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Paths P1, . . . , Pk are mutually induced if any two distinct Pi and P j have neither common 
vertices nor adjacent vertices (except perhaps their end-vertices). The Induced Disjoint 
Paths problem is to decide if a graph G with k pairs of specified vertices (si, ti) contains 
k mutually induced paths Pi such that each Pi connects si and ti . This problem is NP-
complete even for k = 2. We prove that it can be solved in polynomial time for AT-free 
graphs even when k is part of the input. Consequently, the problem of deciding if an AT-
free graph contains a fixed graph H as an induced topological minor admits a polynomial-
time algorithm. We show that such an algorithm is essentially optimal by proving that 
the problem is W[1]-hard with parameter |V H |, even for a subclass of AT-free graphs, 
namely cobipartite graphs. We also show that the problems k-in-a-Path and k-in-a-Tree

are polynomial-time solvable on AT-free graphs even if k is part of the input.
© 2021 Elsevier Inc. All rights reserved.

1. Introduction

We study the Induced Disjoint Paths problem. This problem can be seen as the induced version of the well-known
Disjoint Paths problem, which is to decide if a graph G with k pairs of specified vertices (si, ti) contains a set of k mutually 
vertex-disjoint paths P1, . . . , Pk , where each Pi starts from si and ends at ti . The Disjoint Paths problem is one of the 
problems in Karp’s list of NP-compete problems [21]. If k is a fixed integer, that is, not part of the input, then the problem 
can be solved in O (n3) time for n-vertex graphs, as shown by Robertson and Seymour [39] (see [23] for an algorithm 
with O (n2) running time). In contrast, the Induced Disjoint Paths problem is NP-complete even if k = 2, as shown both by 
Fellows [12] and Bienstock [2].

The Induced Disjoint Paths problem is formally defined as follows. The problem takes as input a graph G and a set S =
{(s1, t1), . . . , (sk, tk)} of k distinct unordered pairs of specified vertices of a graph G , which we call terminals. It asks if G
contains k paths P1, . . . , Pk that satisfy the following conditions:

1. for every i, Pi has end-vertices si and ti ;
2. if i �= j, then Pi and P j may share at most one vertex, which must be an end-vertex of both Pi and P j ;
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Fig. 1. An example of an instance (G, S) of Induced Disjoint Paths, which is a yes-instance as the three paths P1, P2, P3 satisfy conditions 1–3.

3. if i �= j, then no inner vertex u of Pi is adjacent to a vertex v of P j except when v is an end-vertex of both Pi and P j ;
4. for every i, Pi is an induced path.

A collection of paths P1, . . . , Pk that satisfies the aforementioned conditions 1–4 for a given graph G with a set S of k
terminals pairs (si, ti) is called a solution for (G, S). An example of a graph with three paths that satisfy all conditions is 
shown in Fig. 1.

We make two observations about the problem definition.

Remark 1. We require the terminal pairs to be distinct, but do allow in conditions 2 and 3 that two terminals from distinct 
pairs coincide or are adjacent. Hence, conditions 2 and 3 are slightly more relaxed compared to the usual definition of
Induced Disjoint Paths by means of mutually induced paths where paths in a solution have neither common nor adjacent 
vertices. For general graphs, we can make these relaxations without loss of generality, because we can perform some ele-
mentary graph operations to ensure that two terminals from different pairs are distinct and non-adjacent. However, these 
operations may break membership of a graph class. Hence, our definition with the relaxed conditions yields a more gen-
eral problem to solve if we restrict the input to some special graph class. We need this more general problem for our 
applications, as we will explain in Section 1.3.1

Remark 2. As we can take shortcuts if necessary, we may omit condition 4 to obtain an equivalent problem. However, we 
added condition 4 explicitly, as this will be convenient for algorithmic purposes.

Research question. As the Induced Disjoint Paths problem is NP-complete even if k = 2 [2,12], we study the following 
research question to increase our understanding in the computational complexity of the problem:

What are natural graph classes for which Induced Disjoint Paths is polynomial-time solvable?

1.1. Known results

For planar graphs, Induced Disjoint Paths stays NP-complete. This result can be obtained by subdividing each edge of a 
planar input graph of Disjoint Paths. As planar graphs are closed under edge subdivision, this yields a planar input graph of
Induced Disjoint Paths. We then apply the result of Lynch [35] who proved that Disjoint Paths is NP-complete for planar 
graphs. Kobayashi and Kawarabayashi [25] presented an algorithm that solves Induced Disjoint Paths on planar graphs that 
runs in linear time for any fixed k; see [24] for an extension of this result to graph classes of bounded genus.

For claw-free graphs, Induced Disjoint Paths stays NP-complete as well. This is shown by Fiala et al. [13] even for 
line graphs, which form a subclass of claw-free graphs, and very recently by Radovanović, Trotignon and Vušković [38]
even for line graphs of triangle-free chordless graphs. In addition, Fiala et al. [13] showed that Induced Disjoint Paths

can be solved in polynomial time for claw-free graphs if k is fixed. In a previous paper [16], we improved the latter 
result by showing that Induced Disjoint Paths is fixed-parameter tractable for claw-free graphs when parameterized by 
k. Radovanović, Trotignon and Vušković [38] proved that Induced Disjoint Paths can be solved in polynomial time for 
(theta,wheel)-free graphs if k is fixed. However, the problem stays NP-complete for (theta,wheel)-free graphs if k is part 
of the input due to the aforementioned NP-completeness result for the subclass of line graphs of triangle-free chordless 
graphs [38].

From the above we observe that being planar, claw-free or (theta,wheel)-free does not help with respect to polynomial-
time solvability of Induced Disjoint Paths when k is part of the input. However, for chordal graphs, Induced Disjoint Paths

1 We refer to Open problem 1 in Section 6 for a discussion on the even more general problem variant where two terminal pairs are allowed to be the 
same.
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is polynomial-time solvable when k is part of the input, as shown by Belmonte et al. [1], whereas we showed that for 
circular-arc graphs, Induced Disjoint Paths is even linear-time solvable [15].

More recently, Jaffke, Kwon and Telle [20] proved that Induced Disjoint Paths is polynomial-time solvable for any graph 
class of bounded mim-width. Their results imply that in addition to the above graph classes, the problem is polynomial-
time solvable for the following classes: bi-interval graphs, circular permutation graphs, convex graphs, circular p-trapezoid 
graphs, p-polygon graphs, Dilworth-p graphs, and co-p-degenerate graphs.

1.2. Our main result

In this paper, we prove that Induced Disjoint Paths is polynomial-time solvable on a large class of graphs, namely 
the class of asteroidal triple-free graphs (or AT-free graphs), even if k is part of the input. An asteroidal triple is a set of three 
mutually non-adjacent vertices, such that each two of them are joined by a path that avoids the neighbourhood of the third; 
AT-free graphs are exactly those graphs that contain no such triple [31]. The class of AT-free graphs is easily recognized in 
polynomial time, widely studied (see e.g. [22,26–28,40]), and contains many well-known classes, such as cobipartite graphs, 
cocomparability graphs, cographs, interval graphs, permutation graphs, and p-trapezoid graphs (cf. [9]). In contrast to these 
subclasses, AT-free graphs miss the advantage of having a known geometric intersection model (which can be exploited 
for the design of polynomial-time algorithms). The class of AT-free graphs is incomparable to chordal graphs, circular-arc 
graphs, and graphs of bounded mim-width, which were covered by previous work, as mentioned above. Hence, with our 
main result, we make significant progress on answering the research question.

It is interesting to observe here that Induced Disjoint Paths seems to behave substantially different from Disjoint Paths. 
Generally, the induced variant of a containment relation problem is computationally just as hard or even harder than its 
non-induced variant. For example, Matching can be solved in polynomial time, but Induced Matching is NP-hard even 
for bipartite graphs [4]. In contrast, Disjoint Paths is NP-complete on split graphs [19], but Induced Disjoint Paths is 
polynomial-time solvable on the strictly larger class of chordal graphs [1]. Similarly, Disjoint Paths is NP-complete on 
interval graphs [37], but Induced Disjoint Paths is polynomial-time solvable on the strictly larger classes of circular-arc 
graphs [15] and chordal graphs [1]. With our main result, we now add the strictly and substantially larger class of AT-free 
graphs to the list of classes for which Induced Disjoint Paths is polynomial-time solvable, but Disjoint Paths is not [37], 
unless P=NP.

In order to solve Induced Disjoint Paths in polynomial time on AT-free graphs, we first apply some general preprocessing 
rules (Section 3.1). We then provide a thorough exploration of the structure of AT-free graphs, in particular in relation to the
Induced Disjoint Paths problem (Section 3.2). Finally, we use these structural results for a dynamic programming algorithm 
(Section 3.3). Here we heavily rely on the fact that AT-free graphs have a path that dominates the graph and that AT-free 
graphs cannot contain long induced cycles, so that we can always focus on the neighbourhood of a constant number of 
vertices in the graph.

Our approach is substantially different from the approach of Belmonte et al. [1] for solving this problem in polynomial 
time on chordal graphs, as it appears that the tree-decomposition-based approach of [1] does not work for AT-free graphs. 
Our proof techniques are also quite different from the irrelevant vertex technique used by Kobayashi and Kawarabayashi [25]
for planar graphs, which only work for fixed k in contrast to our result, and from the proof techniques for claw-free 
graphs [13,16]. The latter techniques are based on the characterization of claw-free graphs of Chudnovsky and Seymour [5]
and also only work when k is a fixed constant instead of being part of the input.

1.3. Applications to other containment relation problems

We show that our algorithm for Induced Disjoint Paths for AT-free graphs can be used as a subroutine to solve two cat-
egories of containment relation problems in polynomial-time for AT-free graphs. Recall that a containment relation problem 
asks to detect if one graph is contained in some other graph by some specified graph containment relation. For gen-
eral graphs, Induced Disjoint Paths has no direct applications for other containment problems, as it is NP-complete when 
k = 2 [2,12]. However, such applications are possible for graph classes for which Induced Disjoint Paths is polynomial-time 
solvable, such as AT-free graphs.

Below we provide a definition, survey previous work, and state our results for both considered categories of containment 
relation problems. Proof details can be found in Sections 4 and 5.

H -Induced Topological Minor. A graph G contains a graph H as a topological (induced) minor if G contains an (induced) 
subgraph that is isomorphic to a subdivision of H , that is, to a graph obtained from H by a number of edge subdivisions. 
The problems that are to decide whether a given graph contains some fixed graph H as a topological minor or induced 
topological minor are called H-Topological Minor and H-Induced Topological Minor, respectively.

There is a great disparity in what we know about H-Topological Minor and H-Induced Topological Minor. Robertson 
and Seymour [39] showed that H-Topological Minor can be solved in polynomial time for any fixed graph H . Grohe et 
al. [18] improved this result to cubic time. In contrast, for H-Induced Topological Minor, Lévêque et al. [32] obtained some 
partial results by showing both polynomial-time and NP-complete cases. In particular they proved that H-Induced Topolog-

ical Minor is NP-complete for H = K5. Afterwards, Le [30] proved that H-Induced Topological Minor is polynomial-time 
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solvable for H = K4, which was known to be a stubborn case (see also [33]). However, the complexity classification for
H-Induced Topological Minor is still far from complete.

In contrast to the situation for general graphs, we can determine the complexity of H-Induced Topological Minor for 
any graph H when we restrict the input to AT-free graphs. For doing this, we make explicit use of conditions 2 and 3 for 
the terminals in the definition of Induced Disjoint Paths. We first consider the anchored version of H-Induced Topological 
Minor. This variant is to decide if a graph G contains a graph H as an induced topological minor such that the vertices 
of H are mapped to specified vertices of G . We show that the anchored version of H-Induced Topological Minor can be 
solved in polynomial time on AT-free graphs even when H is an arbitrary graph that is part of the input. This result cannot 
be generalized to the original, non-anchored version of this problem, which we show to be NP-complete even for a subclass 
of AT-free graphs, namely for the class of cobipartite graphs.

However, our result for the anchored version still implies a polynomial-time algorithm for H-Induced Topological Minor

on AT-free graphs as long as H is fixed. This may be the best result one can hope for: besides proving NP-completeness, 
we also prove in Section 4 that Induced Topological Minor is W[1]-hard when parameterized by |V H | even for cobipartite 
graphs.

We note that by demanding conditions 2 and 3 and following the above approach based on the anchored version of the 
problem, H-Induced Topological Minor (for fixed H) is polynomial-time solvable for any graph class for which Induced 
Disjoint Paths is polynomial-time solvable or becomes polynomial-time solvable after fixing k; see, for example, [1,13,20,38]
where this has been shown for chordal graphs, claw-free graphs, graphs of bounded mim-width and (theta,wheel)-free 
graphs, respectively.

k-in-a-Subgraph. The problem of detecting an induced subgraph of a certain type containing a set of k specified vertices 
(called terminals as well) has also been extensively studied, in particular for the case where the induced subgraph is 
required to be a tree, cycle, or path. Then this problem is called k-in-a-Tree, k-in-a-Cycle, and k-in-a-Path, respectively. 
Derhy and Picouleau [7] proved that k-in-a-Tree is NP-complete when k is part of the input even for planar bipartite 
cubic graphs. Chudnovsky and Seymour [6] proved that 3-in-a-Tree is polynomial-time solvable. Very recently, Lai, Lu 
and Thorup [29] gave a faster, near-linear algorithm for 3-in-a-Tree and Gomes et al. [17] proved various parameterized 
complexity results for k-in-a-Tree. However, the (classical) complexity of k-in-a-Tree is still open for every fixed k ≥ 4. 
In contrast, the problems 2-in-a-Cycle and 3-in-a-Path are NP-complete; this follows from the aforementioned results of 
Fellows [12] and Bienstock [2].

We note that for every fixed k, the problems k-in-a-Cycle, k-in-a-Path and k-in-a-Tree can be reduced to a polynomial 
number of instances of Induced Disjoint Paths due to the relaxed conditions 2 and 3 in the problem definition (see, for 
example, [38] for details). Hence, all the aforementioned polynomial-time results for the latter problem restricted to special 
graph classes carry over to these three k-in-a-subgraph problems for every fixed integer k ≥ 1. It is also known that k-in-a-

Tree can be solved in polynomial time for graphs of girth at least k [34] even if k is part of the input (see [8] for the case 
where k = 3). Lévêque et al. [32] proved that 2-in-a-Cycle is polynomial-time solvable for graphs not containing an induced 
path or induced subdivided claw on some fixed number of vertices. Radovanović, Trotignon and Vušković [38] proved that
k-in-a-Cycle is fixed-parameter tractable for (theta,wheel)-free graphs when parameterized by k.

In our paper we add to these positive results by showing that the three problems k-in-a-Tree, k-in-a-Cycle, and k-in-

a-Path are polynomial-time solvable on AT-free graphs even when k is part of the input. Note that solving k-in-a-Cycle in 
polynomial time is straightforward, because AT-free graphs do not contain induced cycles on six or more vertices. For the 
remaining two problems, we again apply our main result and make explicit use of conditions 2 and 3 for the terminals 
in the definition of Induced Disjoint Paths. The standard brute-force approach that reduces the instance to a polynomial 
number of instances of Induced Disjoint Paths will only yield this result for any fixed integer k, because in the worst case 
it must process all k! orderings of the terminals. However, we are able to give a more direct approach for AT-free graphs, 
based on dynamic programming, that works even when k is part of the input.

2. Preliminaries

Throughout the paper, we consider only finite, undirected graphs without multiple edges and self-loops. We denote the 
vertex set and edge set of a graph G by V G and EG , respectively; we may omit subscripts if no confusion is possible.

Let G = (V , E) be a graph. For U ⊆ V , the graph G[U ] denotes the subgraph of G induced by the vertices in U . We 
denote the (open) neighbourhood of a vertex u by N(u) = {v | uv ∈ E} and its closed neighbourhood by N[u] = N(u) ∪
{u}. We denote the (open) neighbourhood of a set U ⊆ V by N(U ) = {v ∈ V \ U | uv ∈ E for some u ∈ U } and its closed 
neighbourhood by N[U ] = N(U ) ∪ U . We let d(u) = |N(u)| denote the degree of a vertex u. Whenever it is not clear from 
the context, we may add an extra subscript G to these notations.

The length of a path is its number of edges. Paths P1, . . . , Pk in a graph G = (V , E) are mutually induced if any two 
distinct Pi and P j have neither common vertices nor adjacent vertices (except perhaps their end-vertices). Let uw ∈ E . The 
edge subdivision of uw removes uw and adds a new vertex v with edges uv and v w . A graph G ′ is a subdivision of G if 
G ′ can be obtained from G by a sequence of edge subdivisions. A graph H is an induced topological minor of G , if G has an 
induced subgraph that is isomorphic to a subdivision of H .

Let G be a graph in which we specify r distinct vertices p1, . . . , pr . Let H be a graph in which we specify r distinct 
vertices q1, . . . , qr . Then G contains H as an induced topological minor anchored in (p1, q1), . . . , (pk, qk) if G contains an 
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induced subgraph isomorphic to a subdivision of H such that the isomorphism maps pi to qi for i = 1, . . . , r. The graphs G
and H may have common vertices. If pi = qi for i = 1, . . . , r, we speak of “being anchored in p1, . . . , pk” instead.

A subset U ⊆ V dominates G if u ∈ U or u ∈ N(U ) for each u ∈ V . A pair of vertices {x, y} is a dominating pair of a graph G
if the vertex set of every (x, y)-path dominates G . A path P dominates a vertex u if u ∈ N[V P ]. A path P dominates a vertex 
set U if it dominates each u ∈ U . Corneil, Olariu and Stewart proved the following result, which we will use as a lemma.

Lemma 1 ([9,10]). Every connected AT-free graph has a dominating pair and such a pair can be found in linear time.

Throughout the paper, we let T = ⋃k
i=1{si, ti} denote the set of terminals, whereas S = {(s1, t1), . . . , (sk, tk)} denotes 

the set of terminal pairs. Note that a vertex u may be in more than one terminal pair. We say that a terminal si or ti is 
represented by a vertex u if u = si or u = ti , respectively. We also say that u is a terminal vertex. If a vertex u does not 
represent any terminal, then we call u a non-terminal vertex.

3. Induced disjoint paths

In this section we present our polynomial-time algorithm for the Induced Disjoint Paths problem. Our algorithm has as 
input a pair (G, S), where G is an AT-free graph and S is a set of terminal pairs. It consists of the following three phases.

Phase 1. Preprocess (G, S) to derive a number of convenient properties. For instance, afterwards two terminals of the same 
pair are non-adjacent.

Phase 2. Derive a number of structural properties of (G, S). The algorithm constructs an auxiliary graph H , which is obtained 
from the subgraph of G induced by the terminal vertices by adding a path of length 2 between each pair of terminals. It 
then checks whether H satisfies some necessary conditions, such as being AT-free and being an anchored topological minor 
of G . The latter condition is also shown to be sufficient and demands the construction of another auxiliary graph in order 
to describe how induced paths connecting terminal pairs may interfere with each other.

Phase 3. Perform dynamic programming using the information from Phases 1–2.

3.1. Phase 1: preprocessing

Let (G, S) be an instance of Induced Disjoint Paths, where G = (V , E) is an AT-free graph on n vertices with a set S of 
k terminal pairs (s1, t1), . . . , (sk, tk). Recall that we assume that the terminal pairs in S are pairwise distinct if we consider 
them to be unordered. In other words, although a vertex may represent more than one terminal, we do not allow two 
terminal pairs to coincide, that is, {si, ti} �= {s j, t j} for all i �= j. We can safely make this assumption, as the algorithm for 
detecting induced topological minors that uses our algorithm for Induced Disjoint Paths as a subroutine does not require 
two terminal pairs to coincide, as we shall see. It may happen though that in this application two terminals of the same 
pair are the same. However, we will show that we can easily work around this, and to avoid any further technicalities in 
our algorithm for Induced Disjoint Paths we assume from now on that this is not the case either. Both assumptions are 
summarized in the following condition.

Condition i) For all i �= j, {si, ti} �= {s j, t j}, and for all i, si �= ti .

After imposing Condition i) on S , we continue with the following preprocessing steps. We first apply Step 1, then Step 2, 
and then Step 3, where we perform each step as long as possible. In the below, M(u) denotes the set of all terminals that 
form a terminal pair with vertex u. Recall also that T = ⋃k

i=1{si, ti} denotes the set of terminals.

Step 1. For all u, v ∈ T with uv ∈ E , remove all common neighbours of u and v that are not terminals from G , that is, 
remove all vertices of N(u) ∩ N(v) ∩ (V \ T ).

Step 2. Let U denote the set of all terminal vertices u such that u only represents terminals whose partners are in N(u); 
that is, U = {u ∈ T | M(u) ⊆ N(u)}. Remove U and all non-terminal vertices of N(U ) from G . Remove also all terminal pairs 
(s j, t j) from S for which s j ∈ U or t j ∈ U .

Step 3. For all (si, ti) with siti ∈ E , remove (si, ti) from S .

Observe that Steps 1–3 preserve AT-freeness. Steps 1–3 are identical to Rules 1–3 in [16] for claw-free graphs. As such, the 
correctness of these three steps, as stated in our next lemma, can be proved by using exactly the same arguments as in [16].

Lemma 2. Applying Steps 1–3 takes polynomial time and results in a new instance (G ′, S ′), where G ′ is an induced (and hence AT-
free) subgraph of G and S ′ ⊆ S, such that (G ′, S ′) is a yes-instance of Induced Disjoint Paths if and only if (G, S) is a yes-instance of
Induced Disjoint Paths.
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Fig. 2. A graph G with four terminal pairs and the corresponding graphs G1, . . . , G4.

Fig. 3. The graph H that is constructed from the graph G shown in Fig. 2.

For convenience we denote the obtained instance by (G, S) as well, and we also assume that |S| = k.
For i = 1, . . . , k, let Gi denote the subgraph obtained from G after removing all terminal vertices not equal to si or 

ti , together with all of their neighbours not equal to si or ti (should si or ti be adjacent to a terminal from some other 
pair), that is, Gi is the subgraph of G induced by (V \ (

⋃
v∈T \{si ,ti} N[v])) ∪ {si, ti} (see Fig. 2). The following lemma is 

straightforward to see.

Lemma 3. If si and ti are in different connected components of Gi for some 1 ≤ i ≤ k, then (G, S) is a no-instance of Induced Disjoint 
Paths.

Hence, we can add the following preprocessing step, which we can perform in polynomial time.

Step 4. If some si and ti are in two different connected components of Gi , then return no.

Summarizing, applying Steps 1–4 takes polynomial time and results in the following additional conditions for our instance:

Condition ii) The terminals of each pair (si, ti) are not adjacent.

Condition iii) The terminals of each pair (si, ti) are in the same connected component of Gi .

3.2. Phase 2: obtaining structural results

Let G be an AT-free graph with a set S = {(s1, t1), . . . , (sk, tk)} of terminal pairs satisfying Conditions i)–iii). In G[T ], 
there is no edge between any two terminals of the same pair due to Condition ii). We extend G[T ] by joining the terminals 
of each pair (si, ti) by a path Pi of length 2, that is, for each pair (si, ti) we introduce a new vertex that we make adjacent 
only to si and ti . We denote the resulting graph by H ; see Fig. 3 for an example. Note that G[T ] is an induced subgraph of 
H . The inner vertex of each Pi is called a path-vertex, and the two edges of each Pi are called path-edges.

We now prove the following lemma; note that in this lemma H ′ = H is possible.

Lemma 4. The pair (G, S) is a yes-instance of Induced Disjoint Paths if and only if G contains an induced subgraph that is isomorphic 
to H ′ , where H ′ is obtained from H after subdividing a number of path-edges one or more times, such that the isomorphism maps every 
terminal of G to the same terminal of H.

Proof. Suppose that (G, S) is a yes-instance of Induced Disjoint Paths and let P1, . . . , Pk be a solution to (G, S). Observe 
that the only terminal vertices to which any internal vertices of a path Pi are adjacent are the terminal vertices that 
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represent si and ti . Hence, the union of G[T ] and the paths P1, . . . , Pk forms a graph H ′ that satisfies the conditions of the 
lemma. The converse is readily seen. �

Lemma 4 implies that the pair (G, S) is a yes-instance of Induced Disjoint Paths if and only if G contains H as an 
induced topological minor anchored in the terminals of T . Moreover, Lemma 4 immediately implies the next lemma.

Lemma 5. If (G, S) is a yes-instance of Induced Disjoint Paths then H is AT-free.

Lemma 5 yields the following step, which can be straightforwardly implemented in polynomial time by checking for the 
existence of an asteroidal triple.

Step 5. If H is not an AT-free graph, then return no.

From now on, we assume that H is AT-free. We deduce the following two lemmas.

Lemma 6. The graph G[T ] is triangle-free.

Proof. In order to obtain a contradiction, assume that G[T ] contains a triangle. Then H[T ] also contains this triangle. By 
Condition ii), each vertex of the triangle is contained in at least one terminal pair that contains a vertex outside the triangle. 
Then let (si, ti), (s j, t j), (sr, tr) be three terminal pairs for which, without loss of generality, si, s j, sr induce the triangle. By 
Condition ii), si, s j, sr are not adjacent to ti, t j, tr , respectively. In H , let xi, x j, xr be the path-vertices of the paths Pi, P j, Pr , 
respectively. Recall that path-vertices have degree 2. Then xi, x j, xr form an asteroidal triple in H , a contradiction to the 
AT-freeness of H . �
Lemma 7. Every vertex u ∈ T is included in at most five terminal pairs.

Proof. In order to obtain a contradiction, assume that T contains a vertex u that is included in six terminal pairs 
(si1 , ti1), . . . , (si6 , ti6 ). We assume without loss of generality that u = si1 = . . . = si6 . Among the vertices ti1 , . . . , ti6 , it fol-
lows from the Ramsey number R(3, 3) = 6 that we have either three pairwise adjacent or three pairwise non-adjacent 
vertices. In the first case, G[T ] contains a triangle. However, this is not possible due to Lemma 6. In the second case, 
let ti1 , ti2 , ti3 denote the three pairwise non-adjacent vertices. Then we find that ti1 , ti2 , ti3 form an asteroidal triple in H , 
because ti1 , ti2 , ti3 are joined to u by three mutually induced paths Pi1 , Pi2 , Pi3 , a contradiction to the AT-freeness of H . �

Let H1, . . . , Hr be the connected components of H . We observe that the terminals of each pair are in the same connected 
component of H due to the paths Pi . Hence, we can define the set Si ⊆ S of terminal pairs in a connected component Hi . 
We write Ti = V Hi ∩ T to denote the set of terminals in Hi .

Lemma 8. Each Hi has a dominating pair {xi, yi} with xi, yi ∈ Ti . Moreover, such a dominating pair can be found in linear time.

Proof. Each connected component Hi is a connected AT-free graph. Hence, Hi has a dominating pair of vertices due to 
Lemma 1. Moreover, by the same lemma, there exists a linear-time algorithm that finds such a dominating pair {u, v}. If 
both u and v are in Ti , then we are done. Suppose that this is not the case, say u /∈ Ti . Then u must be the path-vertex of 
some (s j, t j)-path P j in Hi .

We claim that {s j, v} or else {t j, v} is a dominating pair. This can be seen as follows. If {s j, v} is not a dominating pair, 
then there is an (s j, v)-path Q 1 that does not dominate Hi . This path Q 1 does not use vertex u; otherwise it would contain 
a subpath from u to v , which dominates Hi because {u, v} is a dominating pair. Hence, we can extend Q 1 by u to obtain 
the path u Q 1. This path is an (u, v)-path. Consequently, u Q 1 dominates Hi . As u is only adjacent to s j and t j , and Q 1 does 
not dominate Hi , we find that Q 1 does not dominate t j . In other words, Q 1 avoids t j and the neighbourhood of t j . By the 
same arguments, there exists a (t j, v)-path Q 2 that avoids s j and the neighbourhood of s j . Condition ii) tells us that s j and 
t j are not adjacent. As v ∈ V Q 1 ∪ V Q 2 , we find that v is not adjacent to s j, t j . Moreover, u is only adjacent to s j and t j . 
Hence, s j, t j, v form an asteroidal triple, a contradiction to the AT-freeness of Hi .

From the above, it is clear that we can decide in linear time if {s j, v} or {t j, v} is a dominating pair. We only have to 
check whether there exists an (s j, v)-path that avoids t j and the neighbourhood of t j . If not, then {s j, v} is a dominating 
pair, and otherwise {t j, v} is a dominating pair. If v /∈ Ti , then v is a path-vertex, and we can repeat the same arguments as 
we used for u to replace v by one of its neighbours in Ti . This completes the proof of Lemma 8. �

For the dominating pairs {xi, yi} found by Lemma 8, we compute in linear time a shortest (xi, yi)-path Di in Hi for 
i = 1, . . . , r. The next two lemmas show a number of properties of these paths Di .

Lemma 9. Each Di contains at least one of the terminals of every pair in Si .
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Proof. The path Di dominates all vertices of Hi . In particular, it dominates the path-vertex of the (s j, t j)-path for each 
(s j, t j) ∈ Si . This vertex is only adjacent to s j and t j . Hence, s j ∈ V Di or t j ∈ V Di . �
Lemma 10. Each vertex of Di is adjacent to at most five path-vertices of Hi that are not on Di and to at most two terminals that are 
not on Di .

Proof. Let u be a vertex of Di . If u is not a terminal, then u is a path-vertex, and consequently, has degree 2. Hence, we 
may assume that u is a terminal. Lemma 7 tells us that u can represent at most five terminals. This implies that u is 
adjacent to at most five path-vertices not on Di .

We now show that u is adjacent to at most two terminals not on Di . To obtain a contradiction, suppose that u is 
adjacent to three terminals. Since at least one terminal of each terminal pair belongs to Di due to Lemma 9, these three 
terminals are from three different pairs. Hence we may without loss of generality denote them by si1 , si2 , si3 . Let v, w, z be 
the path-vertices of the (si1 , ti1)-, (si2 , ti2 )- and (si3 , ti3 )-paths Pi1 , Pi2 , Pi3 , respectively. Note that u /∈ {ti1 , ti2 , ti3 }, because 
Hi contains no edge between two terminals of the same pair by Condition (ii). This means that no vertex of {v, w, z} is 
adjacent to u. Hence v, w, z form an asteroidal triple, a contradiction to the AT-freeness of Hi . �

Recalling Lemma 4 and using Lemma 9, we obtain the following.

Lemma 11. Let H ′
i be an AT-free graph obtained from Hi by subdividing a number of path-edges one or more times. Let P ′

j and D ′
i be 

the resulting paths obtained from the paths P j and Di , respectively. Then,

a) the length of each P ′
j that is not a subpath of D ′

i is at most 3 (implying that every internal vertex of P ′
j is adjacent to at least one 

of s j, t j );
b) D ′

i dominates all but at most two vertices of H ′
i .

Proof. First, we prove a). In order to obtain a contradiction, assume that P ′
j has length at least 4. Let u be an internal vertex 

of P ′
j that is at distance at least 2 from s j and t j . By Lemma 9, at least one of the vertices s j, t j is a vertex of D ′

i . Assume 
that s j ∈ V D ′

i
. Then either t j ∈ V D ′

i
or t j is adjacent to a vertex z ∈ V D ′

i
.

First suppose that t j ∈ V D ′
i
. Let Q be an (s j, t j)-subpath of D ′

i . Then Q has length at least 2, because Condition ii) tells 
us that s j and t j are not adjacent in G , and consequently, not in H ′ . Since u has no neighbours outside P ′

j , we find that Q
avoids the neighbourhood of u. However, then u, s j, t j form an asteroidal triple, a contradiction to the AT-freeness of Hi .

Now suppose that t j is adjacent to a vertex z ∈ V D ′
i
. We choose z in such a way that t j is not adjacent to any vertex on 

the subpath Q of D ′
i from s j to z. The path Q t j has length at least 2, because s j and t j are not adjacent in H . Moreover, 

Q t j avoids the neighbourhood of u. Hence, u, s j, t j form an asteroidal triple, a contradiction to the AT-freeness of H .
To prove b), assume that D ′

i does not dominate three vertices u1, u2, u3 ∈ V Hi . Since we only subdivide path-edges and 
Di dominates each terminal, we find that u1, u2, u3 are internal vertices of some (s j, t j)-paths P ′

j . By Lemma 9, at least 
one of the vertices s j, t j is a vertex of D ′

i for each such P ′
j , that is, D ′

i dominates at least one internal vertex of P ′
j . Then 

by a), each P ′
j can have at most one internal vertex not dominated by D ′

i . Hence, u1, u2, u3 are internal vertices of distinct 
paths P ′

j1
, P ′

j2
, P ′

j3
, respectively. We assume without loss of generality that s j1 , s j2 , s j3 ∈ V D ′

i
. Then the path composed of the 

(u1, s j1 )-subpath of P ′
j1

, the (s j1 , s j2 )-subpath of D ′
i , and the (s j2 , u2)-subpath of P ′

j2
is a (u1, u2)-path in H ′

i that avoids the 
neighbourhood of u3. By the same arguments, H ′

i has a (u1, u3)-path that avoids the neighbourhood of u2 and a (u2, u3)-
path that avoids the neighbourhood of u1. We conclude that u1, u2, u3 form an asteroidal triple in H ′

i , a contradiction to 
the AT-freeness of H ′

i . This completes the proof of Lemma 11. �
Recall that Condition iii) tells us that the terminals si and ti are in the same connected component of the graph Gi for 

i = 1, . . . , k. Two terminal pairs (si, ti) and (s j, t j) are interfering if there is an induced (si, ti)-path Q i in Gi and an induced 
(s j, t j)-path Q j in G j , respectively, such that Q i and Q j are not mutually induced; see Fig. 4 for an example. We say that 
there is interference between two sets of terminal pairs Si and S j if a terminal pair from Si and a terminal pair from S j are 
interfering.

Lemma 12. Let (si, ti) and (s j, t j) be interfering terminal pairs from two different connected components of H. Let Q i and Q j be 
induced (si, ti)- and (s j, t j)-paths in Gi and G j , respectively, such that Q i and Q j are not mutually induced. Then Q i and Q j are 
vertex-disjoint. Moreover, for any edge uv ∈ EG with u ∈ V Q i and v ∈ V Q j , both u ∈ N(si) ∪ N(ti) and v ∈ N(s j) ∪ N(t j) hold.

Proof. To obtain a contradiction, we first assume that Q i and Q j have a common vertex w . As (si, ti) and (s j, t j) are 
terminal pairs from two different connected components of H , the four vertices si, ti, s j, t j are pairwise distinct. As Q i is 
a path in Gi , we find that Q i avoids N[s j] and N[t j]. Symmetrically, Q j avoids N[si] and N[ti]. This means that w is not 
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Fig. 4. The graph I that is constructed from the graph G shown in Fig. 2. The terminal pairs (s1, t1) and (s2, t2) of G are interfering. Note that there is no 
interference between (s2, t2) and (s3, t3).

adjacent to any of the vertices si, ti, s j, t j . However, then si, ti, s j form an asteroidal triple, a contradiction to the AT-freeness 
of H .

Now assume that there is an edge uv ∈ EG such that u ∈ V Q i , v ∈ V Q j and u /∈ N(si) ∪ N(ti). Recall that Q i avoids N[s j]
and N[t j], and that Q j avoids N[si] and N[ti]. Then we obtain a contradiction, because si, ti, s j again form an asteroidal 
triple. �

Lemma 12 implies that any interference between two terminal pairs (si, ti) and (s j, t j) from different connected com-
ponents of H stems from an edge whose endpoints are in N(si) ∪ N(ti) and N(s j) ∪ N(t j), respectively. We now obtain the 
following lemma.

Lemma 13. It is possible to check in polynomial time whether two terminal pairs (si, ti) and (s j, t j) from different connected compo-
nents of H are interfering.

Proof. By Lemma 12, we only need to check if there exist four vertices u1 ∈ N(si), u2 ∈ N(ti), v1 ∈ N(s j), v2 ∈ N(t j) such 
that

– there exists a path Q i in Gi from u1 to u2 that does not contain si or ti ;
– there exists a path Q j in G j from v1 to v2 that does not contain s j or t j ; and
– there exists an edge uv in G with u ∈ {u1, u2} and v ∈ {v1, v2}.

For each 4-tuple (u1, u2, v1, v2), checking the above three conditions can be done in polynomial time. �
Lemma 13 enables us to construct in polynomial time an auxiliary graph I with vertices 1, . . . , r and edges i j if and only 

if there is interference between Si and S j ; see Fig. 4 for an example. This leads to the following lemma.

Lemma 14. The graph I is a disjoint union of paths.

Proof. First, we prove that dI (i) ≤ 2 for all 1 ≤ i ≤ r. To obtain a contradiction, assume that dI (i) ≥ 3. Let j1, j2, j3 ∈
{1, . . . , r} be three vertices of I adjacent to i. For any pair of terminals (sp, tp) from Si ∪ S j1 ∪ S j2 ∪ S j3 , there is an (sp, tp)-
path R p in G p by Condition iii). Moreover, for each l ∈ {1, 2, 3}, there are interfering terminal pairs (sil , til ) and (s jl , t jl ) in Si
and S jl respectively. Hence, by definition, there exist an (sil , til )-path Q il in Gi and an (s jl , t jl )-path Q jl in G jl , respectively, 
such that Q il and Q jl are not mutually induced.

By definition of the graphs Gi , the paths R p , Q il , and Q jl each avoid the closed neighbourhood of terminal vertices that 
are not their endpoints. In particular, for any pair Sa, Sb among Si , S j1 , S j2 , and S j3 , the paths among R p , Q il , and Q jl
whose endpoints are in Ta avoid the closed neighbourhood of all terminal vertices in Tb , because Hi , H j1 , H j2 , and H j3 are 
connected components of H .

Let R be the subgraph of G induced by the vertices of all the paths R p , Q il and Q jl . Let u1, u2, u3 be arbitrary terminal 
vertices from T j1 , T j2 , T j3 respectively, and let v be a terminal from Ti . For each l ∈ {1, 2, 3}, there is a (v, ul)-path in R that 
avoids the neighbourhoods of terminals up for p ∈ {1, 2, 3}, p �= l. In particular, recalling the observations of the previous 
paragraph:

– the connectedness of Hi implies that using the edges of the paths R p there is a path in R from v to sil that avoids the 
closed neighbourhood of any terminal vertex in T j1 , T j2 , T j3 ;

– the interference of Q il and Q jl implies there is a path in R from sil to s jl that avoids the closed neighbourhood of any 
terminal vertex in T jl′ for l′ �= l;

– the connectedness of H jl implies that using the edges of the paths R p there is a path in R from s jl to ul that avoids 
the closed neighbourhood of any terminal vertex in T jl′ for l′ �= l and in Ti .

Hence, u1, u2, u3 form an asteroidal triple, a contradiction.
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Fig. 5. The graphs G∗
1 and G∗

2 that are constructed from the graph G shown in Fig. 2.

It remains to prove that I has no cycles. In order to obtain a contradiction, assume that i0i1 . . . iq with i0 = iq is a cycle 
in I . For any pair of terminals (sp, tp) from Si1 ∪ . . . ∪ Siq , there is an (sp, tp)-path R p in G p by Condition iii). Moreover, for 
each l ∈ {1, . . . , q}, there are interfering terminal pairs (sl1 , tl1) and (sl2 , tl2) in Sil−1 and Sil respectively. Hence, by definition, 
there exists an (sl1 , tl1)-path Q l1 in Gl1 and an (sl2 , tl2)-path Q l2 in Gl2 , respectively, such that Q l1 and Q l2 are not mutually 
induced.

Let R be the subgraph of G induced by the vertices of all the paths R p , Q l1 and Q l2 . Let u1, . . . , uq be arbitrary terminal 
vertices from Hi1 , . . . , Hiq , respectively. Observe that for each j ∈ {1, . . . , q}, there is a (u j−1, u j)-path in R that avoids the 
neighbourhood of ul for each l ∈ {1, . . . , q}, l �= j − 1, j. The existence of such a path follows along the same lines as before. 
Hence, u1, u2, u3 form an asteroidal triple, a contradiction. �

Let I1, . . . , Il be the connected components of I , and let J1, . . . , Jl be their vertex sets, respectively. For h = 1, . . . , l, 
we define Xh = {(s j, t j) | (s j, t j) ∈ ⋃

p∈ Jh
S p}, and we let G∗

h be the graph obtained from G by removing all vertices of the 
closed neighbourhoods of all the terminals that are not included in Xh ; see Fig. 5 for an example. Lemma 15 shows how G
is related to the graphs G∗

h .

Lemma 15. The instance (G, S) is a yes-instance of Induced Disjoint Paths if and only if (G∗
h, Xh) is a yes-instance of Induced 

Disjoint Paths for all 1 ≤ h ≤ l.

Proof. Clearly, a solution for (G, S) induces a solution for the instances (G∗
h, Xh). Suppose that we have a solution for 

each (G∗
h, Xh). Then two paths from two different solutions are mutually induced, because no two terminal pairs from two 

different sets Xh and Xh′ are interfering. Hence, the union of these solutions for the instances (G∗
h, Xh) forms a solution for 

(G, S). �
Lemma 15 gives us the following step.

Step 6. If I is disconnected, then solve Induced Disjoint Paths for each (G∗
h, Xh). Return yes if the return value is yes for 

all of these instances and return no otherwise.

By Step 6, we may assume that I is connected. Then, by Lemma 14, we may assume that I is a path. This leads to the 
following new condition:

Condition iv) There is interference between two sets Si and S j for some 1 ≤ i < j ≤ r if and only if j = i + 1.

We are now ready to be a bit more precise, which is necessary for our algorithm. For i = 1, . . . , r −1, let W i be the set of all 
vertices u ∈ V G , such that there is an edge uv ∈ EG with the following property: there are interfering terminal pairs (sp, tp)

and (sq, tq) in Si and Si+1, respectively, such that G p has an induced (sp, tp)-path containing u and Gq has an induced 
(sq, tq)-path containing v . Using this definition we can state the next lemma.

Lemma 16. For i = 1, . . . , r − 1, there is a set Zi ⊆ Ti of at most two terminals such that W i ⊆ N(Zi).

Proof. By Lemma 12, each vertex from W i is in the neighbourhood of some terminal vertex in Ti . By Lemma 6, G[T ] is 
triangle free. Hence, to obtain a contradiction, it is sufficient to suppose that there are two non-adjacent terminal vertices 
z1, z2 in Ti and vertices u1 ∈ (N(z1) \ N(z2)) ∩ W i , u2 ∈ (N(z2) \ N(z1)) ∩ W i . For any pair of terminals (s j, t j) from Si or 
Si+1, there is an (s j, t j)-path R j in G j by Condition iii). Moreover, by the definition of W i , there are vertices v1 and v2
adjacent to u1 and u2, respectively, such that there are two terminal pairs (sp, tp) and (sq, tq) in Si+1 and there are (sp, tp)

and (sq, tq)-paths Q p and Q q in G p and Gq that pass through v1 and v2, respectively.
Consider the subgraph R of G induced by all the vertices of the paths R j , Q p, Q q , and the vertices u1, u2. Let w be an 

arbitrary terminal in Si+1. It remains to observe that:

– the connectedness of Hi implies that using the paths R j there is a path in R from z1 to z2 that avoids the closed 
neighbourhood of any terminal vertex in Ti+1, and in particular, of w;
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– the fact that z2 /∈ Ti+1 and u1 /∈ N(z2) implies that using the vertices u1, v1, and the path Q p there is a path in R from 
z1 to sp that avoids the closed neighbourhood of z2 and of any terminal in Ti+1 \ {sp};

– similarly, there is a path in R from z2 to sq that avoids the closed neighbourhood of z1 and of any terminal in Ti+1 \{sq};
– the connectedness of Hi+1 implies that using the paths R j there is a path in R from sp to w and from sq to w that 

avoids the closed neighbourhood of any terminal vertex in Ti , and in particular, of z1 and z2.

Hence, z1, z2, w form an asteroidal triple, a contradiction. �
We obtain the following result on the sets Z1, . . . , Zr−1 defined in Lemma 16.

Lemma 17. The sets Z1, . . . , Zr−1 can be found in polynomial time.

Proof. Let 1 ≤ i ≤ r − 1. By Lemma 12 we can compute the set W i in polynomial time (see also the proof of Lemma 13). 
By Lemma 16, it suffices to determine as Zi a set of at most two of terminals in Ti that are adjacent to every vertex of W i . 
This can be done in polynomial time as well. �
3.3. Phase 3: dynamic programming

We are now ready to give a dynamic-programming algorithm for Induced Disjoint Paths. For simplicity, we solve the 
decision problem here, that is, we only check for the existence of paths, but the algorithm can be modified to get the paths 
themselves (if they exist).

Our algorithm is based on the information obtained from Phases 1 and 2, which leads to the following intuition. By 
Condition iv), there is only interference between sets Si and Si+1 for 1 ≤ i < r. By Lemma 12, this interference is restricted 
to the neighbourhoods of the terminals of the pairs in Si and Si+1. Even stronger, by the definition of W i and Lemma 16, 
the interference caused by terminals in Ti is restricted to the neighbourhoods of the terminal vertices in Zi , where |Zi| ≤ 2. 
By Lemma 7, each terminal vertex represents at most five terminals. Hence, there are at most ten vertices in N(Zi) that 
cause interference between Si and Si+1. Unfortunately, we do not know these ten vertices. However, since |Zi | ≤ 2 and Zi
can be found in polynomial time (by Lemma 17), we can enumerate all possibilities for these ten vertices in polynomial 
time. In fact, it suffices to enumerate only the set Y of vertices among the ten vertices that are actually used by the paths 
in a solution.

This intuition leads to the following dynamic programming algorithm: for each i ∈ {1, . . . , r} and Y ⊆ N(Zi) of size at 
most 10, we define a routine that solves Induced Disjoint Paths for the graph Fi = G[V \ (

⋃
j∈{i+1,...r}

⋃
u∈T j

N[u])] with 

the set of terminal pairs S ′
i = ⋃i

j=1 S j under the following additional condition: the set of non-terminal vertices from 
N(Zi) used by the paths in a solution is a subset of Y . Call this routine Sol(i, Y ). We execute this routine sequentially for 
i = 1, . . . , r, and we are clearly interested in deciding whether Sol(r, Y ) returns yes for some Y ⊆ N(Zr). The crux then is 
to show what the return value for Sol(i, Y ) for a particular value of i should be, using the return values for Sol(i − 1, ·).

To this end, we construct the subroutine Component(i, X, Y ): for each i ∈ {1, . . . , r} and for any two sets X ⊆
N(Zi−1), Y ⊆ N(Zi) of size at most 10 each, the subroutine solves Induced Disjoint Paths for the graph Fi = G[V \
(
⋃

j∈{1,...r}, j �=i

⋃
u∈T j

N[u])] with set of terminal pairs Si under the following two additional conditions:

a) the paths from a solution are not adjacent to the vertices of X , and
b) the set of non-terminal vertices from N(Zi) used by the paths in a solution is a subset of Y .

Then, to determine the return value of Sol(i, Y ), we consider all X ⊆ N(Zi−1) for which Sol(i − 1, X) returns yes and let
Sol(i, Y ) return yes if Component(i, X, Y ) returns yes. Otherwise, we let Sol(i, Y ) return no.

The correctness of the above algorithm is clear from the preceding discussion, the description of the dynamic program 
routine Sol, and the description of the subroutine Component. Moreover, the algorithm will run in polynomial time if the 
desired subroutine Component can be constructed to run in polynomial time. We claim that Component can indeed be 
so constructed, and the remainder of this section is dedicated to proving this claim.

3.3.1. Constructing the component subroutine
We are looking for an induced subgraph H ′

i in Fi obtained by subdivisions P ′
l of the paths Pl of Hi (under some 

additional constraints). We call this a solution. Recall that Di is a dominating path of Hi that joins terminals xi and yi , 
which means that Di is a shortest path between xi and yi such that each vertex of Hi lies on Di or has a neighbour on Di . 
We construct Di by a breadth-first search that puts path vertices in its queue first (this is only done to improve the running 
time and does not influence correctness).

In order to find H ′
i , we will attempt to “trace” the (xi, yi)-path D ′

i in Fi that is in the solution H ′
i and is a subdivision of 

Di . By Lemma 10, we are interested in only a bounded number of vertices adjacent to the vertices of D ′
i , and by Lemma 11, 

the paths outside D ′
i have length at most 3 and D ′

i dominates almost all vertices of these paths. Hence, vertices of H ′
i are 

“close” to D ′ and their number is “small”. The crux, therefore, is to find D ′ . To this end, we devise a dynamic-programming 
i i
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algorithm that maintains a small part of D ′
i and of the solution that we are building. We show that this is indeed possible 

by relying on the AT-freeness of Fi .
To formalize the preceding intuition, we require some definitions. Let u1, . . . , up be the terminal vertices on Di enumer-

ated in path order, that is, xi = u1 and yi = up . Recall that Pl is an (sl, tl)-path in Hi for (sl, tl) ∈ Si ; each Pl has a single 
internal vertex, its path vertex. For j ∈ {1, . . . , p}, let U j be the set of terminal vertices in (NG(u j) \ {u1, . . . , up}) ∪ {u j}. Ob-
serve that 

⋃p
j=1 U j = Ti , because Di is a dominating path of Hi and if Di contains a path vertex (i.e. a non-terminal vertex 

of Hi ), then Di also contains both its neighbours, the vertices of the corresponding terminal pair (note that the ends of Di

are terminal vertices). From this observation and Condition ii), for any pair (sl, tl) ∈ Si , we have that sl ∈ U j and tl ∈ U j′
for some j, j′ ∈ {1, . . . , p} and j �= j′ . To simplify our arguments, we assume without loss of generality that if sl ∈ U j and 
tl ∈ U j′ , then j < j′ . For a set R ′ of vertices, we let U (R ′) = ⋃

j∈R ′ U j , where the union is over all terminals in both R ′ and 
Di . For a vertex z of Di , we say that a terminal u ∈ Ti is behind z if u ∈ U j for u j in the (xi, z)-subpath of Di ; otherwise we 
say that a terminal u ∈ Ti is ahead of z. By our earlier observation, the notions of behind and ahead of z induce a partition 
of Ti .

Now, as mentioned before, we would like to “trace” an (xi , yi)-path D ′
i in Fi that is a subdivision of Di . We will argue 

that, in the dynamic program, it suffices to maintain only the last five vertices of the path D ′
i under construction. To this 

end, we require the following structural property.

Lemma 18. Let C = {x1, . . . , xt} be the ordered set of vertices of a cycle in an AT-free graph for some t ≥ 3. Then there exist integers 
i, j with 1 ≤ i < t, 2 ≤ j ≤ 4 and i + j ≤ t such that xi and xi+ j are adjacent.2

Proof. Suppose C has a chord. Then there exist indices α, β with 1 ≤ α < α + 1 < β ≤ t such that xαxβ is an edge. Choose 
the chord such that β − α is smallest. If β − α ≤ 4, then the lemma holds. Hence, we may assume otherwise. Note that for 
any integers γ , δ with α ≤ γ < γ + 1 < δ ≤ β it holds that either vγ vδ is not an edge (this would contradict the choice 
of α, β) or γ = α and δ = β . Hence, the vertices of vα, . . . , vβ induce a cycle in the graph, which has length at least 6
since β − α > 4. Such a chordless cycle trivially has an asteroidal triple for the graph (for example, take vα, vα+2, vα+4), a 
contradiction.

It follows that the cycle has no chord. If |C | ≤ 5, then the lemma follows immediately. Otherwise, the chordless cycle 
trivially contains an asteroidal triple for the graph (for example, take v1, v3, v5), a contradiction. �

We can now proceed with the description of the algorithm but first need a definition. Namely, a pair of paths P ′
a , P ′

b that 
are subdivisions of Pa , Pb in Ga and Gb , respectively, conflicts if P ′

a intersects P ′
b in a vertex v or there is an edge v w ∈ EG

such that v is an internal vertex of P ′
a and w is an internal vertex of P ′

b . In the former case, we call v an intersection conflict 
vertex, or simply a conflict vertex. In the latter case, we call v w a conflict edge and both v and w conflict vertices.

Note that it would appear another potential conflict between paths P ′
a , P ′

b in Ga and Gb can occur, namely if there 
is an edge between an endpoint v of (say) P ′

a and an internal vertex w of P ′
b . However, then w /∈ V Gb by definition (a 

contradiction) or v ∈ {sb, tb} (which is allowed). Hence, if we are able to find paths P ′
l for all (sl, tl) ∈ Si such that P ′

l is an 
induced path in Gl and the paths do not conflict, then these paths form a mutually induced set of paths.

Intuitively, ensuring there are no conflicts would be relatively straightforward to guarantee for pairs whose path vertices 
are not on Di , because by combining that they should have length at most 3 by Lemma 11 and an argument that we need 
to consider few such pairs at any point in time, this limits the potential of conflict to polynomially many choices. However, 
for the other terminal pairs, this is much more complicated, because their paths P ′

l can have arbitrary length.
We need two more definitions. Let O i ⊆ Si be the set of pairs (sa, ta) ∈ Si for which the path vertex of Pa is on Di . A 

walk W in G is an ordered set {v1, . . . , v |W |} of vertices of G such that vi vi+1 ∈ EG for i ∈ {1, . . . , |W | − 1}.
Our algorithm is built on the intuition that we only ensure that D ′

i and the paths P ′
l with l ∈ O i are walks. In AT-free 

graphs, however, Lemma 18 will help prove that by considering the last five vertices of D ′
i , we avoid all conflicts.

Definition. A realization (H ′
i, D

′
i, {P ′

l }) for (Hi, Di, {Pl}) consists of:

– an induced subgraph H ′
i of Fi such that no non-terminal vertices in H ′

i are adjacent to X and all non-terminal vertices 
in V H ′

i
∩ N(Zi) are in Y ;

– a walk D ′
i in H ′

i that is a subdivision of Di ; in particular, it visits u1, . . . , up in order (without duplication);
– for each (sl, tl) ∈ Si \ O i , there is an induced path P ′

l in H ′
i and in Gl from sl to tl of length 2 or 3;

– for each (sl, tl) ∈ O i , there is a walk P ′
l in H ′

i and Gl of length at least 2 from sl to tl and P ′
l is a subwalk of D ′

i .

A realization is an embedding if the set {P ′
l } of paths is a set of mutually induced disjoint paths.

2 Note that the lemma does not use indices module t . Although the lemma is certainly true in that setting, this is not how we will use it.
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Note that if (H ′
i, D

′
i, {P ′

l }) is an embedding for (Hi, Di, {Pl}), then the paths {P ′
l } form a solution. Moreover, the conditions 

on the paths imply that D ′
i is an induced path of Fi . Indeed, then the only possible edges between vertices of D ′

i would be 
between non-consecutive terminals on D ′

i . However, these edges are part of G and thus Hi as well. As D ′
i is a subdivision 

of Di by the definition of a realization, this contradicts that Di is a shortest path in Hi .
Observe that the preceding argument also implies that if D ′

i is not an induced path, then this is due to a conflicting pair 
or because D ′

i is not a subdivision of Di .
Clearly, our goal is to find an embedding, which is stronger than a realization. As mentioned, our algorithm aims to find 

a realization. The crux is how to ensure that we end up with an embedding. The following lemma is crucial.

Lemma 19. Suppose (H ′
i, D

′
i, {P ′

l }) is a realization for (Hi, Di, {Pl}) in an AT-free graph, but not an embedding. Then there is a subwalk 
R ′ of D ′

i with |R ′| ≤ 5 such that:

– R ′ is not an induced path, or
– U (R ′) contains at least one of {sa, ta} and at least one of {sb, tb} for some conflict pair P ′

a, P ′
b; moreover, if (sa, ta) ∈ O i (or 

(sb, tb) ∈ O i ), then R ′ contains a conflict vertex of P ′
a (or P ′

b).

Proof. We start with the following claims.

(C1) D ′
i is a path, or a subwalk R ′ as in the lemma statement exists.

Suppose that D ′
i is not a path. Let x be any vertex on the walk D ′

i such that the distance between two occurrences of x
on D ′

i is minimum. Let x = x1, . . . , xt = x be the subwalk of D ′
i between those two occurrences; that is, x /∈ {x2, . . . , xt−1}, 

x2, . . . , xt−1 are distinct, and t is minimum over all choices of x. (Note that any xi might still occur multiple times on 
D ′

i outside of the subwalk.) It follows that the subwalk forms a cycle. Then by Lemma 18, there exist integers i, j with 
1 ≤ i ≤ t − 1 and 2 ≤ j ≤ 4 such that xi xi+ j is an edge. Then let R ′ = {xi, . . . , xi+ j}. This subwalk of D ′

i is not an induced 
path and has |R ′| ≤ 5.

(C2) D ′
i is an induced path, or a subwalk R ′ as in the lemma statement exists.

By (C1), we may assume that D ′
i is a path. Let x, y be two non-consecutive vertices of D ′

i such that xy is an edge. Consider 
the cycle x = x1, . . . , xt = y formed by the edge xy and the part of the path D ′

i between x and y. Then by Lemma 18, there 
exist integers i, j with 1 ≤ i ≤ t − 1 and 2 ≤ j ≤ 4 such that xi xi+ j is an edge. Then let R ′ = {xi, . . . , xi+ j}. This subwalk of 
D ′

i is not an induced path and has |R ′| ≤ 5.

(C3) All paths in {P ′
l } are induced paths, or a subwalk R ′ as in the lemma statement exists.

Note that a path P ′
l with (sl, tl) ∈ Si \ O i is an induced path by the definition of a realization. Since a path P ′

l with (sl, tl) ∈ O i
is a subwalk of D ′

i , the claim now follows from (C2).
By the preceding claims, we may assume that D ′

i is an induced path and that all paths in {P ′
l } are induced paths. Hence, 

what is preventing the realization from being an embedding are conflicts. We now consider any conflicting pair and show 
that a subwalk R ′ as in the lemma statement exists.

Suppose that P ′
a and P ′

b with (sa, ta), (sb, tb) ∈ O i conflict. Since both are subwalks of D ′
i by the definition of a realization, 

this implies that D ′
i is either not a path or not induced. Then we obtain a contradiction, because (C1) or (C2) implies that a 

subwalk R ′ as in the lemma statement exists. Hence, we may now assume that no such conflicting pairs exist.
Suppose that P ′

a and P ′
b with (sa, ta) ∈ O i and (sb, tb) ∈ Si \ O i conflict and have an intersection conflict vertex v . Since 

P ′
b has length at most 3, v is a neighbour of sb or tb; say v ∈ N(sb). Since P ′

a is a path in Ga , but contains v , it follows that 
sa = sb or ta = sb; say sa = sb . Then v ∈ N(sa) and thus v and sa are consecutive vertices of P ′

a and thus D ′
i . Let R ′ = {v, sa}. 

Note that U (R ′) contains sa and sb and R ′ contains a conflict vertex of P ′
a . Thus, a subwalk R ′ as in the lemma statement 

exists. Hence, we may now assume that no such conflicting pair exists. Since D ′
i is a subdivision of Di by the definition of 

a realization, this also implies that we may assume that no path P ′
b with (sb, tb) ∈ Si \ O i has an internal vertex that is a 

vertex of D ′
i .

Suppose that P ′
a and P ′

b with (sa, ta) ∈ O i and (sb, tb) ∈ Si \ O i conflict and have a conflict edge v w but no intersection 
conflict vertex. Assume v ∈ P ′

a and w ∈ P ′
b . By Lemma 9, without loss of generality sb ∈ Di and thus sb ∈ D ′

i . Consider the 
cycle Cv w that contains the edge v w and the vertex sb of the graph induced by P ′

b and D ′
i . Note that such a cycle indeed 

exists and is uniquely defined, and consists of the edge v w , a part of P ′
b and a part of D ′

i . Now choose a, b and v w such 
that the length of Cv w is minimum.

If |Cv w | > 5, then by Lemma 18, Cv w has a chord xy. This chord cannot have both endpoints in D ′
i or both in P ′

b , or (C2) 
or (C3) implies that a subwalk R ′ as in the lemma statement exists. In particular, combined with the fact that P ′

a and P ′
b

are paths in Ga and Gb respectively by the definition of a realization, this implies that the set of endpoints of the chord is 
disjoint from {sa, ta, sb, tb}. Hence, the chord xy is a conflict edge of P ′

a and P ′
b and the cycle Cxy induced by it is shorter 

than Cv w . This contradicts the choice of v w .
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It follows that |Cv w | ≤ 5. Let R ′ be the subpath of Cv w between sb and w . Note that this is a subpath of D ′
i . Moreover, 

|R ′| ≤ 4, because |Cv w | ≤ 5 and v is not on R ′ . Since sb ∈ R ′ , sb ∈ U (R ′). Moreover, since P ′
a is a subpath of D ′

i and sb is a 
terminal on R ′ , it must be that sa or ta is in R ′ , and thus at least one of them is in U (R ′). Finally, we note that w ∈ R ′ by 
definition. Thus, a subwalk R ′ as in the lemma statement exists. Hence, we may now assume that no such conflicting pair 
exists.

Suppose that P ′
a and P ′

b with (sa, ta) ∈ Si \ O i and (sb, tb) ∈ Si \ O i conflict and have an intersection conflict vertex v . 
Since P ′

b has length at most 3, v is a neighbour of sb or tb; say v ∈ N(sb). Since P ′
a is a path in Ga , but contains v , it follows 

that sa = sb or ta = sb; say sa = sb . If sa (and thus sb) is on Di , then let R ′ = {sa} and we obtain a subwalk R ′ as in the 
lemma statement. Otherwise, there is a terminal vertex u in Di such that sa ∈ N(u). Note that u ∈ D ′

i . Let R ′ = {u}; then 
sa ∈ U (R ′) and we obtain a subwalk R ′ as in the lemma statement. Hence, we may now assume that no such conflicting 
pair exists.

Suppose that P ′
a and P ′

b with (sa, ta) ∈ Si \ O i and (sb, tb) ∈ Si \ O i conflict and have a conflict edge v w but no intersec-
tion conflict vertex. Assume v ∈ P ′

a and w ∈ P ′
b . By Lemma 9, we may assume without loss of generality that sa ∈ Di and 

sb ∈ Di . Hence, sa ∈ D ′
i and sb ∈ D ′

i . Consider the cycle Cv w formed by the edge v w , the subpath of P ′
a between v and sa , 

the subpath of D ′
i between sa and sb and the subpath of P ′

b between sb and w . Choose a, b and v w such that the length of 
Cv w is minimum.

If |Cv w | > 5, then by Lemma 18, Cv w has a chord xy. This chord cannot have both endpoints in D ′
i , both in P ′

a , or both 
in P ′

b , or (C2) or (C3) implies that a subwalk R ′ as in the lemma statement exists. Moreover, by our earlier assumption, the 
chord cannot have an endpoint in D ′

i and an endpoint in one of P ′
a or P ′

b . Also, combined with the fact that P ′
a and P ′

b
are paths in Ga and Gb respectively by the definition of a realization, this implies that the set of endpoints of the chord is 
disjoint from {sa, ta, sb, tb}. Hence, the chord xy is a conflict edge of P ′

a and P ′
b and the cycle Cxy induced by it is shorter 

than Cv w . This contradicts the choice of v w .
It follows that |Cv w | ≤ 5. Let R ′ be the subpath of Cv w between sa and sb . Note that this is a subpath of D ′

i . Moreover, 
|R ′| ≤ 3, because |Cv w | ≤ 5 and v and w are not on R ′ (as v and w are internal vertices of pairs (sa, ta) ∈ Si \ O i and 
(sb, tb) ∈ Si \ O i ). Since sa, sb ∈ R ′ , sa, sb ∈ U (R ′). Thus, a subwalk R ′ as in the lemma statement exists. This completes our 
proof. �
3.3.2. Dynamic program

We now define the table used in the subroutine Component(i, X, Y ). Each entry uses the following fields:

– an integer � ≥ 0;
– an ordered set of vertices R ′ ⊆ V Fi of at most five vertices of Fi such that Fi[R ′] is a path;
– a vertex z ∈ Di ;
– a set of non-terminal vertices N ′ ⊆ V Fi ;

and stores whether there exists a subgraph H ′
i of Fi with the following properties:

– no non-terminal vertices in H ′
i are adjacent to X and all non-terminal vertices in V H ′

i
∩ N Fi (Zi) are in Y ;

– there is a walk D ′
i in H ′

i of length � that is a subdivision of the subpath of Di from xi to z;
– for each (sl, tl) ∈ Si \ O i for which at least one terminal is behind z, there is an induced path P ′

l in H ′
i and Gl from sl

to tl of length 2 or 3; if sl or tl is in U (R ′), then all internal vertices of this path are in N ′;
– for each (sl, tl) ∈ O i for which both terminals are behind z, there is a walk P ′

l in H ′
i and Gl of length at least 2 from sl

to tl and P ′
l is a subwalk of D ′

i ;
– if a single terminal of (sl, tl) ∈ O i is behind z and z is a path vertex, there is a walk P ′

l in H ′
i and Gl of length at least 2, 

starting in sl but not ending in tl , and P ′
l is a subwalk of D ′

i ;
– the path Fi[R ′] and all paths for terminal pairs (sl, tl) ∈ Si \ O i for which sl or tl is in U (R ′) are mutually induced 

disjoint;
– R ′ is equal to the last min{5, |D ′

i |} vertices of D ′
i ;

– N ′ ⊆ V H ′
i
;

– there is a subpath R of Di , ending in z, and a map from R ′ to R such that any terminal vertex v on R ′ is mapped to the 
same vertex on R and any non-terminal vertex v on R ′ is mapped to a path vertex on R . Moreover, the map respects 
the order of the terminal and path vertices of R .

The last condition is called the mappability condition and is fully determined by R ′ and z. We can always pick the subpath 
R to have length at most the length of R ′ , and thus at most 5. The first five conditions effectively ensure that H ′

i is a partial 
embedding of all terminal pairs with a terminal vertex behind z.

We use last(R) respectively last(R ′) to denote the last vertex of R respectively R ′ . We also use term(z) to be equal to 
(sl, tl) ∈ O i for which either z is the path vertex or the vertex immediately following z on Di is the path vertex; otherwise, 
term(z) is undefined.
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Table construction. The table is initialized by having an entry for � = 0, z = xi , R ′ = {xi}, and each set of non-terminal 
vertices N ′ for which Fi[N ′ ∪ {xi}] satisfies the conditions of an entry. In particular, for each (sl, tl) ∈ Si \ O i for which 
{sl, tl} ∩ U (R ′) �= ∅, there is an induced path P ′

l in H ′
i and Gl from sl to tl of length 2 or 3 for which all internal (non-

terminal) vertices are in N ′ , and all such paths are mutually induced disjoint. Also, no non-terminal vertices in N ′ are 
adjacent to X and all non-terminal vertices in N ′ ∩ N Fi (Zi) are in Y .

Suppose the table has been fully filled for � − 1. Consider all vertices u ∈ V Fi for which the table contains an entry for 
(� − 1, R ′, z, N ′) such that u is adjacent to last(R ′) and is not adjacent to any other vertices in R ′ . For each such u and each 
entry (� − 1, R ′, z, N ′) with these properties, we create (possibly) new entries for the table for �. We call these new entries 
successor entries. We distinguish two cases.

Case 1. u /∈ Ti .
Note that in this case, u will be an internal vertex of a path in the solution for a terminal pair in O i . Hence, it cannot 
be adjacent to internal vertices of other paths and terminals except, possibly, the terminals joined by the path. We only 
construct new entries if the following conditions hold:

– u is not adjacent to any vertex in N ′;
– u is not adjacent to X and if it is in N Fi (Zi), then it is in Y ;
– z is a path vertex or the vertex on Di after z is a path vertex;
– u is a vertex in Gl for the terminal pair (sl, tl) = term(z).

If the above holds, then entries (�, R ′
n, zn, N ′

n) are constructed as follows. If z is a path vertex, then zn = z; otherwise, zn is 
the vertex on Di after z.

If |R ′| ≤ 4, then R ′
n is equal to R ′ and u is added as the last vertex of the ordered set. Let R and Rn be the subpaths of 

Di that follow from the mappability condition on R ′ and z respectively R ′
n and zn . Note that Rn ⊇ R and the set of terminal 

vertices of Rn and R are equal. Hence, we can set N ′
n = N ′ by the above conditions.

If |R ′| = 5, let x be the first vertex of R ′ . Then R ′
n is equal to the last four vertices of R ′ and u is added as the last vertex 

of the ordered set. Let R and Rn be the subpaths of Di that follow from the mappability condition on R ′ and z respectively 
R ′

n and zn . If x is a non-terminal vertex, then the sets of terminal vertices of Rn and R are equal and we can set N ′
n = N ′ . 

Otherwise, obtain N ′
n from N ′ by removing any vertices from N ′ belonging to a path for a terminal (sl, tl) ∈ Si \ O i for which 

neither sl nor tl is in U (R ′
n). In either case, N ′

n is correctly set by the above conditions.

Case 2. u ∈ Ti .
In this case, u can be adjacent to other terminals and u can be a terminal vertex for several terminal pairs. This makes the 
construction of entries slightly more involved. We only construct new entries if u is the vertex on Di after z. In that case, 
entries (�, R ′

n, zn, N ′
n) are constructed as follows. Set zn = u.

If |R ′| ≤ 4, then R ′
n is equal to R ′ and u is added as the last vertex of the ordered set. If |R ′| = 5, then R ′

n is equal to the 
last four vertices of R ′ and u is added as the last vertex of the ordered set. Let R and Rn be the subpath of Di that follow 
from the mappability condition on R ′ and z respectively R ′

n and zn .
Now construct N ′

n from N ′ . If |R ′| = 5, let x be the first vertex of R ′ . If x is a terminal vertex, then remove any vertices 
from N ′ belonging to a path for a terminal (sl, tl) ∈ Si \ O i for which neither sl nor tl is in U (R ′

n).
We might also add several possible sets of paths to N ′

n . For each terminal (sl, tl) ∈ Si \ O i for which sl or tl is in 
U (R ′

n) \ U (R ′) while neither are in U (R ′), consider all possible induced paths in Gl between sl and tl of which the internal 
vertices are not adjacent to any vertex in R ′ , R ′

n , and N ′ . Consider all possible combinations of such paths for such terminal 
pairs, and add the internal vertices of them to N ′

n . Note that this creates many different sets N ′
n , each of which yields a new 

table entry.

Decision and analysis. We finish the description of the subroutine Component(i, X, Y ). It can be readily verified that the 
entries constructed as above satisfy all stated conditions. Finally, if there is an entry in the table for (�, R ′, yi, N ′) for any 
�, R ′, N ′ , then return yes; otherwise, return no.

The crucial property of Component(i, X, Y ) is given in the following lemma.

Lemma 20. For each i ∈ {1, . . . , k}, the subroutine Component(i, X, Y ) tests in polynomial time whether (Hi, Di, {Pl}) has an 
embedding.

Proof. Suppose that (Hi, Di, {Pl}) has an embedding (H ′
i, D

′
i, {P ′

l }). Let v1, . . . , v j be vertices of D ′
i in order from xi = v1

to yi = v j . By induction, it can be readily shown from the construction of the entries that there is a sequence of successor 
entries (�, {v�−4, . . . , v�}, z�, N ′

�) for 1 ≤ � ≤ j and appropriate z�, N ′
� that traces along D ′

i for which there is an entry for 
( j, {v j−4, . . . , v j}, yi, N ′

j) for some appropriate N ′
j . Hence, the subroutine will return yes.

Suppose that the subroutine returns yes. Let (�, R ′
�, z�, N ′

�) be a sequence of successor entries for 1 ≤ � ≤ j, R ′
�, z�, N ′

�

for which there is an entry for ( j, R ′
j, yi, N ′

j) for some R ′
j, N

′
j . Let D ′

i be the walk induced by the sets R ′
� . Let H ′

i be the 
subgraph of Fi induced by the terminal vertices Ti , the walk D ′

i , and 
⋃

1≤�≤ j N ′
� . Let P ′

l be the set of walks for terminal 
pairs (sl, tl) implied by the entries (�, R ′ , z�, N ′ ).
� �
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Note that the walks for terminal pairs (sl, tl) ∈ O i are uniquely defined by D ′
i . Then by Lemma 19, claims (C1) and (C2), 

and the fact that each set R ′
� is an induced path by definition, it follows that D ′

i is an induced path.
For terminal pairs (sl, tl) ∈ Si \ O i , a small argument is needed, because potentially there is no R ′

� for which sl, tl ∈ U (R ′
�), 

meaning that a path for (sl, tl) appears, disappears, and then re-appears and is potentially different. Let �l be smallest such 
that {sl, tl} ∩U (R ′

�l
). Without loss of generality, sl ∈ U (R ′

�l
). Suppose that tl /∈ U (R ′

�l
) ∪· · ·∪U (R ′

�l+4). Note there is an induced 
path P ′

l in Gl between sl and tl stored in N ′
�l
, . . . , N ′

�l+4 that is the same path for each entry. Moreover, by construction, 
no vertices of this path are adjacent to vertices of R ′

�l
, . . . , R ′

�l+4. Let v be the first vertex on D ′
i after last(R ′

�l+4) that is 
adjacent to a vertex of P ′

l . Since tl is not in U (R ′
1), . . . , U (R ′

�l+4) by definition and tl ∈ U (D ′
i) by definition, v indeed exists. 

Then the subpath of D ′
i from sl to v plus the subpath of P ′

l from sl to the neighbour of v on P ′
l induce a cycle in Fi . 

Since the subpath of D ′
i from sl to v contains at least six vertices, the length of the cycle is at least 6, a contradiction to 

the AT-freeness of Fi . Hence, the sequence of entries uniquely defines a path P ′
l between sl and tl for each terminal pair 

(sl, tl) ∈ Si \ O i .
Consider (H ′

i, D
′
i, {P ′

l }). By construction, we know that (H ′
i, D

′
i, {P ′

l }) is a realization of (Hi, Di, {Pl}). For sake of contra-
diction, suppose that (H ′

i, D
′
i, {P ′

l }) is not an embedding of (Hi, Di, {Pl}). Then by Lemma 19, there is a subwalk R ′ of D ′
i

with |R ′| ≤ 5 such that:

– R ′ is not an induced path, or
– U (R ′) contains at least one of {sa, ta} and at least one of {sb, tb} for some conflict pair P ′

a, P ′
b; moreover, if (sa, ta) ∈ O i

(or (sb, tb) ∈ O i ), then R ′ contains a conflict vertex of P ′
a (or P ′

b).

However, the first case is excluded by the fact that each set R ′
� is an induced path by definition. The second case is also 

excluded. Let (sa, ta) ∈ Si and (sb, tb) ∈ Si be terminal pairs for which U (R ′
�) contains at least one of {sa, ta} and at least one 

of {sb, tb}.

– If (sa, ta) ∈ O i and (sb, tb) ∈ O i , then their paths cannot conflict, because R ′
� would contain conflict vertices of both 

pairs, but R ′
� is an induced path.

– If (sa, ta) ∈ O i and (sb, tb) ∈ Si \ O i , then their paths cannot conflict, because R ′
� would contain a conflict vertex and P ′

b
would be contained in N ′

� and thus is not be adjacent or intersect with R ′
� by construction.

– If (sa, ta) ∈ Si \ O i and (sb, tb) ∈ Si \ O i , then their paths cannot conflict by the construction of N ′
� , because at least one 

of {sa, ta} and at least one of {sb, tb} and thus both P ′
a and P ′

b are contained in N ′
� .

It follows that (H ′
i, D

′
i, {P ′

l }) is an embedding of (Hi, Di, {Pl}).
To prove polynomial time complexity, it suffices to bound |N ′|. We argue that if (Hi, Di, {Pl}) has an embedding 

(H ′
i, D

′
i, {P ′

l }) and (�, R ′
� = {v�−4, . . . , v�}, z�, N ′

�) for 1 ≤ � ≤ |D ′
i | is the corresponding sequence of successor entries, then 

|N ′
�| is bounded by 47 for each �. Hence, we may limit the size of N ′ to 47 during our dynamic program. By Lemma 11, 

D ′
i will dominate all but at most two vertices of H ′

i . We call these the special vertices. As argued in Lemma 11, the special 
vertices are internal vertices of some (sl, tl) paths P ′

j .
We claim that all non-terminals in N ′

� that are not special are adjacent to a terminal in R ′ or the two terminal vertices 
preceding R ′ on D ′

i or the two terminal vertices succeeding R ′ on D ′
i . Call the latter two sets of terminal vertices K and L

respectively. We consider two cases.
In the first case, consider a terminal pair (sl, tl) for which tl ∈ U (R ′

�) \ D ′
i (note that this implies that (sl, tl) ∈ Si \ O i ). 

Then sl ∈ D ′
i by Lemma 9. By Lemma 11, P ′

l has length at most 3. If P ′
l has length 2, then the single non-terminal vertex 

on P ′
l is adjacent to sl . If P ′

l has length 3, then the vertex of P ′
j that follows tl is not dominated by D ′

i , or the set of paths 
is not mutually induced. Note that this vertex is special. Moreover, the other internal vertex of P ′

j is adjacent to sl . Now let 
v ∈ R ′

� such that tl is a neighbour of v in H ′
i . Suppose that sl precedes the vertices of K on D ′

i (the case that sl succeeds 
L on D ′

i is similar). Then, as D ′
i is a subdivision of Di , the subpath of Di between sl and v has length at least 3, whereas 

the path in Hi between sl and v via the path vertex of Pl and tl has length at most 3. Then either we contradict that Di is 
a shortest path or, since Di was constructed by a breadth-first search that puts path vertices in its queue first, the former 
path would be preferred. Hence, sl ∈ K ∪ R ′

� ∪ L, implying the claim in the first case.
In the second case, consider a terminal pair (sl, tl) for which tl ∈ R ′

� and (sl, tl) ∈ Si \ O i . If sl /∈ D ′
i , then following the 

preceding argument, any internal vertices of P ′
l that are not adjacent to tl are not on D ′

i , and thus special. Otherwise, sl ∈ D ′
i . 

By Lemma 11, P ′
l has length at most 3, and thus its internal vertices are adjacent to sl or tl . Suppose that sl precedes the 

vertices of K on D ′
i (the case that sl succeeds L on D ′

i is similar). Again, the subpath of Di between sl and tl has length at 
least 3, whereas the path in Hi between sl and tl via the path vertex of Pl has length at most 2, contradicting that Di is a 
shortest path. Hence, sl ∈ K ∪ R ′

� ∪ L, implying the claim in the second case and overall.
Now following Lemma 10, any terminal vertex of Di is adjacent to at most five path-vertices of Hi . This implies that 

any terminal vertex of D ′
i is adjacent to at most five non-terminal vertices of H ′

i . Following the claim, all non-terminals in 
N ′

� (except the special vertices) are adjacent to a terminal in K ∪ R ′ ∪ L. By definition, there are at most 9 such vertices, 
implying that |N ′

�| ≤ 9 · 5 + 2 = 47. It follows that the size of the table is polynomially bounded. It can then be readily seen 
that the algorithm runs in polynomial time. �
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The full algorithm, its correctness, and its running time now follows from Lemma 20 and the preceding discussion.

Theorem 1. The Induced Disjoint Paths problem can be solved in polynomial time for AT-free graphs.

4. Induced topological minors

Recall that a graph G contains a graph H as an induced topological minor if G contains an induced subgraph isomor-
phic to a subdivision of H , that is, to a graph obtained from H by a number of edge subdivisions, and that the Induced 
Topological Minor problem is the corresponding decision problem. Recall also that a graph G contains a graph H on ver-
tices x1, . . . , xk as an anchored induced topological minor if there exist k pre-specified vertices u1, . . . , uk in G , such that G
contains an induced subgraph H ′ isomorphic to a subdivision of H and the isomorphism maps xi to ui for i = 1, . . . , k. In 
that case we say that H is anchored in V H ⊆ V G . The Anchored Induced Topological Minor is the corresponding decision 
problem.

As mentioned in Section 1 one can use an algorithm that solves Induced Disjoint Paths in polynomial time for any fixed 
integer k on some graph class G as a subroutine for obtaining an algorithm that solves H-Induced Topological Minor in 
polynomial time for any fixed graph H on G . This is because Anchored Induced Topological Minor can be reduced to
Induced Disjoint Paths. This reduction is known, see for example Corollary 3 of the paper of Belmonte et al. [1], where G
is the class of chordal graphs. Due to Theorem 1, we can now also let G be the class of AT-free graphs. Below we provide a 
short proof for this;. In particular we do this in order to show that the reduction works when H has isolated vertices. This 
case is not yet captured as condition i) excludes the case when si = ti for some 1 ≤ i ≤ k.

Corollary 1. The Anchored Induced Topological Minor problem can be solved in polynomial time for AT-free graphs.

Proof. Let G and H be graphs, such that H is anchored in V H ⊆ V G . If H has no isolated vertices, then we reduce Anchored 
Induced Topological Minor to Induced Disjoint Paths on G by constructing the pair of terminals (u, v) for each edge 
uv ∈ E H .

Suppose now that H has at least one isolated vertex. Then for each isolated vertex u in H , we do the following. First, 
we check whether u is adjacent in G to some other vertex of H . If so, then we stop and return no. Otherwise, we remove 
u from H and remove u with its neighbourhood in G from the graph G . If we removed all vertices of H , then we return
yes. Otherwise, denote by G ′ and H ′ the graphs obtained from G and H , respectively, by these removals. Now for each 
edge uv ∈ E H ′ , we construct the pair of terminals (u, v) in G ′ and solve the obtained instance of Induced Disjoint Paths

on G ′ . �
If H is a fixed graph, that is, not part of the input, then Induced Topological Minor can be solved in polynomial time 

by a standard reduction, as mentioned in Section 1. To make our paper self-contained, we give a short proof.

Corollary 2. The Induced Topological Minor problem can be solved in time nk+O (1) for pairs (G, H) where G is an n-vertex AT-free 
graph and H is a k-vertex graph.

Proof. Let G be an AT-free graph on n vertices, and let H be a graph with V H = {x1, . . . , xk} for some k ≤ n. First suppose 
that H has no isolated vertices. We guess k vertices u1, . . . , uk in G , and for each choice we check whether G has an 
anchored topological minor H ′ with the terminals u1, . . . , uk isomorphic to H , such that the isomorphism maps vi to ui for 
i ∈ {1, . . . , k}. Then H is an induced topological minor of G if and only if H ′ is an anchored topological minor of G for some 
choice of the vertices u1, . . . , uk . We check the latter statement by applying the nO (1) time algorithm of Corollary 1. As we 
have O (nk) possible choices, we only have to do this O (nk) times.

If H has one or more isolated vertices, we do the following. First, we guess a set of independent vertices in G that 
correspond to the isolated vertices of H . If we cannot find such a set of isolated vertices in G , then we stop and return
no. Otherwise we remove the guessed vertices from G together with their neighbours. We check for each choice, whether 
the resulting graph G ′ contains the graph H ′ obtained from H by removing its isolated vertices as an induced topological 
minor. Note that such a new instance of Induced Topological Minor is trivial if G ′ or H ′ has no vertices. Since we have 
O (nk) new graphs G ′ , this only adds a O (nk) factor to the running time. We conclude that the total running time is nk+O (1) , 
as desired. �

If H is a part of the input, or if we parameterize the problem by the size of H , then the problem becomes hard even for 
a subclass of AT-free graphs. A graph is cobipartite if its vertex set can be partitioned into two cliques. Hence, the class of 
cobipartite graphs forms a subclass of the class of AT-free graphs.

Theorem 2. The Induced Topological Minor problem is NP-complete for cobipartite graphs, and W[1]-hard for cobipartite graphs 
parameterized by |V H |.
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Fig. 6. Construction of the graphs G ′ and H in the proof of Theorem 2 for k = 4.

Proof. We prove W[1]-hardness. This proof immediately implies NP-hardness, as we reduce from the well-known W[1]-
complete Clique problem [11]. For a graph G and a parameter k, this problem is to test whether G has a clique of size k.

Let (G, k) be an instance of Clique. We assume without loss of generality that k ≥ 5 and that G has minimum degree at 
least 4. We construct a cobipartite graph G ′ as follows:

• create a copy of V G and construct a clique U on these vertices;
• for each edge uv ∈ EG , create a vertex euv adjacent to u and v;
• construct the clique W = {euv | uv ∈ EG }.

Now we construct the graph H :

• create a clique X of size k with vertices x1, . . . , xk;
• create a clique Y with 1

2 k(k − 1) vertices yij , 1 ≤ i < j ≤ k;
• for each pair i, j with 1 ≤ i < j ≤ k, make xi and x j adjacent to yij .

The construction is shown in Fig. 6. We prove that G has a clique of size k if and only if G ′ contains H as an induced 
topological minor.

First suppose that G has a clique {u1, . . . , uk}. Then the subgraph of G ′ induced by this clique and the set of vertices 
{eui u j | 1 ≤ i < j ≤ k} is isomorphic to H , i.e., H is an induced subgraph of G ′ , and therefore an induced topological minor 
of G ′ .

Now suppose that G ′ contains H as an induced topological minor. Then G ′ has an induced subgraph H ′ that is a subdi-
vision of H . We call the vertices of H ′ that are vertices of H branch vertices and all other vertices of H ′ subdivision vertices.

Let x′
i for 1 ≤ i ≤ k and y′

i j for 1 ≤ i < j ≤ k be the branch vertices of H ′ , where x′
i and y′

i j correspond to the vertices xi

and yij of the graph H respectively. Let X ′ = {x′
i | 1 ≤ i ≤ k} and Y ′ = {y′

i j | 1 ≤ i < j ≤ k}.
Suppose that H ′ has a subdivision vertex z. Assume that z ∈ U . Since dH ′(z) = 2, H ′ contains at most two other vertices 

of U . Hence, W contains at least k −2 ≥ 3 vertices of X ′ and at least one vertex y′
i j ∈ Y ′ . Then y′

i j is adjacent to at least three 
vertices of X ′ , a contradiction. For the case z ∈ W we use the same arguments, and conclude that H ′ has no subdivision 
vertices.

Assume that there are vertices y′
i j ∈ U and y′

pq ∈ W . Since k ≥ 5, U or W contains at least three vertices of X ′ . Note 
that y′

i j is adjacent to at least three vertices of X ′ in the first case and that y′
pq has at least three such neighbours in the 

second, a contradiction. Therefore, either Y ′ ⊆ U or Y ′ ⊆ W .
Now we prove that either X ′ ⊆ U or X ′ ⊆ W . To obtain a contradiction, assume that there are x′

i ∈ U and x′
j ∈ W . 

If Y ′ ⊆ U , then all vertices of Y ′ are adjacent to x′
i , but since k > 2, at least one vertex of Y ′ is not adjacent to x′

i , a 
contradiction. We get the same conclusion if Y ′ ⊆ W .

The sets X ′ and Y ′ clearly cannot be subsets of the same clique U or W . Moreover, because each vertex of W is adjacent 
to exactly two vertices of U and each vertex of X ′ is adjacent to at least four vertices of Y ′ , X ′ ⊆ U and Y ′ ⊆ W . By the 
construction of G ′ and H , this means that X ′ is a clique of size k in G . This concludes the proof of Theorem 2. �
5. Induced paths and trees through specified vertices

In this section, we consider the k-in-a-Tree and k-in-a-Path problem. Recall that this is the problem of detecting an 
induced tree respectively path containing a set S of k specified vertices (called terminals as well).

We use the following structural property of AT-free graphs.

Lemma 21. Let G be an AT-free graph. For two vertices u and v of G let P be an induced (u, v)-path of length at least 4 in G. Let G ′ be 
the subgraph obtained from G after removing the vertices of N[V P \ {u, v}]. If G1 and G2 are connected components of G ′ containing 
a neighbour of u and v in G, respectively, then G1 �= G2 .
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Proof. For contradiction, suppose that G1 = G2. Let u′ and v ′ denote the neighbours of u and v in G that belong to G1 = G2. 
As G1 is connected, G1 contains an induced (u′, v ′)-path P ′ . As G1 contains no vertices from N[V P \ {u, v}], we then find 
that P ′ contains no such vertices either. As P and P ′ are induced and P has length at least 4, this means that the union C
of P and P ′ is an induced cycle on at least six vertices. The latter implies that C has three mutually non-adjacent vertices 
that form an asteroidal triple in G , a contradiction. �

For k-in-a-Tree, we need the following definitions and well-known observation. A tree T is a caterpillar if there are two 
leaves x and y such that all other vertices are either vertices of the (x, y)-path P or are adjacent to the vertices of P . We 
say that P is a central path of T .

Lemma 22. If T is an induced tree in an AT-free graph G then T is a caterpillar.

We are now ready to prove the results of this section.

Theorem 3. The k-in-a-Tree problem can be solved in polynomial time for AT-free graphs even if k is part of the input.

Proof. Using Lemma 22, we look for an induced path P between two terminals such that V P and S induce a caterpillar 
with central path P , that is, all terminal vertices that are not in P are pairwise non-adjacent and each has exactly one 
neighbour in P .

We build this caterpillar step by step, using a dynamic programming algorithm that is somewhat similar to the algorithm 
used in the subroutine Component(i, X, Y ) in Section 3.3.1. We use similar notations as well. The idea will be to “trace” 
the central path through the graph. However, in contrast to the subroutine Component(i, X, Y ), we have no “template” to 
go by and need to build the central path and the caterpillar step by step.

Before we show how the dynamic programming table is constructed and updated, we first give some additional termi-
nology. For an ordered set (a sequence of distinct elements) R = {r1, . . . , rc}, we say that r1 is the first element of R and 
rc is the last element. The first and last elements of R are denoted first(R) and last(R) respectively. We also say that an 
ordered set of vertices R = {r1, . . . , rc} of a graph G induces a path if r1 . . . rc is an induced path in G . Let P be an induced 
(u, v)-path P in a graph G and let c be a positive integer. By P (c) we denote the ordered set of the last c vertices of P in 
the path order. If P has length at most c, then P (c) is the ordered set of the vertices of P . Observe that last(P (c)) = v .

For an ordered set of vertices R that induces a path with end-vertices first(R) and last(R), A(R) denotes the set of 
terminals in the connected component of G[(V G \ NG [V R \ {first(R), last(R)}]) ∪ {last(R)}] that contains last(R). We can 
think of A(R) as the terminals that are ahead of R .

Our dynamic programming algorithm creates tables that store entries with the following fields:

• a non-negative integer �;
• a terminal x ∈ S (the starting terminal of the caterpillar);
• a non-negative integer r (the number of terminals in the caterpillar as constructed so far);
• a vertex z of G (the last vertex of the central path of the caterpillar as constructed so far; note that z might be but is 

not necessarily equal to x); and
• an ordered set R of at most five vertices of G with z = last(R) that induces a path,

such that there is an induced (x, z)-path P in G and a partition A, B, N of S (some sets can be empty) with the following 
properties:

• P (5) = R;
• N = S ∩ (NG [V R \ {first(R), z}]);
• |B ∪ N| = r;
• G[V P ∪ B ∪ N] is a caterpillar; and
• for A = A(R) \ {z}, it holds that A ∩ V P = ∅ and vertices of A are not adjacent to the vertices of (V P ∪ N) \ {z}.

We can think of A as the set of terminals that are still ahead, of B as the set of terminals that are behind, and of N as the 
set of terminals that are currently in the neighbourhood of R . Also note that since z ∈ R , it would not be necessary to make 
z a separate field; however, we will do so for notational convenience.

The tables are constructed consecutively for � = 0, . . . , |V G | − 1. We stop if one of the following occurs:

• the table contains a entry with r = k, and we return yes in this case; or
• we cannot construct any entry for the next value of �, and we return no in this case.

The table for � = 0. This table only contains entries (0, 0, x, z, R), where x ∈ S , z = x, and R = {x}.
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The tables for � > 0. Assume that the table for � − 1 has been constructed. We consider all vertices v ∈ V G for which the 
table for � − 1 contains a entry (� − 1, x, r, w, R) such that v is adjacent to w but is not adjacent to any other vertices of R . 
Then, for each v and (� − 1, x, r, w, R), we create new entries in the table for �. In order to do this, we construct the sets 
A = A(R) \ {w} and N = S ∩ (NG [V R \ {first(R), last(R)}]). Then we construct R ′ by adding v to R as the last element. Let 
U = (NG(w) ∩ A) \ {v}. Then we check whether the following holds:

• each vertex of U is adjacent to exactly one vertex of R ′ (i.e. only to the vertex w);
• each vertex of U is not adjacent to the vertices of N \ {w};
• for the set A′ = A \ ({v} ∪ U ), it holds that A′ = A(R ′) \ {v}.

The first two verify that we are indeed inducing a caterpillar, whereas the last verifies that we are expanding the caterpillar 
in the correct direction (towards the remaining terminals that are ahead). If these conditions are fulfilled, then we set 
R ′′ = R ′ \ {first(R)} if |R| = 5, and R ′′ = R ′ otherwise. Let r′ = r + |A| − |A′|. Then we include the entry (�, x, r′, v, R ′′) in the 
table.

Observe that by Lemma 21, any vertex of G adjacent to z = last(R) but non-adjacent to other vertices of R , is not 
adjacent to the vertices of the (x, z)-path P , except the last vertex z, and is not adjacent to the vertices of B . Then the 
correctness of our algorithm follows from the description and this observation.

It remains to prove that the algorithm is polynomial. Let n = |V G |. Since r ≤ k, there are k possibilities for the terminal x
and at most n5 ways to choose z and R . Hence, the total size of the table for any � is at most k2 · n5. Since � ≤ n − 1, the 
running time is polynomial. �
Theorem 4. The k-in-a-Path problem can be solved in polynomial time for AT-free graphs even if k is part of the input.

Proof. We use a dynamic programming algorithm that is constructed along the same lines as for the k-in-a-Tree problem.
We have to find an induced path P between two terminals such that S ⊆ V P . As in the proof of Theorem 3, for an 

ordered set of vertices R that induces a path with the end-vertices first(R) and last(R), A(R) is the set of terminals in the 
connected component G[(V G \ NG [V R \ {first(R), last(R)}]) ∪ {last(R)}] that contains last(R).

Our dynamic programming algorithm creates tables that store entries with the following fields:

• a non-negative integer �;
• a terminal x ∈ S (the starting terminal of the path);
• a non-negative integer r (the number of terminals on the path as constructed so far);
• a vertex z of G (the last vertex of the path as constructed so far; note that z might be but is not necessarily equal to 

x); and
• an ordered set R of at most five vertices of G with z = last(R) that induces a path,

such that there is an induced (x, z)-path P in G , and a partition A, B, N of S (some sets can be empty) with the following 
properties:

• P (5) = R;
• N = S ∩ R;
• B ⊆ V P \ R;
• |B ∪ N| = r; and
• for A = A(R) \ {z}, it holds that A ∩ V P = ∅ and vertices of A are not adjacent to the vertices of V P \ {z}.

The intuition for A, B , and N are similar as before.
The tables are constructed consecutively for � = 0, . . . , |V G | − 1. We stop if one of the following occurs:

• the table contains a entry with r = k, and we return yes in this case;
• we cannot construct any entry for the next value of �, and we return no in this case.

The tables are constructed and updated as follows.

The table for � = 0. This table only contains entries (0, 0, u, z, R), where u ∈ S , z = u, and R = {u}.

The tables for � > 0. Assume that the table for � − 1 has been constructed. We consider all vertices v ∈ V G for which the 
table for � − 1 contains a entry (� − 1, x, r, w, R) such that v is adjacent to w but is not adjacent to any other vertices of 
R . Then, for each v and (� − 1, x, r, w, R), we create new entries for the table for �. In order to do this, we construct the 
set A = A(R) \ {w}. Then we construct R ′ by adding v to R as the last element. Let A′ = A \ {v}. Then we check whether 
A′ = A(R ′) \ {v}. This verifies that we are expanding the path in the correct direction (towards the remaining terminals that 
are ahead). If this holds, then we set R ′′ = R ′ \ {first(R)} if |R| = 5, and R ′′ = R ′ otherwise. Let r′ = r + |A| − |A′|. Then we 
include the entry (�, x, r′, v, R ′′) in the table.
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Observe that by Lemma 21, any vertex of G adjacent to z = last(R) but non-adjacent to other vertices of R , is not 
adjacent to the vertices of the (x, z)-path P , except the last vertex z. Then the correctness of our algorithm follows from 
the description and the preceding observation.

It remains to prove that the algorithm is polynomial. Let n = |V G |. Since r ≤ k, there are k possibilities for the terminal x
and at most n5 ways to choose z and R . Hence, the total size of the table for any � is at most k2 · n5. Since � ≤ n − 1, the 
running time is polynomial. �
6. Concluding remarks

We have presented a polynomial-time algorithm that solves Induced Disjoint Paths for AT-free graphs, and we used this 
algorithm for a polynomial-time algorithm that solves H-Induced Topological Minor on this graph class for every fixed 
graph H . We complemented the latter result by proving that Induced Topological Minor, restricted to cobipartite graphs, is 
NP-complete and W[1]-hard when parameterized by |V H |. We also showed that the problems k-in-a-Tree and k-in-a-Path

can be solved in polynomial time for AT-free graphs even if k is part of the input.

6.1. Open problem 1

Motivated by our application on testing for induced topological minors, we assumed that all terminal pairs in an instance 
(G, S) of Induced Disjoint Paths are distinct. For general graphs, we can easily drop this assumption by replacing a vertex u
representing � ≥ 2 terminals by � new mutually non-adjacent vertices, each connected to all neighbours of u via subdivided 
edges. This yields an equivalent instance of Induced Disjoint Paths, in which all terminal pairs are distinct. However, we 
cannot apply this reduction for AT-free graphs, because it may create asteroidal triples. Hence, the complexity of this more 
general problem remains an open question.

We note that the special case in which all terminal pairs coincide, that is, in which (s1, t1) = · · · = (sk, tk) is already 
NP-compete for k = 2 [2,12] and solvable in O (n2) time on n-vertex planar graphs for arbitrary k [36]. We can solve this 
case in polynomial time for AT-free graphs as follows.

Let G be an AT-free graph with k terminal pairs that are copies of the same terminal pair (s, t). If k = 1, then the 
problem is trivial: we have to find an (s, t)-path in G . Hence, we assume that k ≥ 2. Suppose that (s, t)-paths P1, . . . , Pk
form a solution. Then each path Pi has length at most 4. Otherwise, if there is a path Pi of length at least 5, this path 
and any other path P j would induce a cycle with at least six vertices, but an AT-free graph has no induced cycles of length 
at least 6. Moreover, at most two paths Pi, P j have length at least 3. To obtain a contradiction, assume that three paths 
Pi, P j, Pr have length at least 3. Let u, v, w be the vertices adjacent to t in Pi, P j, Pr respectively. Then u, v, w form an 
asteroidal triple, a contradiction. By these observations, we consider cases when a solution has r = 0, 1, 2 paths of length at 
least 3 and at most 4. For each r, we guess these paths by brute force. Then we construct the graph G ′ by the deletion of 
all internal vertices of these paths, together with their neighbours different from s, t . Now we have to find k′ (s, t)-paths in 
G ′ of length 2, where k′ = k − r if s, t are non-adjacent, and k′ = k − r − 1 if s, t are neighbours. These paths exist if and only 
if the graph H = G ′[NG ′ (s) ∩ NG ′ (s)] has an independent set of size at least k′ . It remains to observe that H is an AT-free 
graph, and that the Independent Set problem can be solved in polynomial time for AT-free graphs [3].

6.2. Open problem 2

Our three algorithms for solving Induced Disjoint Paths, k-in-a-Tree and k-in-a-Path on AT-free graphs are polynomial-
time algorithms, but the polynomials in the running time bounds have high degree. It may be interesting to construct 
more efficient algorithms even for subclasses of the AT-free graphs, such as the class of permutation graphs or the class of 
cocomparability graphs. In contrast to the class of AT-free graphs, both these graph classes are known to have a geometric 
intersection model.

6.3. Open problem 3

Our last open problem is whether it is possible to extend our result for Induced Disjoint Paths to some superclass of 
AT-free graphs, such as graphs of bounded asteroidal number. An asteroidal set in a graph G is an independent set S ⊆ V G , 
such that every triple of vertices of S is asteroidal. The asteroidal number introduced by Walter [41] (see also Kloks, Kratsch 
and Müller [22]) is the size of a largest asteroidal set in G . Note that complete graphs are exactly those graphs that have 
asteroidal number at most 1, and that AT-free graphs are exactly those graphs that have asteroidal number at most 2. There 
exist problems for which polynomial-time algorithms for AT-free graphs could be extended to polynomial-time algorithms 
for graphs of bounded asteroidal number (see, e.g., [3,27,28]). Is this also possible for Induced Disjoint Paths, or will this 
problem become NP-complete for some constant value of the asteroidal number?
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