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Abstract

Given an input graph G and an integer k, the parameterized K4-minor cover problem asks
whether there is a set S of at most k vertices whose deletion results in a K4-minor-free graph,
or equivalently in a graph of treewidth at most 2. This problem is inspired by two well-studied
parameterized vertex deletion problems, Vertex Cover and Feedback Vertex Set, which
can also be expressed as Treewidth-t Vertex Deletion problems: t = 0 for Vertex Cover
and t = 1 for Feedback Vertex Set. While a single-exponential FPT algorithm has been
known for a long time for Vertex Cover, such an algorithm for Feedback Vertex Set was
devised comparatively recently. While it is known to be unlikely that Treewidth-t Vertex
Deletion can be solved in time co(k) ·nO(1), it was open whether the K4-minor cover could be
solved in single-exponential FPT time, i.e. in ck · nO(1) time. This paper answers this question
in the affirmative.

1 Introduction

Given a set F of graphs, the parameterized F-minor cover problem is to identify a set S of at most
k vertices — if it exists — in an input graph G such that the deletion of S results in a graph which
does not have any graph from F as a minor; the parameter is k. Such a set S is called an F-minor
cover (or an F-hitting set) of G. A number of fundamental graph problems can be viewed as F-
minor cover problems. Well-known examples include Vertex Cover (F = {K2}), Feedback
Vertex Set (F = {K3}), and more generally the Treewidth-t Vertex Deletion for any
constant t, which asks whether an input graph can be converted to one with treewidth at most t
by deleting at most k vertices. Observe that for t = 0 and 1, Treewidth-t Vertex Deletion
is equivalent to Vertex Cover and Feedback Vertex Set, respectively. The importance of
Treewidth-t Vertex Deletion is not only theoretical. For example, even for small values of t,
efficient algorithms for this problem would improve algorithms for inference in Bayesian Networks
as a subroutine of the cutset conditioning method [1]. This method is practical only with small
value t and efficient algorithms for small treewidth t, though not for any fixed t, are desirable.

In this paper we consider the parameterized F-minor cover problem for F = {K4}, which
is equivalent to the Treewidth-2 Vertex Deletion. The NP-hardness of this problem is due
to [24]. Fixed-parameter tractability (i.e. can be solved in time f(k) · nO(1) for some computable
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function f) follows from two celebrated meta-results: the Graph Minor Theorem of Robertson and
Seymour [27] and Courcelle’s theorem [8]. Unfortunately, the resulting algorithms involve huge
exponential functions in k and are impractical even for small values of k.

In recent years, single-exponential time parameterized algorithms — those which run in ck ·nO(1)

time for some constant c — and also sub-exponential time parameterized algorithms have been de-
veloped for a wide variety of problems. Of special interest is the bidimensionality theory introduced
by Demaine et al. [11] as a tool to obtain sub-exponential parameterized algorithms for the so-called
bidimensional problems on H-minor-free graphs. It is also known to be unlikely that every fixed
parameter tractable problem can be solved in sub-exponential time [6]. For problems which proba-
bly do not allow sub-exponential time algorithms, ensuring a single exponential upper bound on the
time complexity is highly desirable. For example, Bodleander et al. [4] proved that all problems that
have finite integer index and satisfy some compactness conditions admit a linear kernel on graphs
of bounded genus [4], implying single-exponential running times for such problems. More recently
Cygan et al. developed the “cut-and-count” technique to derive (randomized) single-exponential
parameterized algorithms for many connectivity problems parameterized by treewidth [9]. In con-
trast, some problems are unlikely to have single-exponential algorithms [23].

For treewidth-t vertex deletion, single-exponential parameterized algorithms are known
only for t = 0 and t = 1. Indeed, for t = 0 (Vertex Cover), the O(2k · n)-time bounded
search tree algorithm is an oft-quoted first example for a parameterized algorithm [13, 15, 25].
For t = 1 (Feedback Vertex Set), no single-exponential algorithm was known for many years
until Guo et al. [19] and Dehne et al. [10] independently discovered such algorithms. The fastest
known deterministic algorithm for this problem runs in time O(3.83k · n2) [5]. The fastest known
randomized algorithm, developed by Cygan et al., runs in O(3k · nO(1)) time [9]. Very recently,
Fomin et al. [18] presented 2O(k log k) · nO(1)-time algorithms for treewidth-t vertex deletion.
In this paper we prove the following result for t = 2:

Theorem 1. The K4-minor cover problem can be solved in 2O(k) · nO(1) time.

Our single-exponential parameterized algorithm for K4-minor cover is based on iterative com-
pression. This allows us, with a single-exponential time overhead, to focus on the disjoint version
of the K4-minor cover problem: given a solution S, find a smaller solution disjoint from S. We
employ a search tree method to solve the disjoint problem. Although our algorithm shares the
spirit of Chen et al.’s search tree algorithm for Feedback Vertex Set [7], that we want to cover
K4-minor instead of K3 requires a nontrivial effort. In order to bound the branching degree by a
constant, three key ingredients are exploited. First, we employ protrusion replacement, a technique
developed to establish a meta theorem for polynomial-size kernels [4,16,17]. We need to modify the
existing notions so as to use the protrusion technique in the context of iterative compression. Sec-
ond, we introduce a notion called the extended SP-decomposition, which makes it easier to explore
the structure of treewidth-two graphs. Finally, the technical running time analysis depends on the
property of the extended SP-decomposition and a measure which keeps track of the biconnectivity.

2 Notation and preliminaries

We follow standard graph terminology as found in, e.g., Diestel’s textbook [12]. Any graph con-
sidered in this paper is undirected, loopless and may contain parallel edges. A cut vertex (resp.
cut edge) is a vertex (resp. an edge) whose deletion strictly increases the number of connected
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components in the graph. A connected graph without a cut vertex is biconnected. A subgraph of
G is called a block if it is a maximal biconnected subgraph. A biconnected graph is itself a block.
In particular, an edge which is not a part of any cycle is a block as well. For a vertex set X in
a graph G = (V,E), the boundary ∂G(X) of X is the set N(V \ X), i.e. the set of vertices in X
which are adjacent with at least one vertex in V \X. We may omit the subscript when it is clear
from the context.

Minors. The contraction of an edge e = (u, v) in a graph G results in a graph denoted G/e
where vertices u and v have been replaced by a single vertex uv which is adjacent to all the former
neighbors of u and v. A subdivision of an edge e is the operation of deleting e and introducing a
new vertex xe which is adjacent to both the end vertices of e. A subdivision of a graph H is a
graph obtained from H by a series of edge subdivisions. A graph H is a minor of graph G if it
can be obtained from a subgraph of G by contracting edges. A graph H is a topological minor of
G if a subdivision of H is isomorphic to a subgraph G′ of G. In these cases we say that G contains
H as a (topological) minor and that G′ is an H-subdivision in G. In an H-subdivision G′ of G,
the vertices which correspond to the original vertices of H are called branching nodes; the other
vertices of G′ are called subdividing nodes. It is well known that if the maximum degree of H is at
most three, then G contains H as a minor if and only if it contains H as a topological minor [12].
A θ3-subdivision is a graph which consists of three vertex disjoint paths between two branching
vertices.

Series-parallel graphs and treewidth-two graphs. A two-terminal graph is a triple (G, s, t)
where G is a graph and the terminals s, t. The series composition of (G1, s1, t1) and (G2, s2, t2)
is obtained by taking the disjoint union of G1 and G2 and identifying t1 with s2. The resulting
graph has s1 and t2 as terminals. The parallel composition of (G1, s1, t1) and (G2, s2, t2) is obtained
by taking the disjoint union of G1 and G2 and identifying s1 with s2 and t1 with t2. Series and
parallel compositions generalize to any number of two-terminal graphs. Two-terminal series-parallel
graphs are formed from the single edge and successive series or parallel compositions. A graph G
is a series-parallel graph (SP-graph) if (G, s, t) is a two-terminal series-parallel graph for some
s, t ∈ V (G).

The recursive construction of a series-parallel graph G defines an SP-tree (T,X = {Xα : α ∈
V (T )}), where T is a tree whose leaves correspond to the edges of G. Every internal node α is
either an S-node or a P-node and represents the subgraph Gα resulting from the series composition
or the parallel composition, respectively, of the graphs associated with its children. Every node α of
T is labelled by the set Xα of the terminals of Gα. Interested readers are referred to Valdes et al.’s
seminal paper on the subject [28]. We may assume that an SP-tree satisfies additional conditions.
We use, for example, canonical1 SP-trees for the purpose of analysis, whose definition will not be
given in the extended abstract. We remark that any SP-graph can be represented as a canonical
SP-tree [3] and it can be computed in linear time.

We refer to Diestel’s textbook [12] for the definition of the treewidth of a graph G which we
denote tw(G). It is well known that a graph has treewidth at most two graphs if and only if it is
K4-minor-free. We also make use of the following alternative characterization: tw(G) 6 2 if and
only if every block of G is a series-parallel graph [2, 3].

Extended SP-decompositon. A connected graph G can be decomposed into blocks which are
joined by the cut vertices of G in a tree-like manner. To be precise, we can associate a block tree

1Full definition, proofs of lemmas, theorems . . . marked by ? are also deferred to the appendix
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BG to G, in which the node set consists of all blocks and cut vertices of G, and a block B and a cut
vertex c are adjacent in BG if and only if B contains c. To explore the structure of a treewidth-two
graph G efficiently, we combine its block tree BG with (canonical) SP-trees of its blocks into an
extended SP-decomposition as described below. We assume that G is connected: in general, an
extended SP-decomposition of G is a collection of extended SP-decompositions of its connected
components.

Let BG be the block tree of a treewidth-two graph G. We fix an arbitrary cut node croot of BG if
one exists. The oriented block tree ~BG is obtained by orienting the edges of BG outward from croot.
If BG consists of a single node, it is regarded as an oriented block tree itself.

We construct an extended SP-decomposition of a connected graph G by replacing the nodes of
~BG by the corresponding SP-trees and connecting distinct SP-trees to comply the orientations of
edges in ~BG. To be precise, an extended SP-decomposition is a pair (T,X = {Xα : α ∈ V (T )}),
where T is a rooted tree whose vertices are called nodes and X = {Xα : α ∈ V (T )} is a collection
of subsets of V (G), one for each node in T . We say that Xα is the label of node α.

• For each block B of G, let (TB,XB) be a (canonical) SP-tree of G[B] such that c(B) is one
of the terminal associated to the root node of TB. A leaf node of TB is called an edge node.

• For each cut vertex c of G, add to (T,X ) a cut node α with Xα = {c}.
• For each block B of G, let the root node of (TB,XB) be a child of the unique cut node α in
T which satisfies Xα = {c(B)}.

• For a cut vertex c of G, let B = B(c) be the unique block such that (B, c) ∈ E( ~BG). Let β
be an arbitrary leaf node of the (canonical) SP-tree (TB,XB) such that c ∈ Xβ (note that
such a node always exists). Make the cut node α of (T,X ) labeled by {c} a child of the leaf
node β.

Let α be a node of T . Then Tα is the subtree of T rooted at node α; Eα is the set of edges
(u, v) ∈ E(G) such that there exists an edge node α′ ∈ V (Tα) with Xα′ = {u, v}; and Gα is the —
not necessarily induced — subgraph of G with the vertex set Vα :=

⋃
α′∈V (Tα)Xα′ and the edge set

Eα. Recall that Xα is the set of vertices which form the label of the node α, and that |Xα| ∈ {1, 2}.
We define Yα := Vα \Xα.

Observe that in the construction above, every node α of (T,X ) is either a cut node or corresponds
to a node from the SP-tree (TB,XB) of some block B of G. We say that a node α which is not a cut
node is inherited from (TB,XB), where B is the block to which α belongs. Let α be inherited from
(TB,XB). We use TBα to denote the SP-tree naturally associated with the subtree of TB rooted
at α. By GBα we denote the SP-graph represented by the SP-tree TBα , where (TB,XB) inherits α.
The vertex set of GBα is denoted V B

α .

We observe that for every node α, Gα is connected and that ∂G(Vα) ⊆ Xα. It is well-known
that one can decide whether tw(G) 6 2 in linear time [28]. It is not difficult to see that in linear
time we can also construct an extended SP-decomposition of G.

3 The algorithm

Our algorithm for K4-minor cover uses various techniques from parameterized complexity. First, an
iterative compression [26] step reduces K4-minor cover to the so-called disjoint K4-minor cover
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problem, where in addition to the input graph we are given a solution set to be improved. Then
a Branch-or-reduce process develops a bounded search tree. We start with a definition of the
compression problem for K4-minor cover.

Iterative compression. Given a subset S of vertices, a K4-minor cover W of G is S-disjoint if
W ∩ S = ∅. We omit the mention of S when it is clear from the context. If |W | ≤ k − 1, then we
say that W is small.

disjoint K4-minor cover problem
Input: A graph G and a K4-minor cover S of G
Parameter: The integer k = |S|
Output: A small S-disjoint K4-minor cover W of G, if one exists. Otherwise return NO.

An FPT algorithm for the disjoint K4-minor cover problem can be used as a subroutine to
solve the K4-minor cover problem. Such a procedure has now become a standard in the context
of iterative compression problems [7, 20,22].

Lemma 1 (?). If disjoint K4-minor cover can be solved in ck · nO(1) time, then K4-minor
cover can be solved in (c+ 1)k · nO(1) time.

Observe that both G[V \ S] and G[S] is K4-minor-free. Indeed if G[S] is not K4-minor-free,
then the answer to disjoint K4-minor cover is trivially NO.

Protrusion rule. A subset X of the vertex set of a graph G is a t-protrusion of G if tw(G[X]) 6 t
and |∂(X)| 6 t. Our algorithm deeply relies on protrusion reduction technique, which made a
huge success lately in discovering meta theorems for kernelization [4, 16]. However, we need to
adapt the notions developed for protrusion technique so that we can apply the technique to our
“disjoint” problem, which arises in the iterative compression-based algorithm. In essence, our
(adapted) protrusion lemma for disjoint parameterized problems says that a ’large’ protrusion
which is disjoint from the forbidden set S can be replaced by a ’small’ protrusion which is again
disjoint from S. Due to its generality, this result may be of independent interest.

Reduction Rule 1 (?). (Generic disjoint protrusion rule) Let (G,S, k) be an instance of
disjoint K4-minor cover and X be a t-protrusion such that X ∩ S = ∅. Then there exists a
computable function γ(.) and an algorithm which computes an equivalent instance in time O(|X|)
such that G[S] and G′[S] are isomorphic, G′ − S is K4-minor-free, |V (G′)| < |V (G)| and k′ 6 k,
provided |X| > γ(2t+ 1).

We remark that some of the reduction rules we shall present in the next subsection are instanti-
ations the generic disjoint protrusion rule. However, to ease the algorithm analysis, the generic rule
above is used only on t-protrusion whose boundary size is 3 or 4. For protrusions with boundary
size 1 or 2, we shall instead apply the following explicit reduction rules.

3.1 (Explicit) Reduction rules

We say that a reduction rule is safe if, given an instance (G,S, k), the rule returns an equivalent
instance (G′, S′, k′); that is, (G,S, k) is a YES-instance if and only if (G′, S′, k′) is. Let F denote
the subset V (G) \ S of vertices. For a vertex v ∈ F , let NS(v) denote the neighbors of v which
belong to S. By Ni ⊆ F we refer to the set of vertices v in F with |NS(v)| = i.

The next three rules are simple rule that can be applied in polynomial time. In each of them, S
and k are unchanged (S′ = S, k′ = k). Observe that reduction rule 2 (b) can be seen as a disjoint
1-protrusion rule.
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Reduction Rule 2 (?). (1-boundary rule) Let X be a subset of F . (a) If G[X] is a connected
component of G or of G \ e for some cut edge e, then delete X. (b) If |∂G(X)| = 1, then delete
X \ ∂G(X).

Reduction Rule 3 (?). (Bypassing rule) Bypass every vertex v of degree two in G with neighbors
u1 ∈ V , u2 ∈ F . That is, delete v and its incident edges, and add the new edge (u1, u2).

Reduction Rule 4 (?). (Parallel rule) If there is more than one edge between u ∈ V and v ∈ F ,
then delete all these edges except for one.

The next two reduction rules are somewhat more technical, and their proofs of correctness
require a careful analysis of the structure of the K4-subdivisions in a graph.

Reduction Rule 5 (?). (Chandelier rule) Let X = {u1, . . . , u`} be a subset of F , and let x be
a vertex in S such that G[X] contains the path u1, . . . , u`, NS(ui) = {x} for every i = 1, . . . , `, and
vertices u2, . . . , u`−1 have degree exactly 3 in G. If ` ≥ 4, contract the edge e = (u2, u3) (and apply
Rule 4 to remove the parallel edges created).

The intuition behind the correctness of Chandelier rule 5 is that such a set X cannot host all four
branching nodes of a K4-subdivision. Our last reduction rule is an explicit 2-protrusion rule. In the
particular case when the boundary size is exactly two, the candidate protrusions for replacement
are either a single edge or a θ3 (see Figure 1).

Reduction Rule 6 (?). (2-boundary rule) Let X ⊆ F be such that G[X] is connected, ∂(X) =
{s, t} (and thus, X \ {s, t} ⊆ N0). Then we do the following. (1) Delete X \ {s, t}. (2) If
G[X] + (s, t) is a series parallel graph and |X| > 2, then add the edge (s, t) (if it is not present).
Else if G[X] + (s, t) is not a series parallel graph and |X| > 4, add two new vertices a, b and the
edges {(a, b), (a, t), (a, s), (b, t), (b, s)} (see Figure 1).

s

tss t

t ts

b

a

Figure 1: If G[X] + (s, t) is an SP-graph, we can safely replace G[X] by the edge (s, t). Otherwise
G[X] can be replaced by a subdivision of θ3 with poles a and b in which s and t are subdividing
nodes.

An instance of disjoint K4-minor cover is reduced if none of the Reduction rules 2 - 6 applies.

3.2 Branching rules

A branching rule is an algorithm which, given an instance (G,S, k), outputs a set of d instances
(G1, S1, k1) . . . (Gd, Sd, kd) for some constant d > 1 (d is the branching degree). A branching rule
is safe if (G,S, k) is a YES-instance if and only if there exists i, 1 6 i 6 d such that (Gi, Si, ki)
is a YES instance. We now present three generic branching rules, with potentially unbounded
branching degrees. Later we describe how to apply these rules so as to bound the branching degree
by a constant. Given a vertex s ∈ S, we denote by ccS(s) the connected component of G[S] which
contains s. Likewise, bcS(s) denotes the biconnected component of G[S] containing s. It is easy to
see that three branching rules below are safe.
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Branching Rule 1. Let (G,S, k) be an instance of disjoint K4-minor cover and let X be
a subset of F such that G[S ∪ X] contains a K4-subdivision. Then branch into the instances
(G− {x}, S, k − 1) for every x ∈ X.

Branching Rule 2. Let (G,S, k) be an instance of disjoint K4-minor cover and let X be be a
connected subset of F . If S contains two vertices s1 and s2 each having a neighbor in X and such
that ccS(s1) 6= ccS(s2), then branch into the instances
• (G− {x}, S, k − 1) for every x ∈ X
• (G,S ∪X, k)

Branching Rule 3. Let (G,S, k) be an instance of disjoint K4-minor cover and let X be a
connected subset of F . If S contains two vertices s1 and s2 each having a neighbor in X such that
ccS(s1) = ccS(s2) and bcS(s1) 6= bcS(s2), then branch into the instances
• (G− {x}, S, k − 1) for every x ∈ X
• (G,S ∪X, k)

We shall apply branching rule 1 under three different situations: (i) X is a singleton {x} for
every x ∈ F , (ii) X is connected, and (iii) X consists of a pair of non-adjacent vertices of F . Let
us discuss these three settings in further details. An instance (G,S, k) is said to be a simplified
instance if it is a reduced instance and if none of the branching rules 1 - 3 applies on singleton sets
X = {v}, for any v ∈ F . A simplified instance, in which branching rule 1 cannot be applied under
(i), has a useful property.

Lemma 2 (?). If (G,S, k) is a simplified instance of disjoint K4-minor cover, then F =
N0 ∪N1 ∪N2.

An instance (G,S, k) of disjoint K4-minor cover is independent if (a) F is an independent
set; (b) every vertex of F belongs to N2; (c) the two neighbors of every vertex of F belong to
the same biconnected component of G[S] and (d) G[S ∪ {x}] is K4-minor-free for every x ∈ F .
In essence, next lemma shows that the instance is independent once branching rule 1 has been
exhaustively applied under (ii).

Theorem 2 (?). Let (G,S, k) be an instance of disjoint K4-minor cover. If none of the
reduction rules applies nor branching rules on connected subsets X ⊆ F applies, then (G,S, k) is
an independent instance.

Next lemma shows that in an independent instance, it is enough to cover the K4-subdivisions
containing exactly two vertices of F . To see this, we construct an auxiliary graph G∗(S) as follows:
its vertex set is F ; (u, v) is an edge in G∗(S) if and only if G[S ∪ {u, v}] contains K4 as a minor.
Then the following theorem holds, which essentially states that we obtain a solution for disjoint
K4-minor cover by applying branching rule 1 exhaustively under (iii).

Theorem 3 (?). Let (G,S, k) be an independent instance of disjoint K4-minor cover. Then
W ⊆ F is a disjoint K4-minor cover of G if and only if it is a vertex cover of G∗(S).

Observe that we do not need to build G∗(S) to solve the disjoint K4-minor cover problem on
an independent instance2. Indeed, for every pair of vertices u, v ∈ F , it is enough to test whether
G[S ∪ {u, v}] contains K4 as a minor (this can be done in linear time [28]) and if so we apply
branching rule 1 on the set X = {u, v}.

2A more careful analysis shows that G∗(S) is a circle graph. As Vertex Cover is polynomial time solvable on
circle graphs, so is disjoint K4-minor cover problem on an independent instance.
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3.3 Algorithm and complexity analysis

Let us present the whole search tree algorithm. At each node of the computation tree associated
with a given instance (G,S, k), one of the followings operations is performed. As each operation
either returns a solution (as in (a),(e)) or generates a set of instances (as in (b)-(d)), the overall
application of the operations can be depicted as a search tree.

(a) if (k < 0) or (k ≤ 0, tw(G) > 2) or (tw(G[S]) > 2), then return no;

(b) if the instance is not reduced, apply one of Reduction rules 2–6 (note that we apply Reduction
rules 2–5 first whenever possible, and Reduction rule 6 is applied when none of the rules 2–5
can be applied);

(c) if the instance is not simplified, apply one of Branching rules 1–3 on the singleton sets {x}
for each x ∈ F ;

(d) if the instance is simplified, apply the procedure Branch-or-reduce;

(e) if the application of Branch-or-reduce marks every node of (T,X ), the instance is an
independent instance; solve it in 2k · nO(1) using branching rule 1 on pairs of vertices of F .

We now describe the procedure Branch-or-reduce as a systematic way of applying the
branching and reduction rules. It works in a bottom-up manner on an extended SP-decomposition
(T,X ) of G[F ]. Initially the nodes of (T,X ) are unmarked. Starting from a lowest node, Branch-
or-reduce recursively tests if we can apply one of the branching rules on a subgraph associated
with a lowest unmarked node. If the branching rules do not apply, it may be due to a large pro-
trusion. In that case, we detect the protrusion (see Lemma 4) and reduce the instance using the
protrusion rule 1. Once either a branching rule or the protrusion rule has been applied, the pro-
cedure Branch-or-reduce terminates. The output is a set of instances of disjoint K4-minor
cover, possibly a singleton.

The complexity analysis relies on a series of technical lemmas such as Lemma 4. We say that
a path P avoids a set X if no internal vertex of P belongs to X. To simplify the notation, we use
Gα instead of G[F ]α for a node α of T . Similarly, we use the names Vα, Yα = Vα \Xα and V B

α to
denote the various named subsets of V (G[F ]α).

Lemma 3 (?). Let W and Z be disjoint vertex subsets of a graph G such that G[W ] is biconnected,
G[Z] is connected and |NW (Z)| ≥ 3. Then G[W ∪ Z] contains a K4-subdivision.

Lemma 4. Let (G,S, k) be a simplified instance and let α be a lowest node of the extended SP-
decomposition (T,X ) of G[F ] which is considered at line 11 of Algorithm 1. If α is a P-node
inherited from the SP-tree of block B, then |∂G(V B

α ) \Xα| ≤ 2 and V B
α is a 4-protrusion.

Proof. As α is a P-node, GBα is biconnected. We argue |∂G(V B
α )\Xα| ≤ 2 and the second statement

easily follows. Suppose ∂G(V B
α ) \ Xα contains three distinct vertices, say, x, y and z. We claim

that there exist three internally vertex-disjoint paths Px, Py and Pz from S to each of x, y and z
avoiding V B

α . Without loss of generality, we show that G[S ∪ Vα] contains a path Px between S
and x avoiding V B

α and the claim follows as a corollary. If x ∈ N1 ∪N2, then it is trivial. Suppose
x /∈ N1 ∪N2 and thus x is a cut vertex of G[F ]. Then (T,X ) contains a cut node β with Xβ = {x}
such that β is a descendent of α. It can be shown3 that Yβ ∩ (N1∪N2) 6= ∅. Since Gβ is connected,
G[S ∪ Vβ] contains a path Px between S and x and Px is a path avoiding V B

α .

3Lemma 16 in the appendix
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Algorithm 1: Branch-or-reduce

Input: A simplified instance (G,S, k) of disjoint K4-minor cover, together with an
extended SP-decomposition (T,X ) of G[F ].

Output: A set of instances of disjoint K4-minor cover.

while T contains unmarked nodes do
1 Let α be an unmarked node at the farthest distance from the root of T ;
2 if S contains two vertices xu ∈ NS(u) and xv ∈ NS(v) with u, v ∈ Vα and

ccS(xu) 6= ccS(xv) then
3 Let X be a path in Gα between two such vertices u and v such that X \ {u, v} ⊆ N0;
4 Apply Branching rule 2 to X; terminate;

5 if S contains two vertices xu ∈ NS(u) and xv ∈ NS(v) with u, v ∈ Vα and
bcS(xu) 6= bcS(xv) then

6 Let X be a path in Gα between two such vertices u and v such that X \ {u, v} ⊆ N0;
7 Apply Branching rule 3 to X; terminate;

8 if G[S ∪ Vα] contains a K4-subdivision then
9 Let X ⊆ Vα be a connected set such that G[S +X] contains a K4-subdivision;

10 Apply Branching rule 1 to X; terminate;

11 if α is a P-node and |V B
α | > γ(9) then

12 X = V B
α is a 4-protrusion (see Lemma 4);

13 Apply the protrusion Reduction rule 1 with X; terminate;

14 Mark the node α;

As α fails the test of line 2, the vertices of NS(Vα) belong to the same connected component, say
C, of G[S]. Now Lemma 3 applies to the biconnected graph GBα and (C ∪ Px ∪ Py ∪ Pz) \ {x, y, z},
showing that G[V B

α ∪ Px ∪ Py ∪ Pz ∪ S] contains a K4-subdivision: a contradiction to the fact that
Branching rule 1 does not apply. Therefore, ∂G(V B

α ) \Xα contains at most two vertices.

The next two lemmas show that applying Branch-or-reduce in a bottom-up manner enables
us to bound the branching degree of the Branch-or-reduce procedure. Lemma 5 states that for
every marked node α, the graph Gα is of constant-size.

Lemma 5 (?). Let (G,S, k) be a simplified instance of disjoint K4-minor cover and let α be a
marked node of the extended SP-decomposition (X , T ) of G[F ]. Then |Vα| 6 c1 := 12(γ(8) + 2c0).

Lemma 6 (?). Let (G,S, k) be a simplified instance of disjoint K4-minor cover and let α be a
lowest unmarked node of (T,X ) of G[F ]. In polynomial time, one can find

(a) a path X of size at most 2c1 satisfying the conditions of line 3 (resp. line 6) if the test at
line 2 (resp. 5) succeeds;

(b) a subset X ⊆ Vα of size bounded by 2c1 satisfying the condition of line 9 if the test at line 8
succeeds;

For running time analysis of our algorithm, we introduce the following measure
µ := (2c1 + 2)k + (2c1 + 2)#cc(G[S]) + #bc(G[S])

9



where #cc(G[S]) and #bc(G[S]) respectively denote the number of connected and biconnected
components of G[S].

Reminder of Theorem 1 The K4-minor cover problem can be solved in 2O(k) · nO(1) time.

Proof. Due to Lemma 1, it is sufficient to show that one can solve disjoint K4-minor cover in
time 2O(k) · nO(1). The recursive application of operations (a)-(e) at the beginning of the section
to a given instance (G,S, k) produces a search tree Υ. It is not difficult to see that (G,S, k) is a
YES-instance if and only if at least one of the leaf nodes in Υ corresponds to a YES-instance. This
follows from the fact that reduction and branching rules are safe.

Let us see the running time to apply the operations (a)-(e) at each node of Υ. Every instance
corresponding to a leaf node either is a trivial instance or is an independent instance (see Theorem 2)
which can be solved in 2k · nO(1) using branching rule 1 on pairs of vertices of F (see Theorem 3).
Clearly, the operations (a)–(c) can be applied in polynomial time. Consider the operation (d). The
while-loop in the algorithm Branch-or-reduce iterates O(n) times. At each iteration, we are
in one of the three situations: we detect in polynomial time (Lemma 6) a connected subset X on
which to apply one of Branching rules, or apply the protrusion rule in polynomial time (Reduction
rule 1), or none of these two cases occur and the node under consideration is marked.

Observe that the branching degree of the search tree is at most 2c1 + 1 by Lemma 6. To bound
the size of Υ, we need the following claim.

Claim 1. In any application of Branching rules 1–3, the measure µ strictly decreases.

Proof of claim. The statement holds for Branching rule 1 since k reduces by one and G[S] is
unchanged. Recall that Branching rules 2 and 3 put a vertex in the potential solution or add a
path X ⊆ F to S. In the first case, µ strictly decreases because k decreases and #cc(G[S]) and
#bc(G[S]) remain unchanged. Let us see that µ strictly decreases also when we add a path X to
S.

If Branching rule 2 is applied, the number of biconnected components may increase by at most
2c1 + 1. This happens if every edge on the path X together with the two edges connecting the
two end vertices of X to S add to the biconnected components of G[S ∪X]. Hence we have that
the new value of µ is µ′ = (2c1 + 2)k + (2c1 + 2)#cc(G[S ∪X]) + #bc(G[S ∪X]) 6 (2c1 + 2)k +
(2c1 + 2)(#cc(G[S])−1) + (#bc(G[S]) + 2c1 + 1) 6 µ−1. It remains to observe that an application
Branching rule 3 strictly decreases the number of biconnected components while does not increase
the number of connected components. Thereby µ′ 6 µ− 1. 3

By Claim 1, at every root-leaf computation path in Υ we have at most µ = (2c1 + 2)k + (2c1 +
2)#cc(G[S]) + #bc(G[S]) ≤ (4c1 + 5)k nodes at which a branching rule is applied. Since we branch
into at most (2c1 + 1) ways, the number of leaves is bounded by (2c1 + 1)(4c1+5)k. Also note that
any root-leaf computation path contains O(n) nodes at which a reduction rule is applied since any
reduction rule strictly decreases the size of the instance and does not affect G[S]. It follows that
the running time is bounded by ((4c1 + 5)k +O(n)) · (2c1 + 1)(4c1+3)k · poly(n) = 2O(k) · nO(1).

4 Conclusion and open problems

Due to the use of the generic protrusion rule (on t-protrusion for t = 3 or 4), the result in this
paper is existential. A tedious case by case analysis would eventually leads to an explicit ck · nO(1)
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exponential FPT algorithm for some constant value c. It is an intriguing challenge to reduce the
basis to a small c and/or get a simple proof of such an explicit algorithm. More generally, it would
be interesting to investigate the systematic instantiation of protrusion rules.

We strongly believe that our method will apply to similar problems. The first concrete example
is the parameterized Outerplanar Vertex Deletion, or equivalently the {K2,3,K4}-minor
cover problem. For that problem, we need to adapt the reduction and branching rules in order
to preserve (respectively, eliminate) the existence of a K2,3 as well. For example, the by-passing
rule (Reduction rule 3) may destroy a K2,3 unless we only bypass a degree-two vertices when it is
adjacent to another degree-two vertex. Similarly in Reduction Rule 6, we cannot afford to replace
the set X by an edge. It would be safe with respect to {K2,3,K4}-minor if instead X is replaced
by a length-two path or by two parallel paths of length two (depending on the structure of X). So
we conjecture that for Outerplanar Vertex Deletion our reduction and branching rules can
be adapted to design a single exponential FPT algorithm.

A more challenging problem would be to get a single exponential FPT algorithm for the
treewidth-t vertex deletion for any value of t. Up to now and to the best of our knowl-
edge, the fastest algorithm runs in 2O(k log k) · nO(1) [18].

Acknowledgements. We would like to thank Saket Saurabh for his insightful comments on an
early draft and Stefan Szeider for pointing out the application of our problem in Bayesian Networks.
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A Definitions

A.1 Minors and tree-width

Figure 2: A K4-subdivision on the left and a θ3-subdivision on the right. The black vertices are
the branching nodes.

Observation 1. A K4-subdivision is biconnected; equivalently, it is connected and does not contain
a cut vertex.

Since there are three distinct paths between any two branching nodes in a K4-subdivision, we
need at least three vertices in order to separate any two of them. Hence we have:

Observation 2. Let {s, t} be a separator of graph G, and let H be a K4-subdivision in G. Then
there exists a connected component X0 of G−{s, t} such that all four branching nodes of H belong
to X0 ∪ {s, t}.

A tree decomposition of G is a pair (T,X ), where T is a tree whose vertices we will call nodes and
X = {Xi : i ∈ V (T )} is a collection of subsets of V (G) (called bags) with the following properties:

1.
⋃
i∈V (T )Xi = V (G),

2. for each edge (v, w) ∈ E(G), there is an i ∈ V (T ) such that v, w ∈ Xi, and

3. for each v ∈ V (G) the set of nodes {i : v ∈ Xi} form a subtree of T .

The width of a tree decomposition (T, {Xi : i ∈ V (T )}) equals maxi∈V (T ){|Xi| − 1}. The
treewidth of a graph G is the minimum width over all tree decompositions of G. We use the
notation tw(G) to denote the treewidth of a graph G.

A.2 Block, canonical SP-tree and extended SP-decomposition

Without loss of generality, we may assume [3] that an SP-tree satisfies the following conditions: (1)
an S-node does not have another S-node as a child; each child of an S-node is either a P-node or a
leaf; and (2) a P-node has exactly two children — see Figure 3.

By Lemma 7, we may further assume that for a biconnected series-parallel graph G and any
fixed vertex s ∈ V (G), (3) G has an SP-tree whose root is a P-node with s as one of its two
terminals. We say that an SP-tree is canonical if it satisfies the conditions (1) and (2), and also (3)
when G is biconnected.
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Figure 3: A canonical SP-tree. P-nodes are coloured grey and S-nodes are coloured white. Observe
that as P-nodes are binary and may have a P-node as a child, while S-nodes do not have any S-node
as a child, conditions (1) and (2) are satisfied.

Lemma 7. [14] Let G be a series-parallel graph, and let s, t be two vertices in G. Then G is
an SP-graph with terminals s and t if and only if G + (s, t) is an SP-graph. Moreover, if G is
biconnected, then the last operation is a parallel join.

The following is a well-known characterization relating forbidden minors, treewidth, and series-
parallel graphs [2, 3].

Lemma 8. Given a graph G, the followings are equivalent.

• G does not contain K4 as a minor (That is, G is K4-minor-free.).

• The treewidth of G is at most two.

• Every block of G is a series-parallel graph.

It is well-known that one can decide whether tw(G) 6 2 in linear time [28]. It is not difficult
to see that in linear time we can also construct an extended SP-decomposition of G. Though the
next lemma is straightforward, we sketch the proof for completeness.

Lemma 9. Given a graph G, one can decide whether tw(G) 6 2 (or equivalently, whether G is
K4-minor-free) in linear time. Further, we can construct an extended SP-decomposition of G in
linear time if tw(G) 6 2.

Proof. The classical algorithm due to Hopcroft and Tarjan [21] identifies the blocks and cut vertices
of G in linear time. Due to Lemma 8, testing tw(G) ≤ 2 reduces to testing whether each block of
G is a series-parallel graph. It is known [28] that the recognition of a series-parallel graph and the
construction of an SP-decomposition can be done in linear time. Further, an SP-decomposition can
be transformed into a canonical SP-decomposition in linear time. Given an oriented block tree ~BG
and a canonical SP-decomposition for every block, we can construct the extended SP-decomposition
in linear time, and the statement follows.
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Figure 4: A K4-minor-free graph G and its block tree BG.

B Proof of Generic disjoint protrusion rule

Definition 1 (t-Boundaried Graphs). A t-boundaried graph is a graph G = (V,E) with t distin-
guished vertices, uniquely labeled from 1 to t. The set ∂(G) ⊆ V of labeled vertices is called the
boundary of G. The vertices in ∂(G) are referred to as boundary vertices or terminals.

Definition 2 (Gluing by ⊕). Let G1 and G2 be two t-boundaried graphs. We denote by G1 ⊕G2

the t-boundaried graph such that: its vertex set is obtained by taking the disjoint union of V (G1)
and V (G2), and identifying each vertex of ∂(G1) with the vertex of ∂(G2) having the same label;
and its edge set is the union of E(G1) and E(G2). (That is, we glue G1 and G2 together on their
boundaries.)

Many graph optimization problems can be rephrased as a task of finding an optimal number
of vertices or edges satisfying a property expressible in Monadic Second Order logic (MSO). A
parameterized graph problem Π ⊆ Σ∗ × N is given with a graph G and an integer k as an input.
When the goal is to decide whether there exists a subset W of at most k vertices for which an
MSO-expressible property PΠ(G,W ) holds, we say that Π is a p-min-MSO graph problem. When
PΠ(G, ∅) holds, we write that PΠ(G) holds (or that G satisfies PΠ). In the (parameterized) disjoint
version Πd of a p-min-MSO problem Π, we are given a triple (G,S, k), where G is a graph, S a
subset of V (G) and k the parameter, and we seek for a solution set W which is disjoint from S, and
whose size is at most k. The fact that a set W is such a solution is expressed by the MSO-property
PΠd(G,S,W ) : PΠ(G,W ) ∧ (S ∩W = ∅).

Definition 3. For a disjoint parameterized problem Πd and two t-boundaried graphs 4 Gp and Gr,
we say that Gp ≡Πd Gr if there exists a constant c such that for all t-boundaried graphs G, for every
vertex set S ⊆ V (G) \ ∂(G), and for every integer k,

(Gp ⊕G,S, k) ∈ Πd if and only if (Gr ⊕G,S, k + c) ∈ Πd

4We use this notation since later in this section, Gp plays the role of a (large) protrusion and Gr, its replacement.

15



Definition 4 (Disjoint Finite integer index). For a disjoint parameterized graph problem Πd, we
say that Πd has disjoint finite integer index if the following property is satisfied: for every t, there
exists a finite set R of t-boundaried graphs such that for every t-boundaried graph Gp there exists
Gr ∈ R with Gp ≡Πd Gr. Such a set R is called a set of representatives for (Πd, t).

It is often convenient to pair up a t-boundaried graph G with a set W ⊆ V (G) of vertices.
We define Ht to be the set of pairs (G,W ), where G is a t-boundaried graph and W ⊆ V (G).
For an p-min-MSO problem Π and a t-boundaried graph G, we define the signature function
ζG : Ht → N ∪ {∞} as follows.

ζG((G′,W ′)) =

{
∞ if @W ⊆ V (G) s.t. PΠ(G⊕G′,W ∪W ′)
minW⊆V (G){|W | : PΠ(G⊕G′,W ∪W ′)} otherwise

To ease the notation, we write ζG(G′,W ′) to denote ζG((G′,W ′)).

Definition 5 (Strong monotonicity). A p-min-MSO problem Π is said to be strongly monotone if
there exists a function f : N → N satisfying the following condition: for every t-boundaried graph
G, there exists a set WG ⊆ V (G) such that for every (G′,W ′) ∈ Ht with finite value ζG(G′,W ′),
PΠ(G⊕G′,WG ∪W ′) holds and |WG| 6 ζG(G′,W ′) + f(t).

Bodlaender et al. show [4, proof of Lemma 13] that if F is a finite set of connected planar
graphs, then F-minor cover problem is strongly monotone. The following lemma is a corollary
of this fact. We give the proof for completeness.

Lemma 10. The K4-minor cover problem is strongly monotone.

Proof. Let G be a t-boundaried graph and ∂(G) be its boundary. Let W ⊆ V (G) be a minimum
size vertex subset such that G[V \W ] is K4-minor-free. Define WG = W ∪ ∂(G). Then for every
pair (G′,W ′) ∈ Ht such that ζG(G′,W ′) is finite, WG ∪W ′ is a K4-minor cover of G ⊕ G′ and
moreover by construction |WG| 6 ζG(G′,W ′) + t.

Lemma 11. Let Π be a strongly monotone p-min-MSO problem. Then its disjoint version Πd has
disjoint finite integer index.

Proof. We consider the following equivalence relation ∼Π on Ht: (G,W ) ∼Π (G′,W ′) if and only
if for every (Gp,Wp) ∈ Ht we have

PΠ(Gp ⊕G,Wp ∪W )⇔ PΠ(Gp ⊕G′,Wp ∪W ′)

Since PΠ is an MSO-property, it has a finite state property of t-boundaried graphs [8]. That is,
there exists a finite set S ⊆ Ht with the property that for every pair (G,W ) ∈ Ht, there exists a
pair (G′,W ′) ∈ S with (G,W ) ∼Π (G′,W ′).

Let Gp be a t-boundaried graph. By the definition of strong monotonicity, there exists WGp ⊆
V (Gp) such that for every (G,W ) ∈ Ht with finite value ζGp(G,W ), PΠ(Gp⊕G,WGp∪W ) holds, and
|WGp | 6 ζGp(G,W )+f(t). Observe also that by definition of the function ζGp , ζGp(G,W ) 6 |WGp |.
It follows that

|WGp | − f(t) 6 ζGp(G,W ) 6 |WGp | (1)
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We define the equivalence relation ∼R on t-boundaried graphs as follows: Gp ∼R Gr if and only
if there exist sets WGp ⊆ V (Gp) and WGr ⊆ V (Gr meeting the condition of strong monotonicity
such that for every (G,W ) ∈ S we have

|WGp | − ζGp(G,W ) = |WGr | − ζGr(G,W ) (2)

.

By (1) and the finiteness of S, there exists a set R of at most (f(t) + 2)|S| t-boundaried graphs
such that for every t-boundaried graph Gp, there exists Gr ∈ R with Gp ∼R Gr.

Let Gp and Gr be t-boundaried graphs such that Gp ∼R Gr. As a consequence of (2), there
is a constant cr = |WGp | − |WGr | (which depends only on Gp and Gr) such that ζGp(G,W ) =
ζGr(G,W ) + cr for every (G,W ) ∈ S. The rest of the proof is devoted to the following claim:

Claim 2. For two t-boundaried graphs Gp and Gr, if Gp ∼R Gr then Gp ≡Πd Gr. Specifically, for
every t-boundaried graph G and S ∈ V (G) \ ∂(G), we have

(Gp ⊕G,S, k) ∈ Πd if and only if (Gr ⊕G,S, k − cr) ∈ Πd

Proof of claim. We only prove the forward direction, the reverse follows with symmetric arguments.
Suppose that (Gp⊕G,S, k) ∈ Πd. Consider Z ⊆ V (Gp⊕G) such that Z ∩S = ∅, PΠ(Gp⊕G,Z) is
satisfied and Z has the minimum size. We denote W = Z ∩ V (G) and Wp = Z \W . Observe that
since PΠ(Gp ⊕G,Z) holds, PΠ(Gp ⊕G,Wp ∪W ) also holds.

Let us consider (G′,W ′) ∈ S such that (G,W ) ∼Π (G′,W ′). We first prove that |Wp| =
ζGp(G

′,W ′). Since PΠ(Gp ⊕ G,Wp ∪W ) holds and (G,W ) ∼Π (G′,W ′), we have that PΠ(Gp ⊕
G′,Wp ∪W ′) holds. Hence |Wp| ≥ ζGp(G

′,W ′). For the sake of contradiction, assume that there
exists W ′p ⊆ V (Gp) such that |W ′p| < |Wp| and PΠ(Gp ⊕ G′,W ′p ∪W ′) holds. Since (G,W ) ∼Π

(G′,W ′), PΠ(Gp ⊕ G,W ′p ∪ W ) is satisfied. As W ∩ Wp = ∅, we have |W ′p ∪ W | < |Z|; this
contradicts the choice of Z.

Since Gp ∼R Gr and (G′,W ′) ∈ S, there exists Wr ⊆ V (Gr) such that PΠ(Gr ⊕ G′,Wr ∪W ′)
holds and |Wr| = |Wp| − cr. And finally, (G,W ) ∼Π (G′,W ′) implies that PΠ(Gr ⊕G,Wr ∪W ).

To conclude the proof observe first that S ⊆ V (G) \ ∂(G) implies that (Wr ∪ W ) ∩ S = ∅.
Moreover we have

|Wr ∪W | 6 |Wr|+ |W | = |Wp| − cr + |W | = |Z| − cr 6 k − cr

It follows that (Gr ⊕G,S, k − cr) ∈ Πd. 3

By Claim 2, we conclude that R is a set of representatives for (Πd, t) and thus the disjoint
version Πd of a strongly monotone p-min-MSO problem Π has disjoint finite integer index.

Definition 6. A subset X of the vertex set of a graph G is a t-protrusion of G if tw(G[X]) 6 t
and |∂(X)| 6 t.

Lemma 12. Let Πd be the disjoint version of a strongly monotone p-min-MSO problem Π. There
exists a computable function γ : N→ N and an algorithm that given:

• an instance (G,S, k) of Πd such that PΠ(G,S) holds
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• a t-protrusion X of G such that |X| > γ(2t+ 1) and X ∩ S = ∅

in time O(|X|) outputs an instance (G′, S, k′) such that |V (G′)| < |V (G)|, k′ ≤ k, (G′, S, k′) ∈ Πd

if and only if (G,S, k) ∈ Πd, and PΠ(G′, S) holds.

Proof. Let ∼R be the equivalence relation on (2t + 1)-boundaried graphs defined in the proof
of Lemma 11.We refine the equivalence relation ∼R into ∼R∗ according to whether a (2t + 1)-
boundaried graph satisfies PΠ. be precise, we have Gp ∼R∗ Gr if and only if (a) Gp ∼R Gr and
(b) for every (2t + 1)-boundaried graph H: PΠ(Gp ⊕ H) if and only PΠ(Gr ⊕ H) We know that
∼R has finite index. As PΠ is an MSO-expressible graph property, the equivalence relation (b) has
finite index [8]. Therefore ∼R∗ also defines finitely many equivalence classes. We select a set R∗
of representatives for ∼R∗ with one further restriction: Claim 2 is satisfied for some nonnegative
constant cr. Such a set of representatives R∗ can be constituted by picking up a representative Gr
for each equivalence class so that the constant ζGp(G,W )− ζGr(G,W ), following the condition (a),
is nonnegative for every Gp ∼R∗ Gr. Here ζ is the signature function for Π. Define γ(2t+ 1) to be
the size of the vertex set of the largest graph in R∗.

Let φ and ρ be mappings from the set of (2t+ 1)-boundaried graphs of size at most 2γ(2t+ 1)
to R∗ and N respectively such that for every (2t + 1)-boundaried graph G and S ⊆ V (G) \ ∂(G),
we have (Gp ⊕ G,S, k) ∈ Πd if and only if (φ(Gp) ⊕ G,S, k − ρ(Gp)) ∈ Πd. Such mappings exist:
we take φ(Gp) := Gr ∈ R∗ such that Gp ∼R∗ Gr, and ρ(Gp) := ζGp(G,W ) − ζφ(Gp)(G,W ) which
is a constant by the definition of ∼R (and thus of ∼R∗) and nonnegative by the way we constitute
R∗ as explained in the previous paragraph.

Suppose that |X| > γ(2t+ 1). We build a nice tree-decomposition of G[X] of width t in O(|X|)
time and identify a bag b of the tree-decomposition farthest from its root such that the subgraph
Gb induced by the vertices appearing in bag b or below contains at least γ(2t + 1) and at most
2γ(2t + 1) vertices. The existence of such a bag is guaranteed by the properties of a nice tree
decomposition. Note that for any X ′ ⊂ X, we have X ′ ∩ S = ∅. Let X ′ = V (Gv), so that
that |X ′| ≤ 2γ(2t + 1). We replace G[X] by φ(G[X ′]) to obtain G′, and decrease k by ρ(X ′). It
follows that (G,S, k) ∈ Πd if and only if (G′, S, k′) ∈ Πd. Observe that k′ = k − ρ(X ′) ≤ k and
|V (G′)| < |V (G)| as |φ(G[X])| ≤ γ(2t + 1) < |X|. Finally, observe that the condition (b) of ∼R∗
ensures that G′ − S is K4-minor-free. This completes the proof.

As a corollary, since the K4-minor cover is strongly monotone, the following reduction rule for
disjoint K4-minor cover is safe. We state the rule for an arbitrary value of t, but in practice,
our reduction rule will only be based on t-protrusions for t 6 4.

Reduction Rule 1. (Generic disjoint protrusion rule) Let (G,S, k) be an instance of dis-
joint K4-minor cover and X be a t-protrusion such that X ∩ S = ∅. Then there exists a
computable function γ(.) and an algorithm which computes an equivalent instance in time O(|X|)
such that G[S] and G′[S] are isomorphic, G′ − S is K4-minor-free, |V (G′)| < |V (G)| and k′ 6 k,
provided |X| > γ(2t+ 1).

We remark on Reduction rule 1 that |∂(X ′)| may be strictly smaller than 2t+1. In that case, we
can identify some vertices of X ′\∂(X ′) as boundary vertices and construe X ′ as (2t+1)-boundaried
graph. This is always possible for |X ′| > γ(2t+ 1) ≥ 2t.
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C Deferred proof of Lemma 1

Reminder of Lemma 1 If disjoint K4-minor cover can be solved in ck · nO(1) time, then
K4-minor cover can be solved in (c+ 1)k · nO(1) time.

Proof. LetA be an FPT algorithm which solves the disjoint K4-minor cover problem in ck ·nO(1)

time. Let (G, k) be the input graph for the K4-minor cover problem and let v1, . . . , vn be any
enumeration of the vertices of G. Let Vi and Gi respectively denote the subset {v1 . . . vi} of vertices
and the induced subgraph G[Vi]. We iterate over i = 1, . . . , n in the following manner. At the
i-th iteration, suppose we have a K4-minor cover Si ⊆ Vi of Gi of size at most k. At the next
iteration, we set Si+1 := Si ∪ {vi+1} (notice that Si+1 is a K4-minor cover for Gi+1 of size at most
k + 1). If |Si+1| ≤ k, we can safely move on to the i+ 2-th iteration. If |Si+1| = k + 1, we look at
every subset S ⊆ Si+1 and check whether there is a K4-minor cover W of size at most k such that
W ∩ Si+1 = Si+1 \ S. To do this, we use the FPT algorithm A for disjoint K4-minor cover
on the instance (H,S) with H = Gi+1 − (Si+1 \ S). If A returns a K4-minor cover W of H with
|W | < |S|, then observe that the vertex set (Si+1 \ S) ∪W is a K4-minor cover of G whose size is
strictly smaller than Si+1. If there is a K4-minor cover of Gi+1 of size strictly smaller than Si+1,
then for some S ⊆ Si+1, there is a small S-disjoint K4-minor cover in Gi+1 − (Si+1 \ S) and A
correctly returns a solution.

The time required to execute A for every subset S at the i-th iteration is
∑k+1

i=0

(
k+1
i

)
· ci ·

nO(1) = (c + 1)k+1 · nO(1). Thus we have an algorithm for K4-minor cover which runs in time
(c+ 1)k · nO(1).

D Deferred proofs for (explicit) reduction rules

Lemma 13. Reduction rules 2, 3 and 4 are safe and can be applied in polynomial time.

Proof. It is not difficult to see that each of these rules can be applied in polynomial time. We now
prove that each of them is safe.

Reduction rule 2. Let W be a small S-disjoint K4-minor cover of G. Observe that G′ − (W \X) is
a subgraph of G−W . It follows that (W \X) is a small S-disjoint K4-minor cover of G−X. By
the same reasoning, (W \ (X \ ∂(X))) is a small S-disjoint K4-minor cover of G− (X \ ∂(X)).

For the opposite direction, let W ′ be a small S-disjoint K4-minor cover of G′ := (G − X).
Then G′ −W ′ is K4-minor-free. Since G −W ′ is a disjoint union of G′ \W ′ and G[X] and any
K4-subdivision is biconnected, G − W ′ is K4-minor-free as well. Thus W ′ is a small S-disjoint
K4-minor cover of G. The same argument goes through when G′ = (G \ (X \ ∂(X))), as well.

Reduction rule 3. Let W be a small S-disjoint K4-minor cover of G. Without loss of generality,
assume that the vertex v is not in W . Indeed, any K4-subdivision containing v also contains u2

and thus, we can take (W \ {v})∪{u2} to hit such a K4-subdivision. Let G′ be the graph obtained
from G by applying the rule. Observe that G2 = G′ \W is a minor of G1 = G \W , that is:

• If W ∩ {u1, u2} = ∅, then G2 can be obtained from G1 by contracting the edge (v, u1).

• If W ∩ {u1, u2} 6= ∅, then G2 can be obtained from G1 by deleting v.
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It follows that W is a small S-disjoint K4-minor cover of G′ as well. For the opposite direction, let
W ′ be a small S-disjoint K4-minor cover of G′. Observe that G′1 = G \W ′ can be obtained from
the K4-minor-free graph G′2 = G′ \W ′ in the following ways:

• If W ′ ∩{u1, u2} = {u1, u2}, then G′1 can be obtained from G′2 by adding an isolated vertex v.

• If W ′ ∩ {u1, u2} = {u2}, then G′1 can be obtained from G′2 by attaching a vertex v to u1.

• If W ′ ∩ {u1, u2} = ∅, then G′1 can be obtained from G′2 by subdividing the edge (u1, u2).

In the first two cases, note that any K4-subdivision is biconnected and thus v is never contained
in a K4-subdivision. By the assumption that G′2 is K4-minor-free, G′1 is also K4-minor-free. In the
third case, G′1 is also K4-minor-free since subdividing an edge in a K4-minor-free graph does not
introduce a K4 minor. It follows that W ′ is a small S-disjoint K4-minor cover of G as well.

Reduction rule 4. In the forward direction, observe that the graph obtained by applying the rule is
a subgraph of the original graph. In the reverse direction, observe that increasing the multiplicity
(number of parallel edges) of any edge in a K4-minor-free graph does not introduce a K4-minor in
the graph.

S

u u u u1 2 3 l

S

u u1 leu

Figure 5: Contraction of the edge e = u2u3 into ue (the grey vertex) when Reduction rule 5 applies.

Lemma 14. Reduction Rule 5 is safe and can be applied in polynomial time.

Proof. Let ue be the vertex obtained by contracting e, and let W be a small disjoint K4-minor
cover of G. If W ∩ {u2, u3} = ∅, then let W ′ ← W ; otherwise let W ′ ← (W \ {u2, u3}) ∪ {ue}. In
either case |W ′| 6 |W | 6 k, and (G/e) \W ′ is a minor of G \W . Since G \W is K4-minor-free, so
is (G/e) \W ′, and so W ′ is a small disjoint K4-minor cover of G/e.

Conversely, let W ′ be a small disjoint K4-minor cover of G/e. We first consider the case ue ∈W ′.
Then let W ← (W ′ \ {ue}) ∪ {u2}. We claim that W is a small disjoint K4-minor cover of G. It is
not difficult to see that W is both small and S-disjoint; we now show that it is a K4-minor cover of
G. Assume to the contrary that G−W contains a K4-subdivision H. Observe that G− (W ∪{u3})
is isomorphic to (G/e)−W ′ which is K4-minor-free, and so u3 ∈ V (H). Now u3 is a degree 2 vertex
in G−W and so is a subdividing node of H, implying that u4 and x (the neighbors of u3) belongs to
V (H). As x and u4 are adjacent, G−W contains a K4-subdivision H ′ with V (H ′) = V (H) \ {u3}.
Thus G− (W ∪ {u3}) contains a K4-subdivision, a contradiction.

Suppose now that ue /∈W ′. We claim that W ′ is a K4-minor cover of G as well. Assume to the
contrary that H is a K4-subdivision in G−W ′. We claim that every K4-subdivision H in G−W ′
contains u2 and u3 as branching nodes. Assume that u2 /∈ V (H). Then since G − (W ′ ∪ {u2}) is
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a (non-induced) subgraph of G/e−W ′, H is also a K4-subdivision in G/e−W ′: a contradiction.
So every K4-subdivision in G −W ′ contains u2. By a symmetric argument, u3 ∈ V (H) as well.
Now a simple case by case analysis (see Figure 6) shows that if u2 or u3 is a subdividing node, then
G/e−W ′ also contains a K4-subdivision H ′ with V (H ′) = (V (H)\{u2, u3})∪{ue}: a contradiction.

(3)

(4) (5)

(6)

(7)

(1) (2)

u4u3u2u1

x

u4u3u2u1

x

u4u3u2u1

x

u4u3u2u1

x

u4u3u2u1

x

u4u3u2u1

u

x

4u3u2u1

x

Figure 6: The different possible intersections of H with G[{u1, u2, u3, u4, x}]. The bold lines denote
those edges in H which are incident on u2 or u3. In cases (1), (2) and (3) we can argue that there
exists a K4-subdivision in G−W ′ avoiding either u2 or u3: a contradiction. In cases (4), (5) and
(6), we observe the existence of a K4-subdivision in G/e: a contradiction.

It follows that u2, u3 are both present as branching nodes in H (see case (7) in Figure 6). As
these vertices both have degree 3 in G, every edge incident to u2 or u3 is used in H. Therefore the
common neighbor x of u2 and u3 also appears in H as a branching node. So at most one vertex in
{u1, u4} is a branching node; assume without loss of generality that u4 is a subdividing node. It
lies on the path between u3 and a branching node y /∈ {u2, u3, x}, and we can make u4 a branching
node instead of u3 to obtain a new K4-subdivision H ′ by replacing in H the edge (x, u3) by the
edge (x, u4). But then H ′ is a K4-subdivision in G \W ′ which does not contain u3 as a branching
node, a contradiction. It follows that W ′ is a small disjoint K4-minor cover of G.

It is not difficult to see that the rule can be applied in polynomial time.

Lemma 15. Let (G,S, k) be an instance reduced with respect to Reduction Rules 2, 3 and 4. Then
Reduction Rule 6 is safe and can be applied in polynomial time.

Proof. Since (G,S, k) is reduced with respect to Rule 2, G[F ] does not contain any cut vertex. Let
(G′, S, k) be the instance obtained by applying Reduction Rule 6 to (G,S, k). Let X ′ be the set
of vertices with which the rule replaced X and let X0 := X \ {s, t}, X ′0 := X ′ \ {s, t}. We can
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assume that X0 6= ∅ since otherwise the reduction rule is useless. To prove that (G,S, k) has a
small disjoint K4-minor cover of G if and only if (G′, S, k) does, we need the following claim.

Claim 1. G[X] + (s, t) is an SP-graph if and only if G[X] + (s, t) is K4-minor-free.

Proof of claim. The forward direction follows directly from Lemma 8. Assume now that G[X] +
(s, t) is K4-minor-free. As (G,S, k) is reduced with respect to Reduction Rule 2, the block tree of
G[X] is a path and moreover s and t belong to the two leaf blocks, respectively (these blocks may
also coincide). This implies that the addition of the edge (s, t) to G[X] yields a biconnected graph.
This concludes the proof since by Lemma 8 a biconnected K4-minor free graph is an SP-graph. 3

We now resume the proof of the lemma. Let W be a small disjoint K4-minor cover of G. If
W ∩X0 6= ∅, set W ∗ := (W \X0) ∪ {t}. Since {s} is a cut vertex in G−W ∗ isolating X0, no K4-
subdivision in G−W ∗ uses any vertex from X0. Also |W ∗| ≤ k, and so W ∗ ⊆ V (F ) \X0 is a small
disjoint K4-minor cover of G. So we can assume without loss of generality that W ∩X0 = ∅. Let us
prove that W is a K4-minor cover of G′. For the sake of contradiction, let H ′ be a K4-subdivision
in G′ −W . There are two cases to consider:

1. Reduction Rule 6 replaces G[X] by the edge (s, t): Observe that all the branching nodes of H ′

belong to V (G)\ (W ∪X0). Suppose H ′ uses the edge (s, t) for a path between two branching
nodes, say u and v. As W ∩ X0 = ∅, using an arbitrary s, t-path P in G[X] instead of the
edge (s, t) witnesses the existence of a u, v-path G−W . This implies that G−W contains a
K4-subdivision H such that V (H) = V (H ′) ∪ V (P ), a contradiction.

2. Reduction Rule 6 replaces G[X] by a θ3 on vertex set X ′ = {a, b, s, t}: this occurs when G[X]+
(s, t) is not an SP-graph and so by Claim 1 contains a K4-subdivision. By Observation 2, the
branching nodes of V (H ′) belong either to X ′ or to V (G) \ {a, b}. In the latter case, vertex
a or b may be used by H ′ as a subdividing node to create a path through s and t between
two branching nodes of H ′. The same argument as above then yields a contradiction. In
the former case, observe that every vertex of X ′ is a branching node of H ′ and some vertices
out of X ′ may be used by H ′ as subdividing nodes to create the missing path P between s
and t in G′ −W . As G[X] + (s, t) also contains a K4-subdivision, say H, we can construct a
K4-subdivision in G−W on vertex set V (H) ∪ V (P ), a contradiction.

For the reverse direction, let W ′ be a small disjoint K4-minor cover of G′. Again we can assume
that W ′ ∩ X ′0 = ∅. Indeed, if W ′ ∩ X ′0 6= ∅, it is easy to see that (W ′ \ X ′0) ∪ {t} is also a small
disjoint K4-minor cover of G′. Let us prove that W ′ is also a K4-minor cover of G (the arguments
are basically the same as above). For the sake of contradiction, assume H is a K4-subdivision of
G −W ′. By Observation 2, since {s, t} is a separator of size two, the branching nodes of V (H)
belong either to X or to V (G) \X0. In the former case, G[X] + (s, t) is not an SP-graph, and thus
X as been replaced by a θ3 on {a, b, s, t}. Let P be the s, t-path of G − (X0 ∪W ′) used by H.
As W ′ ∩X ′0 = ∅, {a, b, s, t} ∪ V (P ) induces a K4-subdivision in G′ −W ′, a contradiction. In the
latter case, if H uses a path between s and t in G[X]−W ′, then such a path also exists in G′−W ′
witnessing a K4-subdivision in G′ −W ′, a contradiction.
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E Deferred proofs of Lemmas 3 and 2

Reminder of Lemma 3 Let W and Z be disjoint vertex subsets of a graph G such that G[W ] is
biconnected, G[Z] is connected and |NW (Z)| ≥ 3. Then G[W ∪ Z] contains a K4-subdivision.

Proof. Let x, y and z be three vertices of NW (Z). Since G[Z] is connected and since contracting
edges does not introduce a new K4-subdivision, we may assume without loss of generality that
there is a single vertex, say u, in Z such that {x, y, z} ⊆ N(u).

Since G[W ] is biconnected, it follows from Menger’s Theorem that there are at least two distinct
paths in G[W ] between any two vertices in W . Therefore, every pair of vertices in W belong to at
least one cycle of G[W ].

Let C be a cycle in G[W ] to which x and y belong. If z also belongs to C, then the subgraph
G[C ∪ {u}] contains a K4-subdivision with x, y, z, u as the branching nodes, and we are done. So
let z not belong to the cycle C.

Since G[W ] is biconnected, |NW (z)| ≥ 2. From Menger’s Theorem applied to C and NW (z), we
get that there are at least two paths from z to C which intersect only at z. These paths together
with the cycle C constitute a θ3-subdivision in which x and y are branching nodes and z is a
subdividing node. Together with the vertex u, this θ3-subdivision forms a K4 in G[W ∪ Z].

Reminder of Lemma 2 If (G,S, k) is a simplified instance of disjoint K4-minor cover, then
F = N0 ∪N1 ∪N2.

Proof. As (G,S, k) is a simplified instance, G[S∪{x}] is K4-minor-free for every x ∈ F (by Branch-
ing rule 1) and there exists a biconnected component B of G[S] containing NS(x) (otherwise we
could apply Branching rule 2 or 3). It directly follows from Lemma 3, that for every vertex x ∈ F ,
|NS(x)| 6 2.

F Deferred proofs of Theorem 2 and Theorem 3

Reminder of Theorem 2 Let (G,S, k) be an instance of disjoint K4-minor cover. If none
of the reduction rules nor branching rules applies, then (G,S, k) is an independent instance.

Proof. Once we show that F is an independent set, condition (b) follows from Corollary 2 and the
fact that (G,S, k) is reduced with respect to Reduction rule 2. Conditions (c) and (d) are also
satisfied in this case since (G,S, k) is simplified, specifically since Branching rules 1, 2 and 3 do not
apply on singleton sets X. We now prove that F is an independent set.

Suppose G[F ] contains a connected component X with at least two vertices. Since (G,S, k) is
a simplified instance, G[X ∪ S] does not contain K4 as a minor. Hence from Lemma 3, we have
|NS(X)| ≤ 2. We consider two cases, whether G[X] is a tree or not.

Let us assume that X is a tree. Observe that every leaf of X belongs to N2, for otherwise Rule 2
or Rule 3 would apply. So X contains two leaves, say u and v, having the same two neighbors
in S, say x and y. But then observe that x and y belong to the same connected component of

23



G[S] (otherwise Branching Rule 2 would apply). It clearly follows that x, y, u and v are the four
branching nodes of a K4-subdivision in G[S∪X], which contradicts the assumption that Branching
Rule 1 cannot apply to (G,S, k).

We now consider the case where X is not a tree. Before we proceed further we observe the
following. A nontrivial block is a block which is more than just an edge.

Claim 3. Let B be a nontrivial block of G[F ]. Let FB be the graph obtained from G[F ] by removing
B \∂G(B) and all the edges in G[∂G(B)]. Then every connected component of FB contains a vertex
of N1 ∪N2.

Proof of claim. Observe that any connected component of FB shares at most one vertex with B.
Thus if a connected component of G[F \ (B \∂G(B))] is entirely contained in N0, then we can apply
Reduction rule 2. 3

As X is not a tree, it contains a non-trivial block B. Since (G,S, k) is reduced with respect to
Reduction Rule 2, |∂G(B)| > 2.

We first assume that |∂G(B)| = 2 with ∂(B) = {s, t}. Observe that G[B] + (s, t) is not a
series-parallel graph since otherwise B would be a single edge (s, t) due to Reduction rule 6. As
(G,S, k) is reduced with respect to Reduction rule 6, B is a θ3 with s and t as subdividing nodes.
Due to Branching rule 2, NS(X) is contained in a single connected component of S. Together with
the observation of Claim 3, this implies that there exists an s, t-path P in G[S ∪ X] in which no
internal vertex lies in B. However, G[B∪P ] is a K4-subdivision and Branching rule 1 would apply,
a contradiction.

So we have that |∂G(B)| ≥ 3 and let {x, y, z} ⊆ ∂(B). By Claim 3, there exist three internally
vertex-disjoint paths Px, Py and Pz from x, y and z respectively to a connected component G[S]
such that no internal vertex of them lies in B. Since B is biconnected, Lemma 3 applies by taking
B and (S ∪Px∪Py ∪Pz)\{x, y, z} showing that G[B∪Px∪Py ∪Pz ∪S] contains a K4-subdivision:
a contradiction of the fact that Branching rule 1 does not apply.

Reminder of Theorem 3 Let (G,S, k) be an independent instance of disjoint K4-minor
cover. Then W ⊆ F is a disjoint K4-minor cover of G if and only if it is a vertex cover of
G∗(S).

Proof. If W ⊆ F is a K4-minor cover of G, then by construction G∗(S)−W is an independent set
and thus, W is a vertex cover of G∗(S).

To show the converse, we can assume that G[S] is biconnected. Indeed, for every v ∈ F , its
two neighbors xv, yv ∈ S belong to the same biconnected component and thus any cut vertex of
G[S] remains a cut vertex of G−W . Since K4-subdivision is biconnected, any such subdivision in
G−W must not contain u, v ∈ F \W such that NS(u) and NS(v) belong to distinct biconnected
components of G[S].

An SP-tree is minimal if any S-node (resp. P-node) does not have S-nodes (resp. P-nodes) as
a child [3]. Furthermore, any SP-tree obtained will be converted into a minimal one via standard
operations on the given SP-tree: if there is an S-node (resp. P-node) with another S-node (resp.
P-node) as a child, contract along the edge and if an S-node or P-node has exactly one child, delete
it and connect its child and its parent by an edge. Throughout the proof, we fix a minimal SP-tree

24



TS of G[S]. Furthermore, we take the root as follows: (a) G[S] is a cycle, we let two adjacent
vertices be the terminals of the root. (2) otherwise, the last parallel operation has at least three
children.

For a node α of the SP-tree TS , let Zα be the set of terminals of its children α1 . . . αc, that is,
Zα =

⋃
16i6cXαi .

Claim 4. For every u ∈ F , either Xα = {xu, yu} for some node α of TS or there is a unique S-node
α such that {xu, yu} ⊆ Zα.

Proof of claim. Let us suppose that for u ∈ F , there no α in TS such that Xα = {xu, yu}. We
argue that for such u, there exists an S-node α such that {xu, yu} ⊆ Zα.

To this end, take a lowest node α such that xu, uy ∈ Vα and let Xα = {s, t}. Then α should be
an S-node. Suppose α is a P-node. As we choose α to be lowest, there are two children βx and βy
of α such that xu ∈ Yβx and yu ∈ Yβy . This implies G[S] is not a cycle as we fix the terminals of
the root to be adjacent vertices in this case. Note that Xα = Xβx = Xβy and Xα separates xu and
yu.

Since G[Vβx ] is an SP-graph, there is a path Px from s to t visiting xu. Likewise, G[Vβy ] contains
a path Py from s to t visiting yu. On the other hand, since G[S] is not a simple cycle, there is a
P-node α′ such that either (a) α′ = α and α′ has a child β 6= {βx, βy}, or (b) α′ is an ancestor of α
and it has a child β which is not an ancestor of α. In both cases, the subgraph G[S \ (Yβx ∪Yβy)] is
connected and contains a path P connecting s and t. The three paths Px, Py, P and the length-two
path between xu and yu via u form a K4-subdivision with {vx, vy, s, t} branching nodes.

Now we argue the uniqueness of such an S-node. For some u ∈ F , suppose that there are two
distinct S-nodes α and α′ such that {xu, yu} ⊆ Zα and {xu, yu} ⊆ Zα′ . Since Xα is a separator of
G[S], the only possibility is to have Xα = Xα′ = {xu, yu}. This contradicts to our assumption that
there is no vertex u such that {xu, yu} labels a node of TS . 3

Let F0 and F1 form a partition of F : u ∈ F0 if Xα = {xu, yu} for some node α of TS , otherwise
u belongs to F1. For u ∈ F1, we denote as α(u) the unique S-node of TS with {xu, yu} ⊆ Zα.

Suppose W ⊆ F is a vertex cover of G∗(S). We shall then incrementally extend TS to an SP-tree
of G[S] + (F \W ). For u ∈ F , let Tu be the minimal SP-tree with {xu, yu} as terminals of the
length-two path xuuyu. It is not difficult to increment TS to an SP-tree TS+F0 of G[S ∪ F0]. Let
u ∈ F0 and α be the node labeled by {xu, yu}. If α is an S-node, there is a P-node labeled by the
same terminals. Hence we assume that α is either a leaf node or a P-node. We do the following:
(1) if α is a P-node, make Tu to be a child of α, (2) if α is an edge node, convert α into a P-node
and make Tu to be a child of α. The resulting SP-tree is again minimal, via standard manipulation
if necessary. It is worth noting that none of S-nodes are affected during the entire manipulation
and thus α(u) remains unaffected for u ∈ F1.

We wish to show that TS+F0 can be extended to contain all F1 \ W as well. When α is an
S-node, Zα can be construed as an interval on the terminals of its children: the the ordering of
series compositions imposes an ordering on the elements of Zα. The crucial observation is that
if α(u) = α(v) for u, v ∈ F1 \W , then the intervals [xu, yu] and [xv, yv] in α(u) do not overlap.
Suppose they overlap. We can take a cycle C containing all the vertices of Zα. Then C together
with the two paths Pu = xuuyu and Pv = xvvyv form a K4-subdivision in G[C ∪{u, v}]. Therefore,
we have an edge (u, v) in G∗(S), a contradiction.
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Starting from TS+F0 , now we increment the SP-tree by attaching Tu for every u ∈ F1 \W . Given
u ∈ F1 \W , add a P-node α′ with Xα′ = {xu, yu} as a child of α(u) and make α′ to become the
father of every former child αi of α for which Xαi is contained in the interval [xu, yu]. Note that
no S-node other than α(u) is affected by this manipulation. Moreover, α(u) remains as an S-node.
Indeed, if we need to change α(u), it is only because α(u) has a unique child after the operation.
This implies xu, yu are in fact the terminals of Xα(u). However, the parent of α(u), which is a
P-node due to minimality of the SP-tree, is labeled by {xu, yu}, a contradiction. Finally due to the
crucial observation from the previous paragraph, this incremental extension can be performed for
all vertices of F1 \W . Implying G−W is an SP-graph, this complete the proof.

G Deferred proof of Lemma 5

Lemma 16. Let (G,S, k) be a reduced instance. If α is a non-leaf node of an extended SP-
decomposition (T,X ) of G[F ], then (Vα \ Yα) \N0 6= ∅.

Proof. Observe that for every non-leaf node α of (T,X ), the set Yα = Vα \Xα is nonempty. This
can be easily verified when α is a cut node, an edge node which is not a leaf (this happens only
when the edge node is the parent of a cut node in the extended decomposition), or an S-node.
When α is a P-node, the fact that (G,S, k) is reduced with respect to Reduction Rule 4 ensures
Yα 6= ∅.

For the sake of contradiction, suppose that Yα ⊆ N0. Observe that no vertex in Yα has a
neighbor in F \ Vα. By assumption, no vertex in Yα has a neighbor in S. Hence ∂(Vα) ⊆ Xα

and thus Yα ⊆ Vα \ ∂(Vα). If |∂(Vα)| = 1 then Reduction Rule 2 applies, a contradiction. Thus
|∂(Vα)| = 2, and so ∂(Vα) = Xα. Furthermore, no descendant of α is a cut node in G[F ](otherwise
Reduction Rule 2 applies), which implies that Vα is contained in a leaf block of G[F ]. Gα is thus
a series-parallel graph having Xα = {s, t} as terminals and thus by Lemma 7 Gα + (s, t) is an
SP-graph. Since α is a non-leaf node and (G,S, k) is reduced with respect to Reduction rule 4, we
have |Vα| > 2. Thus Gα is not isomorphic to any of the two excluded graphs of Reduction Rule 6.
So Reduction Rule 6 applies deleting the nonempty set Yα, a contradiction.

Lemma 17. Let (G,S, k) be a simplified instance of disjoint K4-minor cover and α be a
marked node of the extended SP-decomposition (T,X ) of G[F ]. Then every block B in Gα satisfies
|B| < γ(9).

Proof. Recall that the root of the SP-tree of B is a P-node β inherited from (T,X ). As a descendent
of α, β is a marked node. By Lemma 4, V B

β is a 4-protrusion. As β is marked, V B
β is reduced under

protrusion rule (Reduction Rule 1) and so |B| 6 |V B
β | < γ(9).

Lemma 18. Let (G,S, k) be a simplified instance of disjoint K4-minor cover and let α be a
marked cut node of the extended SP-decomposition (T,X ) of G[F ] with Xα = {c}. Then |Vα| 6
c0 = γ(9) + 7. Moreover, the block tree of Gα is a path.

Proof. Let ~BFα be the oriented block tree of Gα rooted at Bc, the block containing c. Let B1 be a
leaf block in ~BFα and c1 be the cut vertex such that (c1, B1) ∈ E( ~BF ). Observe that (T,X ) contains
a cut node β1 such that Xβ1 = {c1} and by the construction of (T,X ), the node β1 is a descendant
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of α. By Lemma 16, B1 contains a vertex of N1 ∪N2, say x1 ∈ B1 such that x1 6= c1. We consider
two cases.

(a) B1 is a nontrivial block.
Consider the remaining part of Gα, i.e. C1 := (Vα \ B1) ∪ {c1}. We shall show that C1 ⊆ N0, i.e.
no vertex of C1 has a neighbor in S. Suppose the contrary and observe that G[C1 ∪ S] contains
a path P1 between c1 and S avoiding B1. If there is a vertex y1 ∈ B1 s.t. y1 /∈ {c1, x1} and
y1 ⊆ N1 ∪ N2, then by Lemma 3, G[Vα ∪ S] contains a K4-subdivision, a contradiction. If no
such vertex y1 exists, observe that {x1, c1} forms a boundary of B1. Due to the assumption that
α is marked, the subgraph G[Vα ∪ S] is K4-minor-free. In particular, the subgraph G[B1 ∪ P ] is
K4-minor-free, where P is a path between x1 and c1 in G[Vα ∪ S] avoiding B1. The existence of
such P is ensured due to the existence of P1, that x1 ∈ N1∪N2 and the fact that NS(Vα) belong to
the same connected component of G[S]. Now that G[B1] + (x1, c1) is a biconnected K4-minor-free
graph, hence an SP-graph. It follows that Reduction rule 6 applies to B1 and reduces it to a single
edge: a contradiction to the fact that the instance is simplified. It follows C1 ⊆ N0.

As a corollary we know that ~BFα contains no other leaf block and thus it is a path. It remains
to bound the size of Vα. Since C1 ⊆ N0 and {c1, c} forms a boundary of C1, whenever |C1| > 4
Reduction rule 6 applies, contradiction. Hence |Vα| = |B1|+ |C1 \ {c1}| and combining the bound
given by Lemma 17, we obtain the upper bound γ(9) + 3.

(b) B1 is a trivial block (i.e. an edge)
W.l.o.g. ~BFα does not contain a nontrivial leaf block. Consider the remaining part of Gα, i.e.
C1 := Vα \ {x1}. Here we claim that |NS(C1)| ≤ 1. Suppose the contrary. By Lemma 3, we have
|NS(Vα)| 6 2. Hence considering the case when NS(x1) = NS(C1) = {u, v} is sufficient. It remains
to see that u and v belong to the same connected component of G[S], and G[Vα ∪ S] contains a
K4-subdivision with x1, C1, u, v as branching nodes, a contradiction.

As a corollary we know that ~BFα contains no other leaf block and thus it is a path. It remains
to bound the size of Vα. Consider the case when every block of ~BFα trivial, i.e. Gα is a path. From
the argument of the previous paragraph, we know that |NS(C1)| ≤ 1 and NS(C1) ⊆ NS(x1). Since
the instance is reduced with respect to 1-Boundary rule 3 and Chandelier rule 5, we can conclude
that |Vα| 6 4.

Now consider the case ~BFα contains a nontrivial block and let B2 be the nontrivial block which
is farthest from c. Since ~BFα is a path, it can be partitioned into two subpaths: the one starting
from the cut node c to the block B2 and the remaining part. Let G0 and G1 be the associated
subgraphs of Gα, i.e. containing the vertices which appear in each subpath as part of a block or
as a cut node. As every block of G1 is trivial, the bound in the previous paragraph applies and
|G1| ≤ 4. Observe that the bound obtained in (a) applies to G0: to be precise, applies to the
graph obtained from Gα by contracting G1 into a single vertex. Hence we get the desired bound
|Vα| ≤ |G1|+ |G2| = γ(9) + 7.

Reminder of Lemma 5 Let (G,S, k) be a simplified instance of disjoint K4-minor cover
and let α be a marked node of the extended SP-decomposition (T,X ) of G[F ], then |Vα| 6 c1 =
12(γ(9) + 2c0).

Proof. We consider each possible type of node separately. Recall that since α is marked, the
neighbourhood NS(Vα) belongs to a single biconnected component and G[S ∪Vα] is K4-minor-free.
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When α is a cut node, Lemma 18 directly provides the bound. We now consider the remaining
cases.

(1) α is an edge node: By the construction of an extended SP-decomposition (T,X ), any child
of α is a cut node. Since α can have at most two children, Lemma 18 implies |Vα| 6 2c0.

(2) α is a P-node: Recall that we have |V B
α | < γ(9) by Lemma 17 and α has at most two

attachment vertices by Lemma 4. Each attachment vertex of α either belongs to N1 ∪ N2 or is a
cut vertex. Hence we can apply the bound on cut node size given by Lemma 18. It follows that
|Vα| 6 γ(9) + 2c0.

(3) α is an S-node: Let β1, . . . , βq be the children of α and denote bye x1 . . . xq+1 the vertices
such that for 1 6 j 6 q, Xβj = {xj , xj+1}. Since every child of an S-node is either a P-node or an
edge node, from case 1 and 2 we have |Vβj | ≤ γ(9) + 2c0. We now prove that if q > 13, then either
the instance is not simplified or G[S ∪ Vα] contains K4 as a minor. Since the lemma holds trivially
if every Vβj has at most four vertices, in the rest of the proof we assume without loss of generality
that for each P-node βj which we consider, |Vβj | > 4.

Claim 5. For 1 6 j 6 q − 1, let Zj := Vβj ∪ Vβj+1
. Then Zj \ ∂F (Zj) contains at least one vertex

in N1 ∪N2.

Proof of claim. Suppose one of βj and βj+1, say βj , is a P-node. By Lemma 16, Yβj = Vβj \Xβj

contains a vertex of N1 ∪ N2. If both of βj and βj+1 are edge nodes, then xj+1 ∈ N1 ∪ N2, since
otherwise its degree in G is two and we can apply Reduction Rule 3, a contradiction. 3

Suppose that q > 13. First, suppose there exists j, 3 6 j 6 q − 2, such that βj is a P-node.
By Lemma 16, we have Yβj ∩ (N1 ∪ N2) 6= ∅. On the other hand, Claim 5 says that the subsets

Zj−2 and Zj+1 both contain at least one vertex in N1 ∪ N2 each. Since G[V B
βj

] is biconnected

and G[(S ∪ Zj−2 ∪ Zj+1) \Xβj ] is connected, Lemma 3 applies to these two graphs and there is a
K4-subdivision in G[S ∪ Vα], a contradiction.

Therefore, we can assume that for every j, 3 6 j ≤ q − 2, βj is an edge node. It follows that
G[X ′], with X ′ = {xj : 3 6 j 6 q − 2}, is a chordless path. Claim 5 implies that every internal
vertex of X ′ is an attachment vertex, that is, either it belongs to N1 ∪ N2 or it is a cut vertex
belonging to some A(βj). We consider the two sets X1 :=

⋃
36j66 Vβj and X2 :=

⋃
86j611 Vβj .

Claim 6. |NS(X1)| > 2 and |NS(X2)| > 2.

Proof of claim. Consider X ′1 = {x4, x5, x6, x7}. Suppose that every vertex on X ′1 belongs N1∪N2.
As the instance is reduced with respect to Rule 5 and |X ′1| = 4, clearly we have |NS(X1)| > 2.
Hence we may assume there exists a cut vertex x ∈ X ′1 and let αx be the cut node of (T,X ) with
Xαx = {x}. By Lemma 18, there is only one leaf block Bx in Gαx . If Bx is a single edge, Bx
contains a pendant vertex y. Observe that NS(y) = 2 and the claim holds. Consider the case
Bx is a nontrivial block. By Lemma 16, Bx contains a vertex y 6= c in N1 ∪ N2, where c is the
unique cut vertex contained in Bx. In fact, Bx does not contain z 6= y such that z ∈ N1 ∪ N2,
since otherwise |∂G(Bx)| ≥ 3 and applying Lemma 3 on Y := Bx, W := C ∪ (Vα \ Bx) (with C
the connected component of NS(Vα)) witnesses K4-subdivision in G[S ∪ Vα], a contradiction. So
we have ∂G(Bx) = {c, y}. As we assume that the instance is reduced, in particular with respect
to Reduction rule 6, and Bx is a nontrivial block, we conclude that Bx is a θ3 with c and y as
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subdividing nodes. On the other hand, it is not difficult to see that G[S ∪ Vα] contains a c, y-path
P avoiding Bx. It remains to observe that G[Bx ∪ P ] is a K4-model, a contradiction. 3

If |NS(Vα)| > 3 then Lemma 3 applies to the biconnected component of NS(Vα) and Vα,
thus we obtain a K4-subdivision, a contradiction. If |NS(Vα)| = 2, then NS(X1) = NS(X2) and
G[S ∪ Vα] contains a K4-model with branching nodes being the following four connected subsets, a
contradiction: X1, X2, each of the two vertices of NS(X). That is, we have a K4-model in G[S∪Vα]
whenever q > 13. Therefore, we have q 6 12 if α is marked.

H Deferred proof of Lemma 6

Reminder of Lemma 6 Let (G,S, k) be a simplified instance of disjoint K4-minor cover
and let α be a lowest unmarked node of (T,X ) of G[F ]. In polynomial time, one can find

(a) a path X of size at most 2c1 satisfying the conditions of line 3 (resp. line 6) if the test at
line 2 (resp. 5) succeeds;

(b) a subset X ⊆ Vα of size bounded by 2c1 satisfying the condition of line 9 if the test at line 8
succeeds;

Proof. Suppose that α is a cut node. If the test at line 2 or at line 5 succeeds, then there are
two children β1 and β2 of α such that X := Vβ1 ∪ Vβ2 satisfies the conditions of line 4 or line 7,
respectively. In case of (b), the proof of Lemma 18 shows that if α has two children β1 and β2, then
the subgraph G[X ∪S] contains K4 as a minor, where X := Vβ1 ∪Vβ2 . With the bound provided by
Lemma 5, now it suffices to argue that X is a connected set. We claim that c ∈ Xβ1 ∩Xβ2 . Indeed,
βi is either a P-node or an edge node. Obviously, c ∈ Xβi if βi is an edge node. If βi is a P-node,
recall that this is the root node of the canonical SP-tree (TB,XB) from which βi is inherited. Since
(c,GBβi) ∈ E( ~BG), the construction of (TB,XB) requires that c ∈ Xβi . As a result, c ∈ Xβ1 ∩Xβ2

and the subgraph G[Vβ1 ∪ Vβ2 ] is connected.

If α is an edge node, α can have at most two children, all of which are cut nodes. Take X = Vα.
Since every child of α is marked already, the bound of Lemma 18 holds and |X| 6 2c0. In G[X],
one can identify a path or a subset satisfying the condition (a) or (b).

If α is a P-node, let β1 and β2 be its two children. By Lemma 5, we know that |Vβ1 |, |Vβ2 | 6 c1.
Take X = Vα. In G[X], one can identify a path or a subset satisfying the condition (a) or (b) if
this is the case.

Let us consider the case when α is an S-node with β1, . . . , βq as its children. Suppose that there
are u, v ∈ Vα ∩ (N1 ∪ N2) which have neighbors in distinct connected components of G[S]. Then
there exist 1 6 k < k′ 6 q such that u ∈ Vβk and v ∈ Vβk′ . Choose k and k′ such that k′ − k
is minimized. We claim that k′ − k 6 2. Suppose not. Then we can find an alternative vertex
w ∈ Zk+1 ∩ (N1 ∪N2) due to Claim 5 in the proof of Lemma 5 and decrease k′−k, a contradiction.
Therefore, there exists k such that X := Vβk∪Vβk+1

∪Vβk+2
contains u, v. It remains to observe that

|X| 6 3×(γ(9)+2c0) and we can find a path P between u and v within X, satisfying (a). The proof
remains the same when there are u, v ∈ Vα ∩ (N1 ∪N2) with bcS(u) 6= bcS(v). On the other hand
if the test at line 8 succeeds, the proof of Case (3) in Lemma 5 shows one can find a bounded-size
subset X. Indeed, if q 6 12, one can take X := Vα and observe that |X| 6 12(γ(9) + 2c0) 6 2c1. If
q > 13, take X :=

⋃13
j=1 Vβj and observe that |X| 6 13(γ(9) + 2c0) 6 2c1.
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