 6= ∅) or a? (a ∈ X̂). In any case,
elements of completions X̂ have a finite description, and the ordering ⊆ on
elements of X̂ is decidable [FG09a, Theorem 5.3].

Having defined the completion X̂ of a wpo X, we can define the completion
S = X̂ of a (functional) WSTS X = (X,

F→,≤) as (X̂, SF→,⊆), where SF = {Sf |
f ∈ F} [FG09a, Section 6]. For each partial monotonic map f ∈ F , the partial
continuous map Sf : X̂ → X̂ is such that domSf = {C ∈ X̂ | C ∩ dom f 6= ∅},
and Sf(C) = ↓ f〈C〉 for every C ∈ X̂. In the cases of Petri nets or functional-
lossy channel systems, the completed WSTS is effective [FG09a, Section 6].

The important fact, which assesses the importance of the clover, is Propo-
sition 2 below. We first require a useful lemma. Up to the identification of X
with its image ηX〈X〉, this states that for any downward-closed subset F of X̂,
cl(F )∩X = F ∩X, i.e., taking the closure of F only adds new limits, no proper
elements of X.

Up to the identification of X with ηX〈X〉, the next proposition states that
CoverX(s0) = CoverS(s0) ∩ X = ↓CloverS(s0) ∩ X. In other words, to com-
pute the cover of s0 in the WSTS X on the state space X, one can equivalently
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X̂

CloverŜ(s)

CoverS(s)

x1 x2 x3 x4

Fig. 2. The clover and the cover, in a completed space

compute the cover s0 in the completed WSTS X̂, and keep only those non-limit
elements (first equality of Proposition 2). Or one can equivalently compute the
closure of the cover in the completed WSTS X̂, in the form of the downward clo-
sure ↓CloverS(s0) of its clover. The closure of the cover will include extra limit
elements, compared to the cover, but no non-limit element. This is illustrated in
Figure 2.

Proposition 2. Let S = X̂ be the completion of the functional WSTS X =

(X,
F→,≤). For every state s0 ∈ X, CoverX(s0) = η−1X (CoverS(ηX(s0))) =

η−1X (↓CloverS(ηX(s0))).

CoverS(s0) is contained, usually strictly, in ↓CloverS(s0). The above states
that, when restricted to non-limit elements (in X), both contain the same ele-
ments. Taking lub-accelerations (Sf)∞ of any composition f of maps in F may
leave CoverS(s0), but is always contained in ↓CloverS(s0) = cl(CoverS(s0)).
So we can safely lub-accelerate in S = X̂ to compute the clover in S. While the
clover is larger than the cover, taking the intersection back with X will produce
exactly the cover CoverX(s0).

In more informal terms, the cover is the set of states reachable by either fol-
lowing the transitions in F , or going down. The closure of the cover ↓CloverS(s0)
contains not just states that are reachable in the above sense, but also the lim-
its of chains of such states. One may think of the elements of ↓CloverS(s0) as
being those states that are “reachable in infinitely many steps” from s0. And
we hope to find the finitely many elements of CloverS(s0) by doing enough
lub-accelerations.

5 Completion of WSTS into complete WSTS is (almost)
always possible

It would seem clear that the construction of the completion S = X̂ of a WSTS
X = (X,

F→,≤) be, again, a WSTS. We shall show that this is not the case. The
only missing ingredient to show that S is a complete WSTS is to check that X̂
is well-ordered by inclusion. We have indeed seen that X̂ is a continuous dcpo;
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and S is strongly monotonic, because Sf is continuous, hence monotonic, for
every f ∈ F .

Next, we shall concern ourselves with the question: under what condition on
X is S = X̂ again a WSTS? Equivalently, when is X̂ well-ordered by inclusion?
We shall see that there is a definite answer: when X is ω2-wqo.

5.1 Motivation

The question may seem mostly of academic interest. Instead, we illustrate that
it is crucial to establish a progress property described below.

Let us imagine a procedure in the style of the Karp-Miller tree construction.
We shall provide an abstract version of one, CloverS, in Section 6. However, to
make things clearer, we shall use a direct imitation of the Karp-Miller procedure
for Petri nets for now, generalized to arbitrary WSTS. This is a slight variant
of the generalized Karp-Miller procedure of [Fin87,Fin90], and we shall therefore
call it as such.

We build a tree, with nodes labeled by elements of the completion X̂, and
edges labelled by transitions f ∈ F . During the procedure, nodes can be marked
extensible or non-extensible. We start with the tree with only one node labeled
s0, and mark it extensible. At each step of the procedure, we pick an extensible
leaf node N , labeled with s ∈ X̂, say, and add new children to N . For each
f ∈ F such that s ∈ domSf , let s′ = Sf(s), and add a new child N ′ to N .
The edge from N to N ′ is labeled f . If s′ already labels some ancestor of N ′,
then we label N ′ with s′ and mark it non-extensible. If s′′ ≤ s′ for no label s′′
of an ancestor of N ′, then we label N ′ with s′ and mark it extensible. Finally, if
s′′ < s′ for some label s′′ of an ancestor N0 of N ′ (what we shall refer to as case
(*) below), then the path from N0 to N ′ is labeled with a sequence of functions
f1, . . . , fp from F , and we label N ′ with the lub-acceleration (fp ◦ . . . ◦ f1)∞(s′′).
(There is a subtle issue here: if there are several such ancestors N0, then we
possibly have to lub-accelerate several sequences f1, . . . , fp from the label s′′ of
N0: in this case, we must create several successor nodes N ′, one for each value
of (fp ◦ . . . ◦ f1)∞(s′′).) When X = Nk and each f ∈ F is a Petri net transition,
this is the Karp-Miller procedure, up to the subtle issue just mentioned, which
we shall ignore.

Let us recall that the Karp-Miller tree (and also the reachability tree) is
finitely branching, since the set F of functions is finite. This will allow us to use
König’s Lemma, which states that any finitely branching, infinite tree has at
least one infinite branch.

The reasons why the original Karp-Miller procedure terminates on (ordinary)
Petri nets are two-fold. First, when X̂ = Nk

ω, one cannot lub-accelerate more than
k times, because each lub-acceleration introduces a new ω component to the label
of the produced state, which will not disappear in later node extensions. This is
specific to Petri nets, and already fails for reset Petri nets, where ω components
do disappear.

The second reason is of more general applicability: X̂ = Nk
ω is wpo, and this

implies that along every infinite branch of the tree thus constructed, case (*)
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will eventually happen, and in fact will happen infinitely many times. Call this
progress: along any infinite path, one will lub-accelerate infinitely often. In the
original Karp-Miller procedure for Petri nets, this will entail termination.

As we have already announced, for WSTS other than Petri nets, termination
cannot be ensured. But at least we would like to ensure progress. The argument
above shows that progress is obtained provided X̂ is wpo (or even just wqo).
This is our main motivation in characterizing those wpos X such that X̂ is wpo
again.

p1 t1

t3

t2t4

p4p3

p2

Fig. 3. The reset Petri net from [DFS98]

Before we proceed, let us explain why termination cannot be ensured. Gen-
erally, this will follow from undecidability arguments Here is a concrete case
of non-termination. Consider the reset Petri net of [DFS98, Example 3], see
Figure 3. This net has 4 places and 4 transitions, hence defines an transition
system on N4. Its transitions are: t1(n1, n2, n3, n4) = (n1, n2 − 1, n3, n4 + 1) if
n1, n2 ≥ 1, t2(n1, n2, n3, n4) = (n1−1, 0, n3+1, n4) if n1 ≥ 1, t3(n1, n2, n3, n4) =
(n1, n2+1, n3, n4−1) if n3, n4 ≥ 1, and t4(n1, n2, n3, n4) = (n1+1, n2+1, n3−1, 0)
if n3 ≥ 1. Note that t4(tn2

3 (t2(t
n2
1 (1, n2, 0, 0)))) = (1, n2+1, 0, 0) whenever n2 ≥ 1.

The generalized Karp-Miller tree procedure, starting from s0 = (1, 1, 0, 0), will
produce a child labeled (1, 0, 0, 1) through t1, then (0, 0, 1, 1) through t2, then
(0, 1, 1, 0) through t3. Using t4 leads us to case (*) with s′ = (1, 2, 0, 0). So the
procedure will lub-accelerate the sequence t1t2t3t4, starting from s0 = (1, 1, 0, 0).
However (t4 ◦ t3 ◦ t2 ◦ t1)(s′) = (1, 1, 0, 0) = s′ again, so the sequence of iterates
(t4 ◦ t3 ◦ t2 ◦ t1)n(s0) stabilizes at s′, and (t4 ◦ t3 ◦ t2 ◦ t1)∞(s0) = s′. So the pro-
cedure adds a node labeled s′ = (1, 2, 0, 0). Similarly, starting from the latter,
the procedure will eventually lub-accelerate the sequence t21t2t23t4, producing a
node labeled (1, 3, 0, 0), and in general produce nodes labeled (1, i + 1, 0, 0) for
any i ≥ 1 after having lub-accelerated the sequence ti1t2ti3t4 from a node labeled
(1, i, 0, 0). In particular, the generalized Karp-Miller tree procedure will generate
infinitely many nodes, and therefore fail to terminate.
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This example also illustrates the following: progress does not mean that we
shall eventually compute limits g∞(s) that could not be reached in finitely many
steps. In the example above, we do lub-accelerate infinitely often, and compute
(t4 ◦ ti3 ◦ t2 ◦ ti1)

∞
(1, i, 0, 0), but none of these lub-accelerations actually serve

any purpose, since (t4 ◦ ti3 ◦ t2 ◦ ti1)
∞
(1, i, 0, 0) = (1, i + 1, 0, 0) is already equal

to (t4 ◦ ti3 ◦ t2 ◦ ti1)(1, i, 0, 0).
Progress will take a slightly different form in the actual procedure CloverS

of Section 6. In fact, the latter will not build a tree, as the tree is in fact only
algorithmic support for ensuring a fair choice of a state in X̂, and essentially
acts as a distraction. However, progress will be crucial (Proposition 5 states
that if the set of values computed by the procedure CloverS is finite then
CloverS terminates) in our characterization of the cases where CloverS ter-
minates (Theorem 7), as those states that are clover-flattable (see Section 6).
Without it, CloverS would terminate in strictly less cases.

5.2 ω2-WSTS

Recall here the working definition in [Jan99]: a well-quasi-order X is ω2-wqo if
and only if (P(X),≤]) is wqo (where A ≤] B iff for every b ∈ B, there is an
a ∈ A such that a ≤ b or equivalently iff ↑ B ⊆↑ A iff B ⊆↑ A). We show that
the above is the only case that can go bad:

Proposition 3. Let S be a well-quasi-order. Then Ŝ is well-quasi-ordered by
inclusion iff S is ω2-wqo.

Let an ω2-WSTS be any WSTS whose underlying poset is ω2-wqo. It follows:

Theorem 3. Let S = (S,
F→,≤) be a functional WSTS. Then Ŝ is a (complete,

functional) WSTS iff S is an ω2-WSTS. ut

5.3 Are ω2-wqos Ubiquitous?

It is natural to ask whether this is the norm or an exception. We claim that all
wpos used in the verification literature are in fact ω2-wpo.

Consider the following grammar of datatypes, which extends that of [FG09a,
Section 5] with the case of finite trees (last line):

D ::= N natural numbers
| A≤ finite set A, ordered by ≤
| D1 × . . .×Dk finite product
| D1 + . . .+Dk finite, disjoint sum
| D∗ finite words
| D~ finite multisets
| T (D) finite trees

(1)

Then:

Proposition 4. Every datatype defined in (1) is ω2-wqo, and in fact bqo.
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In fact, all naturally occurring wqos are bqos, perhaps to the notable excep-
tion of finite graphs quasi-ordered by the graph minor relation, which are wqo
[RS04] but not known to be bqo.

5.4 Effective Complete WSTS

The completion Ŝ of a WSTS S is effective iff the completion Ŝ of the set of
states is effective and Sf is recursive for all f ∈ F . Ŝ is effective for all the data
types of [FG09a, Section 5]

Also, Sf is indeed recursive for all f ∈ F , whether in Petri nets, functional-
lossy channel systems, and reset/transfer Petri nets notably.

In the case of ordinary or reset/transfer Petri nets, and in general for all affine
counter systems (which we shall investigate from Definition 15 on), Sf coincides
with the extension f defined in [FMP04, Section 2]: whenever dom f is upward-
closed and f : Nk → Nk is defined by f(s) = As+a, for some matrix A ∈ Nk×k

and vector a ∈ Zk, then domSf = ↑S dom f , and S(f)(s) is again defined as
As+ a, this time for all s ∈ Nk

ω, and using the convention that 0× ω = 0 when
computing the matrix product As [FMP04, Theorem 7.9].

6 A Conceptual Karp-Miller Procedure

There are some advantages in using a forward procedure to compute (part of)
the clover for solving coverability. For depth-bounded processes, a fragment of
the π-calculus, the simple algorithm that works backward (computing the set of
predecessors of an upward-closed initial set) of [AČJT00] is not applicable when
the maximal depth of configurations is not known in advance because, in this
case, the predecessor configurations are not effectively computable [WZH10]. It
has been also proved that, unlike backward algorithms (which solve coverability
without computing the clover), the Expand, Enlarge and Check forward algo-
rithm of [GRvB07], which operates on complete WSTS, solves coverability by
computing a sufficient part of the clover, even though the depth of the process
is not known a priori [WZH10]. Recently, Zufferey, Wies and Henzinger pro-
posed to compute a part of the clover by using a particular widening, called a
set-widening operator [ZWH12], which loses some information, but always ter-
minates and seems sufficiently precise to compute the clover in various case
studies.

Model-checking safety properties of WSTS can be reduced to coverability,
but there are other properties, such as boundedness (is Post∗S(s) finite?) that
cannot be reduced to coverability: boundedness is decidable for Petri nets but
undecidable for Reset Petri nets [DFS98], hence for general WSTS.

Recall that being able to compute the clover allows one to decide not only
coverability since t is coverable from s iff t ∈ CoverS(s) iff ∃t′ ∈ CloverS(s)
such that t ≤ t′ but also boundedness, and place-boundedness. To the best of
our knowledge, the only known algorithms that decide place-boundedness (and
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also some formal language properties such as regularity and context-freeness of
Petri net languages) require one to compute the clover.

Another argument in favor of computing clovers is Emerson and Namjoshi’s
[EN98] approach to model-checking liveness properties of WSTS, which uses a
finite (coverability) graph based on the clover. Since WSTS enjoy the finite path
property ([EN98], Definition 7), model-checking liveness properties is decidable
for complete WSTS for which the clover is computable.

All these reasons motivate us to try to compute the clover for classes of
complete WSTS, even though it is not computable in general.

The key to designing some form of a Karp-Miller procedure, such as the
generalized Karp-Miller tree procedure (Section 5.1) or the CloverS procedure
below is being able to compute lub-accelerations. Hence:

Definition 6 (∞-Effective). An effective complete functional WSTS S = (S,
F→

,≤) is ∞-effective iff every function g∞ is computable, for every g ∈ F ∗, where
F ∗ is the set of all compositions of maps in F .

E.g., the completion of a Petri net is∞-effective: not only is Nk
ω a wpo, but every

composition of transitions g ∈ F ∗ is of the form g(x) = x+ δ, where δ ∈ Zk. If
x < g(x) then δ ∈ Nk \ {0}. Write xi the ith component of x, it follows that
g∞(x) is the tuple whose ith component is xi if δi = 0, ω otherwise.

Let S be an∞-effective WSTS, and write A ≤[ B iff ↓A ⊆ ↓B, i.e., iff every
element of A is below some element of B. This is the Hoare quasi-ordering , also
known as the domination quasi-ordering. The following is a simple procedure
which computes the clover of its input s0 ∈ S (when it terminates):

Procedure CloverS(s0) :
1. A← {s0};
2. while PostS(A) 6≤[ A do
(a) Choose fairly (see below) (g, a) ∈ F ∗ ×A such that a ∈ dom g;
(b) A← A ∪ {g∞(a)};

3. return MaxA;

Note that CloverS is well-defined and all its lines are computable by as-
sumption, provided we make clear what we mean by fair choice in line (a). Call
Am the value of A at the start of the (m − 1)st turn of the loop at step 2 (so
in particular A0 = {s0}). The choice at line (a) is fair iff, on every infinite
execution, every pair (g, a) ∈ F ∗×Am will be picked at some later stage n ≥ m.

A possible implementation of this fair choice is the generalized Karp-Miller
tree construction of Section 5.1: organize the states of A as labeling nodes of a
tree that we grow. At stepm, Am is the set of leaves of the tree, and case (*) of the
generalized Karp-Miller tree construction ensures that all pairs (g, a) ∈ F ∗×Am

will eventually be picked for consideration. However, the generalized Karp-Miller
tree construction does some useless work, e.g., when two nodes of the tree bear
the same label.

Most existing proposals for generalizing the Karp-Miller construction do
build such a tree [KM69,Fin90,Fin93,GRvB07], or a graph [EN98]. We claim
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that this is mere algorithmic support for ensuring fairness, and that the goal of
such procedures is to compute a finite representation of the cover. Our CloverS
procedure computes the clover, which is the minimal such representation, and
isolates algorithmic details from the core construction.

We shall also see that termination of CloverS has strong ties with the theory
of flattening [BFLS05]. However, Bardin et al. require one to enumerate sets of
the form g∗(x), which is sometimes harder than computing the single element
g∞(x). For example, if g : Nk → Nk is an affine map g(x) = Ax + b − a for
some matrix A ∈ Nk×k and vectors a, b ∈ Nk, then g∞(x) is computable as a
vector in Nk

ω, as we have seen in Section 5.4. But g∗(x) is not even definable by
a Presburger formula in general, in fact even when g is a composition of Petri
net transitions; this is because reachability sets of Petri nets are not semi-linear
in general [HP79].

Finally, we use a fixpoint test (line 2) that is not in the Karp-Miller algorithm;
and this improvement allowsCloverS to terminate inmore cases than the Karp-
Miller procedure when it is used for extended Petri nets (for reset Petri nets for
instance, which are a special case of the affine maps above), as we shall see.
To decide whether the current set A, which is always an under-approximation
of CloverS(s0), is the clover, it is enough to decide whether PostS(A) ≤[ A.
The various Karp-Miller procedures only test each branch of a tree separately,
to the partial exception of the minimal coverability tree algorithm [Fin90] and
Geeraerts et al.’s recent coverability algorithm [GRvB07], which compare nodes
across branches. That the simple test PostS(A) ≤[ A does all this at once does
not seem to have been observed until now.

6.1 Correctness and Termination of the Clover Procedure

We cannot hope to have CloverS terminate on all inputs. But we can at least
start by showing that it is correct, whenever it terminates. This will be Theorem 4
below.

We first show that if CloverS terminates then the computed set A is con-
tained in Lub(Post∗S(s0)). It is crucial that Lub(F ) = cl(F ) for any downward-
closed set F , which holds because the state space S is a continuous dcpo. We
use this through invocations to Proposition 1.

If the procedure CloverS does not stop, it will compute an infinite sequence
of sets of states. In other words, CloverS does not deadlock. This is the progress
property mentioned in Section 5.1.

Proposition 5 (Progress). Let S be an∞-effective complete functional WSTS
and An be the value of the set A, computed by the procedure CloverS on input
s0, after n iterations of the while statement at line 2. If

⋃
nAn is finite, then the

procedure CloverS terminates on input s0.

While CloverS is non-deterministic, this is don’t care non-determinism: if
one execution does not terminate, then no execution terminates. If CloverS
terminates, then it computes the clover, and if it does not terminate, then at
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each step n, the set An is contained in the clover. Let us recall that An ≤[ An+1.
We can now prove:

Theorem 4 (Correctness). If CloverS(s0) terminates, then it computes CloverS(s0).

If the generalized Karp-Miller tree procedure (see Section 5.1) terminates
then it has found a finite set g1, g2, ..., gn of maps to lub-accelerate. These lub-
accelerations will also be found by CloverS, by fairness. From the fixpoint test,
CloverS will also stop. So CloverS terminates on at least all inputs where the
generalized Karp-Miller tree procedure terminates. We can say more:

Proposition 6. The procedure CloverS terminates on strictly more input states
s0 ∈ S than the generalized Karp-Miller tree procedure.

Proof. Consider the reset Petri net of [DFS98, Example 3] again (Figure 3).
Add a new transition t5(n1, n2, n3, n4) = (n1 + 1, n2 + 1, n3 + 1, n4 + 1). The
generalized Karp-Miller procedure does not terminate on this modified reset
Petri net starting from s0 = (1, 1, 0, 0), because it already does not terminate
on the smaller one of Section 5.1. On the other hand, by fairness, CloverS will
sooner or later decide to pick a pair of the form (t5, a) at line (a), and then
immediately terminate with the maximal state (ω, ω, ω, ω), which is the sole
element of the clover. ut

Deciding when CloverS terminates is itself impossible. We first observe that
CloverS terminates on each bounded state.

Lemma 2. Let S = (S,
F→) be an ∞-effective complete WSTS, and s0 ∈ S

a state such that the reachability set Post∗S(s0) is finite. Then CloverS(s0)
terminates.

Proof. Since Post∗S(s0) is finite, g∞(s) is in Post∗S(s0) for every s ∈ Post∗S(s0)
and every g ∈ F ∗ with s ∈ dom g. So, defining again An as the value of the set
A computed by CloverS on input s0, after n iterations of the while statement
at line 2,

⋃
n∈NAn is contained in Post∗S(s0), hence finite. By Proposition 5,

CloverS(s0) terminates. ut

Proposition 7. There is an ∞-effective complete WSTS S = (S,
F→) such that

we cannot decide, given s0 ∈ S, whether CloverS(s0) will terminate.

The following result was more generally stated in [Fin87] (but without suf-
ficient effective and completeness hypotheses) and it was also expressed for Re-
cursive Well Structured Nets in [FMP04] where the ∞-effective hypothesis was
replaced by a weaker condition that allows to compute a sufficient underapprox-
imation of the limit of the fn(x) when n goes to infinity and for x < f(x).

Theorem 5. [BF12] For ∞-effective strictly monotonic complete WSTS S =

(Nn,
F→,≤), the procedure CloverS(s0) terminates.
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There is another case in which the procedure CloverS terminates. A func-
tional transition system S = (S,

F→) with initial state s0 is flat iff there are
finitely many words w1, w2, ..., wk ∈ F ∗ such that any fireable sequence of tran-
sitions from s0 is contained in the language w∗1w∗2 ...w∗k. (We equate functions in
F with letters from the alphabet F .) corresponding composition of maps, i.e.,
fg denotes g ◦ f .) Ginsburg and Spanier [GS64] call this a bounded language,
and show that it is decidable whether any context-free language is flat.

Theorem 6. For ∞-effective complete flat WSTS S = (Nn,
F→,≤), the proce-

dure CloverS(s0) terminates.

6.2 Clover-Flattable Complete WSTS

We now characterize those ∞-effective complete WSTS on which CloverS ter-
minates.

ϕ

S1 S2

Fig. 4. Flattening

Not all systems of interest are flat. The simplest example of a non-flat system
has one state q and two transitions q a→q and q b→q.

For an arbitrary system S, flattening [BFLS05] consists in finding a flat
system S′, equivalent to S with respect to reachability, and in computing on
S′ instead of S. We adapt the definition in [BFLS05] to functional transition
systems, without an explicit finite control graph for now (but see Definition 11).

Definition 7 (Flattening). A flattening of a functional transition system S2 =

(S2,
F2→) is a pair (S1, ϕ), where:

1. S1 = (S1,
F1→) is a flat functional transition system;

2. and ϕ : S1 → S2 is a morphism of transition systems. That is, ϕ is a pair
of two maps, both written ϕ, from S1 to S2 and from F1 to F2, such that
for all (s, s′) ∈ S2

1 , for all f1 ∈ F1 such that s ∈ dom f1 and s′ = f1(s),
ϕ(s) ∈ domϕ(f1) and ϕ(s′) = ϕ(f1)(ϕ(s)) (see Figure 4).
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Let us recall that a pair (S, s0) of a transition system and a state is Post∗-
flattable iff there is a flattening S1 of S and a state s1 of S1 such that ϕ(s1) = s0
and Post∗S(s0) = ϕ(Post∗S1

(s1)).

Recall that we equate ordered functional transition systems (S,
F→,≤) with

their underlying function transition system (S,
F→). The notion of flattening then

extends to ordered functional transition systems. However, it is then natural to
consider monotonic flattenings, where in addition ϕ : S1 → S2 is monotonic. In
the case of complete transition systems, the natural extension requires ϕ to be
continuous:

Definition 8 (Continuous Flattening). Let S2 = (S2,
F2→,≤2) be a complete

transition system. A flattening (S1, ϕ) of S2 is continuous iff:

1. S1 = (S1,
F1→,≤1) is a complete transition system;

2. and ϕ : S1 → S2 is continuous.

Definition 9 (Clover-Flattable). Let S be a complete transition system, and
s0 be a state. We say that (S, s0) is clover-flattable iff there is an continuous
flattening (S1, ϕ) of S, and a state s1 of S1 such that:

1. ϕ(s1) = s0 (ϕ maps initial states to initial states);
2. cl(CoverS(s0)) = cl(ϕ〈cl(CoverS1

(s1))〉) (ϕ preserves the closures of the
covers of the initial states).

On complete WSTS—our object of study—, the second condition can be sim-
plified to ↓CloverS(s0) = ↓ϕ(CloverS1

(s1)) (using Proposition 1 and the fact
that ϕ, as a continuous map, is monotonic), or equivalently to CloverS(s0) =

Maxϕ〈CloverS1
(s1)〉. Recall also that, when S is the completion X̂ of a WSTS

X = (X,
F→,≤), the clover of s0 ∈ X is a finite description of the cover of s0 in

X (Proposition 2), and this is what ϕ should preserve, up to taking downward
closures.

a

q6q7

q4 q5

q3

q2q0 q1

Fig. 5. An rl-automaton

Let us define the synchronized product.
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Definition 10 (Synchronized Product). Let S = (S,
F→,≤) be a complete

functional transition system, and A = (F,Q, δ, q0) be an rl-automaton on the
same alphabet F .

Define the synchronized product S×A as the ordered functional transition
system (S × Q, F

′

→,≤′), where F ′ is the collection of all partial maps f ./ δ :
(s, q) 7→ (f(s), δ(q, f)), for each f ∈ F such that δ(q, f) is defined for some
q ∈ Q. Let also (s, q) ≤′ (s′, q′) iff s ≤ s′ and q = q′.

Let π1 be the morphism of transition systems defined as first projection on
states; i.e., π1(s, q) = s for all (s, q) ∈ S ×Q, π1(f ./ δ) = f for all f ∈ F .

Lemma 3 (Synchronized Product). Let S = (S,
F→,≤) be a complete func-

tional transition system, and A = (F,Q, δ, q0) be an rl-automaton on the same
alphabet F .

Then (S×A, π1) is a continuous flattening of S.

Strong flattenings are special: the decision to take the next action f ∈ F
from state (s, q) is dictated by the current control state q only , while ordinary
flattenings allow more complex decisions to be made.

We say that a transition system is strongly clover-flattable iff we can require
that the flat system S1 is a synchronized product, and the continuous morphism
of transition systems ϕ is first projection π1:

Definition 11 (Strongly Clover-Flattable). Let S = (S,
F→) be a complete

functional transition system. We say that (S, s0) is strongly clover-flattable iff
there is an rl-automaton A, say with initial state q0, such that cl(CoverS(s0)) =
cl(π1〈cl(CoverS×A(s0, q0))〉).

The following is then obvious.

Lemma 4. On complete functional transition systems, the implications “strongly
clover-flattable” =⇒ “clover-flattable” =⇒ “weakly clover-flattable” hold.

It is also easy to show that “weakly clover-flattable” also implies “clover-flattable”.
However, we shall show something more general in Theorem 7 below.

We show in Proposition 8 that CloverS(s0) can only terminate when (S, s0)
is strongly clover-flattable. We shall require the following lemma. For notational
simplicity, we equate words g1g2 with compositions g2 ◦ g1.

Lemma 5. Let S = (S,
F→) be a complete functional transition system, and

s0 ∈ F . Assume g1∞g2∞ . . . gn
∞(s0) is defined, and in some open subset U of

S, for some g1, g2, . . . , gn ∈ F . Then there are natural numbers k1, k2, . . . , kn
such that gk1

1 g
k2
2 . . . gkn

n (s0) is defined, and in U .

Proposition 8. Let S be an ∞-effective complete WSTS. If CloverS termi-
nates on s0, then (S, s0) is strongly clover-flattable.

We now loop the loop and show that CloverS terminates on s0 whenever
(S, s0) is weakly clover-flattable (Theorem 7 below). This may seem obvious. In
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particular, if (S, s0) is clover-flattable, then accelerate along the loops from S1,
where S1, ϕ is a continuous flattening of S. The difficulty is that we cannot
actually choose to accelerate whenever we want: the CloverS procedure decides
by itself when it should accelerate, independently of any flattening whatsoever.

There is an added difficulty, in the sense that one should also check that
lub-accelerations, as they are used in CloverS, are enough to reach all required
least upper bounds. The key point is the following lemma, which asserts the
existence of finitely many subsequences gpj+`qj (s), ` ∈ N, whose exponents form
infinite arithmetic progressions, and which generate all possible limits of directed
families of elements of the form gn(s), n ∈ N, except possibly for finitely many
isolated points.

This is the point in our study where progress is needed. Indeed, we require
S to be wpo to pick k and m in the proof below.

Lemma 6. Let S be a dcwo, g : S → S a partial monotonic map, and s ∈ S.
Consider the family G of all elements of the form gn(s), for those n ∈ N such
that this is defined. Then there are finitely many directed subfamilies G0, G1,
. . . , Gm−1 of G such that:

1. cl(G) =
⋃m−1

j=0 cl(Gj) = ↓{lub(G0), lub(G1), . . . , lub(Gm−1)};
2. each Gj is either a one-element set {gpj (s)}, where pj ∈ N, or is a chain

of the form {gpj+`qj (s) | ` ∈ N}, where pj ∈ N, qj ∈ N \ {0}, and gpj (s) <
gpj+qj (s);

3. for every j, 0 ≤ j < m, s 6< gpj (s).

Proposition 9. Let S be an ∞-effective complete WSTS. Assume that (S, s0)
is weakly clover-flattable. Then CloverS terminates on s0.

Putting together Lemma 4, Proposition 8, and Proposition 9, we obtain:

Theorem 7 (Main Theorem). Let S be an ∞-effective complete WSTS. The
following statements are equivalent:

1. (S, s0) is clover-flattable;
2. (S, s0) is weakly clover-flattable;
3. (S, s0) is strongly clover-flattable;
4. CloverS(s0) terminates. ut

6.3 Cover-flattability (without the “l” in “Cover”)

Turning to non-complete WSTS, we define:

Definition 12 (Monotonic Flattening). Let X2 = (X2,
F2→,≤2) be an ordered

functional transition system. A flattening (X1, ϕ) of X2 is monotonic iff:

1. X1 = (X1,
F1→,≤1) is an ordered functional transition system;

2. and ϕ : X1 → X2 is monotonic.
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Definition 13 (Cover-Flattable). Let X be an ordered functional transition
system, and x0 be a state. We say that (X, x0) is cover-flattable iff there is a
monotonic flattening (X1, ϕ) of X, and a state x1 of X1 such that:

1. ϕ(x1) = x0;
2. CoverX(x0) = ↓ϕ〈CoverX1

(x1)〉.

Theorem 8. Let X = (X,
F→,≤) be an ω2-WSTS that is ∞-effective, in the

sense that X̂ is ∞-effective, i.e., that (Sg)∞ is computable for every g ∈ F ∗.
The following statements are equivalent:

1. (X, x0) is cover-flattable;
2. (X̂, ηX(x0)) is (weakly, strongly) clover-flattable;
3. CloverX̂(ηX(x0)) terminates.

In this case, CloverX̂(ηX(x0)) returns the clover A = CloverS(s0), and this is
a finite description of the cover, in the sense that CoverX(x0) = η−1X (↓A).

By a slight abuse of language, say that a functional WSTS S = (S,
F→,≤) is

cover-flattable iff (S, s0) is cover-flattable for every initial state s0 ∈ S.

Corollary 1. Every Petri net, and every VASS, is cover-flattable.

Proof. The state space of a Petri net on k places is Nk, that of a VASS [HP79]
is Q × Nk, where Q is a finite set of control states. We deal with the latter,
as they are more general. Transitions of the VASS X are of the form f(q,x) =
(q′,x + b − a), provided x ≥ a, and where a, b are fixed tuples in Nk. It is
easy to see that Sf is defined by: Sf(q,x) = (q′,x + b − a), provided x ≥ a,
this time for all x ∈ Nk

ω. So the completion Ŝ of the VASS is ∞-effective. On
these, the Karp-Miller algorithm terminates [KM69], hence also the generalized
Karp-Miller algorithm of Section 5.1. By Proposition 6, CloverŜ terminates on
any input s0 ∈ Q× Nk

ω. So X is cover-flattable, by Theorem 8. ut

Corollary 2. There are reset Petri nets, and functional-lossy channel systems
that are not cover-flattable.

7 Well Structured Presburger Counter Systems

We now demonstrate how the fairly large class of counter systems fits with
our theory. We show that counter systems composed of affine monotonic func-
tions with upward-closed definition domains are complete (strongly monotonic)
WSTS. This result is obtained by showing that every monotonic affine function
f is continuous and its lub-acceleration f∞ is computable [CFS11]. Moreover,
we prove that it is possible to decide whether a general counter system (given
by a finite set of Presburger relations) is a monotonic affine counter system, but
that one cannot decide whether it is a WSTS.
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Definition 14. A Presburger counter system (with n counters), C is a tuple
C = (Q,R,→) where Q is a finite set of control states, R = {r1, r2, ...rk} is a
finite set of Presburger relations ri ⊆ Nn × Nn and →⊆ Q×R×Q.

We will consider a special case of Presburger relations, those which allow us
to encode the graph of affine functions. A (partial) function f : Nn −→ Nn is
non-negative affine, for short affine if there exist a matrix A ∈ Nn×n with non-
negative coefficients and a vector b ∈ Zn such that for all x ∈ dom f, f(x) =
Ax+b. When necessary, we will extend affine maps f : Nn −→ Nn by continuity
to f : Nn

ω −→ Nn
ω, by f(lubi∈N(xi)) = lubi∈N(f(xi)) for every countable chain

(xi)i∈N in Nn. That is, we just write f instead of Sf .

Definition 15. An Affine Counter System (with n counters), a.k.a. an ACS
C = (Q,R,→) is a Presburger counter system where all relations ri are (partial)
affine functions.

The domain of maps f in an affine counter system ACS are Presburger-
definable. A reset/transfer Petri net is an ACS where every line or column
of every matrix contains at most one non-zero coefficient equal to 1, and, all
domains are upward-closed sets. A Petri net is an ACS where all affine maps are
translations with upward-closed domains.

Theorem 9. One can decide whether an effective Presburger counter system is
an ACS.

Proof. The formula expressing that a relation is a function is a Presburger for-
mula, hence one can decide whether R is the graph of a function. One can also
decide whether the graph Gf of a function f is monotonic because monotonicity
of a Presburger-definable function can be expressed as a Presburger formula.
Finally, one can also decide whether a Presburger formula represents an affine
function f(x) = Ax + b with A ∈ Nn×n and b ∈ Zn, using results by Demri et
al. [DFGvD06]. ut

For counter systems (which include Minsky machines), monotonicity is un-
decidable. Clearly, a counter system S is well-structured iff S is monotonic: so
there is no algorithm to decide whether a Presburger counter system is a WSTS.
However, an ACS is strongly monotonic iff each map f is partial monotonic; this
is equivalent to requiring that dom f is upward-closed, since all matrices A have
non-negative coefficients. This is easily cast as Presburger formula, and therefore
decidable.

Proposition 10. There is an algorithm to decide whether an ACS is a strongly
monotonic WSTS.

Proof. The strong monotony of an ACS C means that every function of C is
monotonic and this can be expressed by a Presburger formula saying that all
the (Presburger-definable) definition domains are upward-closed (the matrices
are known to be positive). ut
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We have recalled that the transitions function of Petri nets (f(x) = x + b,
b ∈ Zn and dom(f) upward-closed) can be lub-accelerated effectively. This result
was generalized to broadcast protocols (equivalent to transfer Petri nets) by
Emerson and Namjoshi [EN98] and to another class of monotonic affine functions
f(x) = Ax+b such that A ∈ Nn×n, b ∈ Nn (note that b is not in Zn) and dom(f)
is upward closed [FMP04].

[CFS11] recently extended this result to all monotonic affine functions: for
every f(x) = Ax + b with A ∈ Nn×n, b ∈ Zn and dom(f) upward-closed, the
function f∞ is recursive.

We deduce the following strong relationship between well-structured ACS
and complete well-structured ACS.

Theorem 10. The completion of an ACS S is an ∞-effective complete WSTS
iff S is a strongly monotonic WSTS.

Proof. Strong monotonicity reduces to partial monotonicity of each map f , as
discussed above. Well-structured ACS are clearly effective, since Post(s) = {t |
∃f ∈ F ·f(t) = s} is Presburger-definable. Note also that monotonic affine func-
tion are continuous, and Nn

ω is a continuous dcwo. Finally, for every Presburger
monotonic affine function f , the function f∞ is recursive, so the considered ACS
is ∞-effective. ut

Corollary 3. One can decide whether the completion of an ACS is an ∞-
effective complete WSTS.

So the completions of reset/transfer Petri nets [DFS98], broadcast proto-
cols [EFM99], self-modifying Petri nets [Val78] and affine well-structured nets
[FMP04] are ∞-effective complete WSTS.

8 Conclusion and Perspectives

We have provided a framework of complete WSTS , and of completions of WSTS,
on which forward reachability analyses can be conducted, using natural finite
representations for downward-closed sets. The central element of this theory is
the clover , i.e., the set of maximal elements of the closure of the cover. We have
shown that, for complete WSTS, the clover is finite and describes the closure of
the cover exactly. When the original WSTS is not complete,

We have also defined a simple procedure, CloverS for computing the clover
for∞-effective complete WSTSS. This captures the essence of generalized forms
of the Karp-Miller procedure, while terminating in more cases. We have shown
that thatCloverS terminates iff the WSTS is clover-flattable, i.e., that it is some
form of projection of a flat system, with the same clover. We have also shown
that several variants of the notion of clover-flattability were in fact equivalent.
We believe that this characterization is an important, and non-trivial result.

In the future, we shall explore efficient strategies for choosing sequences
g ∈ F ∗ to lub-accelerate in theCloverS procedure. We will also analyze whether

26



CloverS terminates in models such as BVASS [VG05], reconfigurable nets,
timed Petri nets [ADMN04], post-self-modifying Petri nets [Val78] and strongly
monotonic affine well-structured nets [FMP04]), i.e., whether they are cover-
flattable.

One potential use of the clover is in deciding coverability. But the CloverS
procedure may fail to terminate. This is in contrast to the Expand, Enlarge and
Check forward algorithm of [GRvB07], which always terminates, hence decides
coverability. One may want to combine the best of both worlds, and the lub-
accelerations of CloverS can profitably be used to improve the efficiency of the
Expand, Enlarge and Check algorithm. This remains to be explored.

Finally, recall that computing the finite clover is a first step [EN98] in the
direction of solving liveness properties (and not only safety properties which
reduce to coverability). We plan to clarify the construction of a cloverability
graph which would be the basis for liveness model checking.
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