Journal of Computer and System Sciences 124 (2022) 170-191

Contents lists available at ScienceDirect

JOURNAL or
COMPUTER
g SYSTEM

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Induced Disjoint Paths in AT-free graphs ™ n

Check for
updates

Petr A. Golovach?, Daniél Paulusma™*, Erik Jan van Leeuwen ¢

4 Department of Informatics, University of Bergen, PB 7803, 5020 Bergen, Norway
b School of Engineering and Computing Sciences, Durham University, Science Laboratories, South Road, Durham DH1 3LE, UK
¢ Department of Information and Computing Sciences, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

ARTICLE INFO ABSTRACT
Article history: Paths P1,..., P are mutually induced if any two distinct P; and P; have neither common
Received 14 February 2021 vertices nor adjacent vertices (except perhaps their end-vertices). The INDUCED DISJOINT

Received in revised form 15 September
2021

Accepted 18 October 2021

Available online 29 October 2021

PATHS problem is to decide if a graph G with k pairs of specified vertices (s;j,t;) contains
k mutually induced paths P; such that each P; connects s; and t;. This problem is NP-
complete even for k = 2. We prove that it can be solved in polynomial time for AT-free
graphs even when k is part of the input. Consequently, the problem of deciding if an AT-

Keywords: free graph contains a fixed graph H as an induced topological minor admits a polynomial-
Disjoint paths time algorithm. We show that such an algorithm is essentially optimal by proving that
AT-free graph the problem is W[1]-hard with parameter |Vy|, even for a subclass of AT-free graphs,
Co-bipartite graph namely cobipartite graphs. We also show that the problems k-IN-A-PATH and k-IN-A-TREE
Polynomial-time algorithm are polynomial-time solvable on AT-free graphs even if k is part of the input.
W([1]-hardness) © 2021 Elsevier Inc. All rights reserved.
Induced topological minor

k-in-a-Path

k-in-a-Tree

1. Introduction

We study the INDUCED DisJoINT PATHs problem. This problem can be seen as the induced version of the well-known
DisjoINT PATHS problem, which is to decide if a graph G with k pairs of specified vertices (s;, t;) contains a set of k mutually
vertex-disjoint paths Pq,..., Py, where each P; starts from s; and ends at t;. The DisjoINT PATHS problem is one of the
problems in Karp’s list of NP-compete problems [21]. If k is a fixed integer, that is, not part of the input, then the problem
can be solved in O(n3) time for n-vertex graphs, as shown by Robertson and Seymour [39] (see [23] for an algorithm
with O (n?) running time). In contrast, the INDUCED DisjoINT PaTHs problem is NP-complete even if k = 2, as shown both by
Fellows [12] and Bienstock [2].

The INDUCED DisjoINT PATHs problem is formally defined as follows. The problem takes as input a graph G and a set S =
{(s1,t1), ..., (S, tx)} of k distinct unordered pairs of specified vertices of a graph G, which we call terminals. It asks if G
contains k paths Pq,..., Py that satisfy the following conditions:

1. for every i, P; has end-vertices s; and t;;
2. if i # j, then P; and P; may share at most one vertex, which must be an end-vertex of both P; and Pj;

™ This work is supported by EPSRC (EP/G043434/1), Royal Society (JP100692), the European Research Council (ERC) via the grant Rigorous Theory of
Preprocessing (reference 267959), and ERC StG project PAAI no. 259515. A preliminary abstract of this paper appeared in the proceedings of SWAT 2012 [14].
* Corresponding author.
E-mail addresses: petr.golovach@ii.uib.no (P.A. Golovach), daniel.paulusma@durham.ac.uk (D. Paulusma), e.j.van.leeuwen@uu.nl (E.J. van Leeuwen).

https://doi.org/10.1016/j.jcss.2021.10.003
0022-0000/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2021.10.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2021.10.003&domain=pdf
mailto:petr.golovach@ii.uib.no
mailto:daniel.paulusma@durham.ac.uk
mailto:e.j.van.leeuwen@uu.nl
https://doi.org/10.1016/j.jcss.2021.10.003

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

Fig. 1. An example of an instance (G, S) of INDUCED DisjoOINT PATHS, which is a yes-instance as the three paths Pq, P;, P3 satisfy conditions 1-3.

3. if i # j, then no inner vertex u of P; is adjacent to a vertex v of P; except when v is an end-vertex of both P; and Pj;
4. for every i, P; is an induced path.

A collection of paths Pq,..., Py that satisfies the aforementioned conditions 1-4 for a given graph G with a set S of k
terminals pairs (sj, t;) is called a solution for (G, S). An example of a graph with three paths that satisfy all conditions is
shown in Fig. 1.

We make two observations about the problem definition.

Remark 1. We require the terminal pairs to be distinct, but do allow in conditions 2 and 3 that two terminals from distinct
pairs coincide or are adjacent. Hence, conditions 2 and 3 are slightly more relaxed compared to the usual definition of
INDUCED DisjoINT PATHS by means of mutually induced paths where paths in a solution have neither common nor adjacent
vertices. For general graphs, we can make these relaxations without loss of generality, because we can perform some ele-
mentary graph operations to ensure that two terminals from different pairs are distinct and non-adjacent. However, these
operations may break membership of a graph class. Hence, our definition with the relaxed conditions yields a more gen-
eral problem to solve if we restrict the input to some special graph class. We need this more general problem for our
applications, as we will explain in Section 1.3.!

Remark 2. As we can take shortcuts if necessary, we may omit condition 4 to obtain an equivalent problem. However, we
added condition 4 explicitly, as this will be convenient for algorithmic purposes.

Research question. As the INDUCED DisJOINT PATHS problem is NP-complete even if k =2 [2,12], we study the following
research question to increase our understanding in the computational complexity of the problem:

What are natural graph classes for which INDUCED DISJOINT PATHS is polynomial-time solvable?
11. Known results

For planar graphs, INDUCED DIsJOINT PATHS stays NP-complete. This result can be obtained by subdividing each edge of a
planar input graph of DisjoINT PATHS. As planar graphs are closed under edge subdivision, this yields a planar input graph of
INDUCED DisjJoINT PATHS. We then apply the result of Lynch [35] who proved that DisjoINT PATHS is NP-complete for planar
graphs. Kobayashi and Kawarabayashi [25] presented an algorithm that solves INDUCED DisjOINT PATHS on planar graphs that
runs in linear time for any fixed k; see [24] for an extension of this result to graph classes of bounded genus.

For claw-free graphs, INDUCED DIsJOINT PATHs stays NP-complete as well. This is shown by Fiala et al. [13] even for
line graphs, which form a subclass of claw-free graphs, and very recently by Radovanovi¢, Trotignon and Vuskovi¢ [38]
even for line graphs of triangle-free chordless graphs. In addition, Fiala et al. [13] showed that INDUCED DiSJOINT PATHS
can be solved in polynomial time for claw-free graphs if k is fixed. In a previous paper [16], we improved the latter
result by showing that INDUCED DIsJOINT PATHS is fixed-parameter tractable for claw-free graphs when parameterized by
k. Radovanovi¢, Trotignon and Vuskovi¢ [38] proved that INDUCED DisjJoINT PATHS can be solved in polynomial time for
(theta,wheel)-free graphs if k is fixed. However, the problem stays NP-complete for (theta,wheel)-free graphs if k is part
of the input due to the aforementioned NP-completeness result for the subclass of line graphs of triangle-free chordless
graphs [38].

From the above we observe that being planar, claw-free or (theta,wheel)-free does not help with respect to polynomial-
time solvability of INDUCED DisjoINT PATHS when k is part of the input. However, for chordal graphs, INDUCED DiSJOINT PATHS

1 We refer to Open problem 1 in Section 6 for a discussion on the even more general problem variant where two terminal pairs are allowed to be the
same.

171

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

is polynomial-time solvable when k is part of the input, as shown by Belmonte et al. [1], whereas we showed that for
circular-arc graphs, INDUCED DIsJOINT PATHS is even linear-time solvable [15].

More recently, Jaffke, Kwon and Telle [20] proved that INDUCED DisjJoINT PATHS is polynomial-time solvable for any graph
class of bounded mim-width. Their results imply that in addition to the above graph classes, the problem is polynomial-
time solvable for the following classes: bi-interval graphs, circular permutation graphs, convex graphs, circular p-trapezoid
graphs, p-polygon graphs, Dilworth-p graphs, and co-p-degenerate graphs.

1.2. Our main result

In this paper, we prove that INDUCED DisJOINT PATHS is polynomial-time solvable on a large class of graphs, namely
the class of asteroidal triple-free graphs (or AT-free graphs), even if k is part of the input. An asteroidal triple is a set of three
mutually non-adjacent vertices, such that each two of them are joined by a path that avoids the neighbourhood of the third;
AT-free graphs are exactly those graphs that contain no such triple [31]. The class of AT-free graphs is easily recognized in
polynomial time, widely studied (see e.g. [22,26-28,40]), and contains many well-known classes, such as cobipartite graphs,
cocomparability graphs, cographs, interval graphs, permutation graphs, and p-trapezoid graphs (cf. [9]). In contrast to these
subclasses, AT-free graphs miss the advantage of having a known geometric intersection model (which can be exploited
for the design of polynomial-time algorithms). The class of AT-free graphs is incomparable to chordal graphs, circular-arc
graphs, and graphs of bounded mim-width, which were covered by previous work, as mentioned above. Hence, with our
main result, we make significant progress on answering the research question.

It is interesting to observe here that INDUCED DISJOINT PATHS seems to behave substantially different from DiSJOINT PATHS.
Generally, the induced variant of a containment relation problem is computationally just as hard or even harder than its
non-induced variant. For example, MATCHING can be solved in polynomial time, but INDUCED MATCHING is NP-hard even
for bipartite graphs [4]. In contrast, DisJoINT PATHS is NP-complete on split graphs [19], but INDUCED DISJOINT PATHS is
polynomial-time solvable on the strictly larger class of chordal graphs [1]. Similarly, DisjoINT PATHs is NP-complete on
interval graphs [37], but INDUCED DisJOINT PATHs is polynomial-time solvable on the strictly larger classes of circular-arc
graphs [15] and chordal graphs [1]. With our main result, we now add the strictly and substantially larger class of AT-free
graphs to the list of classes for which INDUCED DisJoOINT PATHS is polynomial-time solvable, but DisJoINT PATHS is not [37],
unless P=NP.

In order to solve INDUCED DisJOINT PATHS in polynomial time on AT-free graphs, we first apply some general preprocessing
rules (Section 3.1). We then provide a thorough exploration of the structure of AT-free graphs, in particular in relation to the
INDUCED DIsJOINT PATHS problem (Section 3.2). Finally, we use these structural results for a dynamic programming algorithm
(Section 3.3). Here we heavily rely on the fact that AT-free graphs have a path that dominates the graph and that AT-free
graphs cannot contain long induced cycles, so that we can always focus on the neighbourhood of a constant number of
vertices in the graph.

Our approach is substantially different from the approach of Belmonte et al. [1] for solving this problem in polynomial
time on chordal graphs, as it appears that the tree-decomposition-based approach of [1] does not work for AT-free graphs.
Our proof techniques are also quite different from the irrelevant vertex technique used by Kobayashi and Kawarabayashi [25]
for planar graphs, which only work for fixed k in contrast to our result, and from the proof techniques for claw-free
graphs [13,16]. The latter techniques are based on the characterization of claw-free graphs of Chudnovsky and Seymour [5]
and also only work when k is a fixed constant instead of being part of the input.

1.3. Applications to other containment relation problems

We show that our algorithm for INDUCED DisJoINT PATHS for AT-free graphs can be used as a subroutine to solve two cat-
egories of containment relation problems in polynomial-time for AT-free graphs. Recall that a containment relation problem
asks to detect if one graph is contained in some other graph by some specified graph containment relation. For gen-
eral graphs, INDUCED DisjoINT PATHS has no direct applications for other containment problems, as it is NP-complete when
k =2 [2,12]. However, such applications are possible for graph classes for which INDUCED DisJOINT PATHS is polynomial-time
solvable, such as AT-free graphs.

Below we provide a definition, survey previous work, and state our results for both considered categories of containment
relation problems. Proof details can be found in Sections 4 and 5.

H-Induced Topological Minor. A graph G contains a graph H as a topological (induced) minor if G contains an (induced)
subgraph that is isomorphic to a subdivision of H, that is, to a graph obtained from H by a number of edge subdivisions.
The problems that are to decide whether a given graph contains some fixed graph H as a topological minor or induced
topological minor are called H-ToroLoGIcAL MINOR and H-INDUCED TOPOLOGICAL MINOR, respectively.

There is a great disparity in what we know about H-TopoLoGICAL MINOR and H-INDUCED TOPOLOGICAL MINOR. Robertson
and Seymour [39] showed that H-ToPOLOGICAL MINOR can be solved in polynomial time for any fixed graph H. Grohe et
al. [18] improved this result to cubic time. In contrast, for H-INDUCED TOPOLOGICAL MINOR, Lévéque et al. [32] obtained some
partial results by showing both polynomial-time and NP-complete cases. In particular they proved that H-INDUCED TOPOLOG-
ICAL MINOR is NP-complete for H = K5. Afterwards, Le [30] proved that H-INDUCED TOPOLOGICAL MINOR is polynomial-time

172

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

solvable for H = K4, which was known to be a stubborn case (see also [33]). However, the complexity classification for
H-INDUCED TOPOLOGICAL MINOR is still far from complete.

In contrast to the situation for general graphs, we can determine the complexity of H-INDUCED ToPOLOGICAL MINOR for
any graph H when we restrict the input to AT-free graphs. For doing this, we make explicit use of conditions 2 and 3 for
the terminals in the definition of INDUCED DisJoINT PATHS. We first consider the anchored version of H-INDUCED TOPOLOGICAL
MINOR. This variant is to decide if a graph G contains a graph H as an induced topological minor such that the vertices
of H are mapped to specified vertices of G. We show that the anchored version of H-INDUCED TOPOLOGICAL MINOR can be
solved in polynomial time on AT-free graphs even when H is an arbitrary graph that is part of the input. This result cannot
be generalized to the original, non-anchored version of this problem, which we show to be NP-complete even for a subclass
of AT-free graphs, namely for the class of cobipartite graphs.

However, our result for the anchored version still implies a polynomial-time algorithm for H-INDUCED TOPOLOGICAL MINOR
on AT-free graphs as long as H is fixed. This may be the best result one can hope for: besides proving NP-completeness,
we also prove in Section 4 that INDUCED TOPOLOGICAL MINOR is W[1]-hard when parameterized by |V | even for cobipartite
graphs.

We note that by demanding conditions 2 and 3 and following the above approach based on the anchored version of the
problem, H-INDUCED TopPoLoGICAL MINOR (for fixed H) is polynomial-time solvable for any graph class for which INDUCED
DisJoINT PATHS is polynomial-time solvable or becomes polynomial-time solvable after fixing k; see, for example, [1,13,20,38]
where this has been shown for chordal graphs, claw-free graphs, graphs of bounded mim-width and (theta,wheel)-free
graphs, respectively.

k-in-a-Subgraph. The problem of detecting an induced subgraph of a certain type containing a set of k specified vertices
(called terminals as well) has also been extensively studied, in particular for the case where the induced subgraph is
required to be a tree, cycle, or path. Then this problem is called k-IN-A-TREE, k-IN-A-CYCLE, and k-IN-A-PATH, respectively.
Derhy and Picouleau [7] proved that k-IN-A-TREE is NP-complete when k is part of the input even for planar bipartite
cubic graphs. Chudnovsky and Seymour [6] proved that 3-IN-A-TREE is polynomial-time solvable. Very recently, Lai, Lu
and Thorup [29] gave a faster, near-linear algorithm for 3-IN-A-TREE and Gomes et al. [17] proved various parameterized
complexity results for k-IN-A-TREE. However, the (classical) complexity of k-IN-A-TREE is still open for every fixed k > 4.
In contrast, the problems 2-IN-A-CYCLE and 3-IN-A-PATH are NP-complete; this follows from the aforementioned results of
Fellows [12] and Bienstock [2].

We note that for every fixed k, the problems k-IN-A-CYCLE, k-IN-A-PATH and k-IN-A-TREE can be reduced to a polynomial
number of instances of INDUCED DisjoINT PATHS due to the relaxed conditions 2 and 3 in the problem definition (see, for
example, [38] for details). Hence, all the aforementioned polynomial-time results for the latter problem restricted to special
graph classes carry over to these three k-in-a-subgraph problems for every fixed integer k > 1. It is also known that k-IN-A-
TREE can be solved in polynomial time for graphs of girth at least k [34] even if k is part of the input (see [8] for the case
where k = 3). Lévéque et al. [32] proved that 2-IN-A-CyCLE is polynomial-time solvable for graphs not containing an induced
path or induced subdivided claw on some fixed number of vertices. Radovanovi¢, Trotignon and Vuskovi¢ [38] proved that
k-IN-A-CyCLE is fixed-parameter tractable for (theta,wheel)-free graphs when parameterized by k.

In our paper we add to these positive results by showing that the three problems k-IN-A-TREE, k-IN-A-CYCLE, and Kk-IN-
A-PATH are polynomial-time solvable on AT-free graphs even when k is part of the input. Note that solving k-IN-A-CYCLE in
polynomial time is straightforward, because AT-free graphs do not contain induced cycles on six or more vertices. For the
remaining two problems, we again apply our main result and make explicit use of conditions 2 and 3 for the terminals
in the definition of INDUCED DisjoINT PATHS. The standard brute-force approach that reduces the instance to a polynomial
number of instances of INDUCED DisjoINT PATHS will only yield this result for any fixed integer k, because in the worst case
it must process all k! orderings of the terminals. However, we are able to give a more direct approach for AT-free graphs,
based on dynamic programming, that works even when k is part of the input.

2. Preliminaries

Throughout the paper, we consider only finite, undirected graphs without multiple edges and self-loops. We denote the
vertex set and edge set of a graph G by V¢ and Eg, respectively; we may omit subscripts if no confusion is possible.

Let G = (V,E) be a graph. For U C V, the graph G[U] denotes the subgraph of G induced by the vertices in U. We
denote the (open) neighbourhood of a vertex u by N(u) = {v |uv € E} and its closed neighbourhood by N[u] = N(u) U
{u}. We denote the (open) neighbourhood of a set U CV by N(U)={ve V\U|uv eEfor someu e U} and its closed
neighbourhood by N[U]= N(U) U U. We let d(u) = |N(u)| denote the degree of a vertex u. Whenever it is not clear from
the context, we may add an extra subscript ¢ to these notations.

The length of a path is its number of edges. Paths P1,..., Py in a graph G = (V, E) are mutually induced if any two
distinct P; and P; have neither common vertices nor adjacent vertices (except perhaps their end-vertices). Let uw € E. The
edge subdivision of uw removes uw and adds a new vertex v with edges uv and vw. A graph G’ is a subdivision of G if
G’ can be obtained from G by a sequence of edge subdivisions. A graph H is an induced topological minor of G, if G has an
induced subgraph that is isomorphic to a subdivision of H.

Let G be a graph in which we specify r distinct vertices pq,..., pr. Let H be a graph in which we specify r distinct
vertices q1,...,qr. Then G contains H as an induced topological minor anchored in (p1,q1), ..., (Pk,qx) if G contains an

173

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

induced subgraph isomorphic to a subdivision of H such that the isomorphism maps p; to q; for i =1,...,r. The graphs G
and H may have common vertices. If p; =q; for i =1,...,r, we speak of “being anchored in p1,..., p;” instead.

A subset U C V dominates G if u € U or u € N(U) for each u € V. A pair of vertices {x, y} is a dominating pair of a graph G
if the vertex set of every (x, y)-path dominates G. A path P dominates a vertex u if u € N[Vp]. A path P dominates a vertex
set U if it dominates each u € U. Corneil, Olariu and Stewart proved the following result, which we will use as a lemma.

Lemma 1 ([9,10]). Every connected AT-free graph has a dominating pair and such a pair can be found in linear time.

Throughout the paper, we let T = Ule{si, ti} denote the set of terminals, whereas S = {(s1, t1),..., (S, ty)} denotes
the set of terminal pairs. Note that a vertex u may be in more than one terminal pair. We say that a terminal s; or t; is
represented by a vertex u if u =s; or u =t;, respectively. We also say that u is a terminal vertex. If a vertex u does not
represent any terminal, then we call u a non-terminal vertex.

3. Induced disjoint paths

In this section we present our polynomial-time algorithm for the INDUCED DisjOINT PATHS problem. Our algorithm has as
input a pair (G, S), where G is an AT-free graph and S is a set of terminal pairs. It consists of the following three phases.

Phase 1. Preprocess (G, S) to derive a number of convenient properties. For instance, afterwards two terminals of the same
pair are non-adjacent.

Phase 2. Derive a number of structural properties of (G, S). The algorithm constructs an auxiliary graph H, which is obtained
from the subgraph of G induced by the terminal vertices by adding a path of length 2 between each pair of terminals. It
then checks whether H satisfies some necessary conditions, such as being AT-free and being an anchored topological minor
of G. The latter condition is also shown to be sufficient and demands the construction of another auxiliary graph in order
to describe how induced paths connecting terminal pairs may interfere with each other.

Phase 3. Perform dynamic programming using the information from Phases 1-2.
3.1. Phase 1: preprocessing

Let (G, S) be an instance of INDUCED DisJOINT PATHS, where G = (V, E) is an AT-free graph on n vertices with a set S of
k terminal pairs (s1,t1), ..., (S, ty). Recall that we assume that the terminal pairs in S are pairwise distinct if we consider
them to be unordered. In other words, although a vertex may represent more than one terminal, we do not allow two
terminal pairs to coincide, that is, {s;, t;} # {s;,t;} for all i # j. We can safely make this assumption, as the algorithm for
detecting induced topological minors that uses our algorithm for INDUCED DisJOINT PATHS as a subroutine does not require
two terminal pairs to coincide, as we shall see. It may happen though that in this application two terminals of the same
pair are the same. However, we will show that we can easily work around this, and to avoid any further technicalities in
our algorithm for INDUCED DIsJOINT PATHS we assume from now on that this is not the case either. Both assumptions are
summarized in the following condition.

Condition i) For all i # j, {s;, t;} # {sj, t;}, and for all i, s; # ¢;.

After imposing Condition i) on S, we continue with the following preprocessing steps. We first apply Step 1, then Step 2,
and then Step 3, where we perform each step as long as possible. In the below, M(u) denotes the set of all terminals that
form a terminal pair with vertex u. Recall also that T = Uf:l{s,-, t;} denotes the set of terminals.

Step 1. For all u,v € T with uv € E, remove all common neighbours of u and v that are not terminals from G, that is,
remove all vertices of N(u) "N(v) N (V\T).

Step 2. Let U denote the set of all terminal vertices u such that u only represents terminals whose partners are in N(u);
thatis, U={u e T | M(u) € N(u)}. Remove U and all non-terminal vertices of N(U) from G. Remove also all terminal pairs
(sj, tj) from S for which s; e U or tj e U.

Step 3. For all (s, t;) with s;t; € E, remove (sj, t;) from S.

Observe that Steps 1-3 preserve AT-freeness. Steps 1-3 are identical to Rules 1-3 in [16] for claw-free graphs. As such, the
correctness of these three steps, as stated in our next lemma, can be proved by using exactly the same arguments as in [16].

Lemma 2. Applying Steps 1-3 takes polynomial time and results in a new instance (G, S"), where G’ is an induced (and hence AT-
free) subgraph of G and S’ C S, such that (G’, S") is a yes-instance of INDUCED DisJoINT PATHS if and only if (G, S) is a yes-instance of
INDUCED DISJOINT PATHS.

174

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

V13

S4 V1o V11 V12t

V14

tl t? t
L3
G
S
s S 3
U1 ' U3 Vs ? U13
) 58 6111 U7 Vg U1 Vg Vg 511 %& S4 V10 V11 V12t
O
U2 Vg Vg V14
tl t2 tg
G1 Gs G3 Gy

Fig. 2. A graph G with four terminal pairs and the corresponding graphs Gi, ..., G4.

S1 S9 S3
S4 t4
tl tQ t3
H, Hy Hj
H

Fig. 3. The graph H that is constructed from the graph G shown in Fig. 2.

For convenience we denote the obtained instance by (G, S) as well, and we also assume that |S| =k.

For i =1,...,k, let G; denote the subgraph obtained from G after removing all terminal vertices not equal to s; or
t;, together with all of their neighbours not equal to s; or t; (should s; or t; be adjacent to a terminal from some other
pair), that is, G; is the subgraph of G induced by (V \ (UveT\[s,-,t,-}N[V])) U {si, ti} (see Fig. 2). The following lemma is
straightforward to see.

Lemma 3. If s; and t; are in different connected components of G; for some 1 <i <k, then (G, S) is a no-instance of INDUCED DISJOINT
PATHS.

Hence, we can add the following preprocessing step, which we can perform in polynomial time.
Step 4. If some s; and t; are in two different connected components of G;, then return no.
Summarizing, applying Steps 1-4 takes polynomial time and results in the following additional conditions for our instance:
Condition ii) The terminals of each pair (s;, t;) are not adjacent.

Condition iii) The terminals of each pair (sj, t;) are in the same connected component of G;.
3.2. Phase 2: obtaining structural results

Let G be an AT-free graph with a set S = {(s1,t1),..., (Sk, ty)} of terminal pairs satisfying Conditions i)-iii). In G[T],
there is no edge between any two terminals of the same pair due to Condition ii). We extend G[T] by joining the terminals
of each pair (sj, t;) by a path P; of length 2, that is, for each pair (sj, t;) we introduce a new vertex that we make adjacent
only to s; and t;. We denote the resulting graph by H; see Fig. 3 for an example. Note that G[T] is an induced subgraph of
H. The inner vertex of each P; is called a path-vertex, and the two edges of each P; are called path-edges.

We now prove the following lemma; note that in this lemma H’ = H is possible.

Lemma4. The pair (G, S) is a yes-instance of INDUCED DisJoINT PATHS if and only if G contains an induced subgraph that is isomorphic
to H', where H' is obtained from H after subdividing a number of path-edges one or more times, such that the isomorphism maps every
terminal of G to the same terminal of H.

Proof. Suppose that (G, S) is a yes-instance of INDUCED DisjoINT PATHS and let Pq,..., Py be a solution to (G, S). Observe
that the only terminal vertices to which any internal vertices of a path P; are adjacent are the terminal vertices that

175

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

represent s; and t;. Hence, the union of G[T] and the paths P, ..., P, forms a graph H’ that satisfies the conditions of the
lemma. The converse is readily seen. O

Lemma 4 implies that the pair (G, S) is a yes-instance of INDUCED DisjoINT PATHs if and only if G contains H as an
induced topological minor anchored in the terminals of T. Moreover, Lemma 4 immediately implies the next lemma.

Lemma 5. If (G, S) is a yes-instance of INDUCED DisJOINT PATHS then H is AT-free.

Lemma 5 yields the following step, which can be straightforwardly implemented in polynomial time by checking for the
existence of an asteroidal triple.

Step 5. If H is not an AT-free graph, then return no.

From now on, we assume that H is AT-free. We deduce the following two lemmas.
Lemma 6. The graph G[T] is triangle-free.

Proof. In order to obtain a contradiction, assume that G[T] contains a triangle. Then H[T] also contains this triangle. By
Condition ii), each vertex of the triangle is contained in at least one terminal pair that contains a vertex outside the triangle.
Then let (s, t;), (S}, t}), (Sr, tr) be three terminal pairs for which, without loss of generality, s;, s, s, induce the triangle. By
Condition ii), s;, s, sy are not adjacent to t;, t;, t, respectively. In H, let x;, x;, x, be the path-vertices of the paths P;, P, Py,
respectively. Recall that path-vertices have degree 2. Then x;, xj, X, form an asteroidal triple in H, a contradiction to the
AT-freeness of H. O

Lemma 7. Every vertex u € T is included in at most five terminal pairs.

Proof. In order to obtain a contradiction, assume that T contains a vertex u that is included in six terminal pairs
(Siy» tiy)s - -+ (Sig, tig). We assume without loss of generality that u =s;; = ... =s;,. Among the vertices t;,, ..., tj, it fol-
lows from the Ramsey number R(3,3) = 6 that we have either three pairwise adjacent or three pairwise non-adjacent
vertices. In the first case, G[T] contains a triangle. However, this is not possible due to Lemma 6. In the second case,
let t;,, ti,, tj; denote the three pairwise non-adjacent vertices. Then we find that t; ,t;,, t;; form an asteroidal triple in H,
because tj,, tj,, tj;, are joined to u by three mutually induced paths P;,, Pj,, Pj;, a contradiction to the AT-freeness of H. O

Let Hq,..., H; be the connected components of H. We observe that the terminals of each pair are in the same connected
component of H due to the paths P;. Hence, we can define the set S; C S of terminal pairs in a connected component Hj.
We write T; = Vp, NT to denote the set of terminals in H;.

Lemma 8. Each H; has a dominating pair {x;, y;} with x;, y; € T;. Moreover, such a dominating pair can be found in linear time.

Proof. Each connected component H; is a connected AT-free graph. Hence, H; has a dominating pair of vertices due to
Lemma 1. Moreover, by the same lemma, there exists a linear-time algorithm that finds such a dominating pair {u, v}. If
both u and v are in T;, then we are done. Suppose that this is not the case, say u ¢ T;. Then u must be the path-vertex of
some (sj,tj)-path P; in H;.

We claim that {s;, v} or else {t;, v} is a dominating pair. This can be seen as follows. If {s;, v} is not a dominating pair,
then there is an (sj, v)-path Q that does not dominate H;. This path Q1 does not use vertex u; otherwise it would contain
a subpath from u to v, which dominates H; because {u, v} is a dominating pair. Hence, we can extend Q1 by u to obtain
the path uQ;. This path is an (u, v)-path. Consequently, uQ dominates H;. As u is only adjacent to s; and ¢, and Q1 does
not dominate H;, we find that Q; does not dominate t;. In other words, Q1 avoids t; and the neighbourhood of ¢;. By the
same arguments, there exists a (tj, v)-path Q; that avoids s; and the neighbourhood of s;. Condition ii) tells us that s; and
tj are not adjacent. As v € Vo, U Vq,, we find that v is not adjacent to s;,t;. Moreover, u is only adjacent to s; and t;.
Hence, sj,t;, v form an asteroidal triple, a contradiction to the AT-freeness of H;.

From the above, it is clear that we can decide in linear time if {s;, v} or {tj, v} is a dominating pair. We only have to
check whether there exists an (s;, v)-path that avoids t; and the neighbourhood of ¢;. If not, then {s;, v} is a dominating
pair, and otherwise {t;, v} is a dominating pair. If v ¢ T;, then v is a path-vertex, and we can repeat the same arguments as
we used for u to replace v by one of its neighbours in T;. This completes the proof of Lemma 8. O

For the dominating pairs {x;, yij} found by Lemma 8, we compute in linear time a shortest (x;, yj)-path D; in H; for
i=1,...,r. The next two lemmas show a number of properties of these paths D;.

Lemma 9. Each D; contains at least one of the terminals of every pair in S;.

176

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

Proof. The path D; dominates all vertices of H;. In particular, it dominates the path-vertex of the (sj,t;)-path for each
(sj,tj) € Si. This vertex is only adjacent to s; and t;. Hence, sj € Vp, or tj e Vp,. O

Lemma 10. Each vertex of D; is adjacent to at most five path-vertices of H; that are not on D; and to at most two terminals that are
noton D;.

Proof. Let u be a vertex of D;. If u is not a terminal, then u is a path-vertex, and consequently, has degree 2. Hence, we
may assume that u is a terminal. Lemma 7 tells us that u can represent at most five terminals. This implies that u is
adjacent to at most five path-vertices not on Dj.

We now show that u is adjacent to at most two terminals not on D;. To obtain a contradiction, suppose that u is
adjacent to three terminals. Since at least one terminal of each terminal pair belongs to D; due to Lemma 9, these three
terminals are from three different pairs. Hence we may without loss of generality denote them by s;, , s;,, si;. Let v, w, z be
the path-vertices of the (s;,,ti,)-, (si,. ti,)- and (s, tj;)-paths P;,, P;,, P, respectively. Note that u ¢ {t;,, t;,, ti;}, because
H; contains no edge between two terminals of the same pair by Condition (ii). This means that no vertex of {v,w,z} is
adjacent to u. Hence v, w, z form an asteroidal triple, a contradiction to the AT-freeness of H;. O

Recalling Lemma 4 and using Lemma 9, we obtain the following.

Lemma 11. Let H} be an AT-free graph obtained from H; by subdividing a number of path-edges one or more times. Let P} and D} be
the resulting paths obtained from the paths P j and D;, respectively. Then,

a) the length of each P; that is not a subpath of D} is at most 3 (implying that every internal vertex of P; is adjacent to at least one
of sj, tj);
b) D; dominates all but at most two vertices of H.

Proof. First, we prove a). In order to obtain a contradiction, assume that P} has length at least 4. Let u be an internal vertex
of P;. that is at distance at least 2 from s; and t;. By Lemma 9, at least one of the vertices sj,t; is a vertex of D;. Assume
that s; € Vp;.- Then either t; € Vp; or t; is adjacent to a vertex z € Vp;.

First suppose that t; € VD§. Let Q be an (sj, tj)-subpath of Dj. Then Q has length at least 2, because Condition ii) tells
us that s; and ¢; are not adjacent in G, and consequently, not in H’. Since u has no neighbours outside P;, we find that Q
avoids the neighbourhood of u. However, then u, s, t; form an asteroidal triple, a contradiction to the AT-freeness of H;.

Now suppose that t; is adjacent to a vertex z € VD;. We choose z in such a way that t; is not adjacent to any vertex on
the subpath Q of D} from s; to z. The path Qt; has length at least 2, because s; and t; are not adjacent in H. Moreover,
Qt; avoids the neighbourhood of u. Hence, u, sj, tj form an asteroidal triple, a contradiction to the AT-freeness of H.

To prove b), assume that le does not dominate three vertices u1, uz, u3 € Vy,. Since we only subdivide path-edges and
D; dominates each terminal, we find that u1, uy, u3 are internal vertices of some (s, tj)-paths P;.. By Lemma 9, at least
one of the vertices sj,t; is a vertex of D; for each such P}, that is, D; dominates at least one internal vertex of P}. Then
by a), each P} can have at most one internal vertex not dominated by D;. Hence, u1, uy, us are internal vertices of distinct
paths P/.l, P}Z, P}3, respectively. We assume without loss of generality that s, ,sj,, s, € VD;. Then the path composed of the
(u1, sj,)-subpath of Pjﬁ' the (sj,,sj,)-subpath of D}, and the (sj,, uz)-subpath of P;z is a (uq,uz)-path in Hj that avoids the
neighbourhood of us. By the same arguments, Hlf has a (u1, us)-path that avoids the neighbourhood of u; and a (uz, us)-

path that avoids the neighbourhood of ui. We conclude that uq, uy, us form an asteroidal triple in Hlf, a contradiction to
the AT-freeness of H;. This completes the proof of Lemma 11. O

Recall that Condition iii) tells us that the terminals s; and ¢; are in the same connected component of the graph G; for
i=1,...,k. Two terminal pairs (s;,t;) and (sj,t;) are interfering if there is an induced (s;, t;)-path Q; in G; and an induced
(sj,tj)-path Q; in Gj, respectively, such that Q; and Q; are not mutually induced; see Fig. 4 for an example. We say that
there is interference between two sets of terminal pairs S; and S; if a terminal pair from S; and a terminal pair from S; are
interfering.

Lemma 12. Let (s, t;) and (sj,t;) be interfering terminal pairs from two different connected components of H. Let Q; and Q j be
induced (s;, tj)- and (sj, t;)-paths in G; and G, respectively, such that Q; and Q ; are not mutually induced. Then Q; and Q ; are
vertex-disjoint. Moreover, for any edge uv € Eq withu e Vo, and v € Va; both u € N(s;) UN(t;) and v € N(s;) U N(t;) hold.

Proof. To obtain a contradiction, we first assume that Q; and Q; have a common vertex w. As (s;,t;) and (sj,t;) are
terminal pairs from two different connected components of H, the four vertices s;, tj, sj, t; are pairwise distinct. As Q; is
a path in G;, we find that Q; avoids N[s;] and N[t;]. Symmetrically, Q; avoids N[s;] and N[t;]. This means that w is not

177

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

1 2 3
o—0o o
1

Fig. 4. The graph I that is constructed from the graph G shown in Fig. 2. The terminal pairs (s1,t1) and (s2,tz) of G are interfering. Note that there is no
interference between (s, t) and (s3, t3).

adjacent to any of the vertices s;, t;, s, t;. However, then s;, t;, s; form an asteroidal triple, a contradiction to the AT-freeness
of H.

Now assume that there is an edge uv € Eg such that ue Vq,,v e Vq; and u ¢ N(s;) U N(t;). Recall that Q; avoids NI[sj]
and N[tj], and that Q; avoids N[s;] and N[t;]. Then we obtain a contradiction, because s;, t;,s; again form an asteroidal
triple. O

Lemma 12 implies that any interference between two terminal pairs (s, tj) and (s}, tj) from different connected com-
ponents of H stems from an edge whose endpoints are in N(s;) UN(t;) and N(sj) U N(t;), respectively. We now obtain the
following lemma.

Lemma 13. It is possible to check in polynomial time whether two terminal pairs (s;, t;) and (sj, t;) from different connected compo-
nents of H are interfering.

Proof. By Lemma 12, we only need to check if there exist four vertices uy € N(s;), uz € N(t;), v1 € N(sj), v2 € N(t;) such
that

- there exists a path Q; in G; from uq to uy that does not contain s; or t;;
- there exists a path Q; in G; from v to v, that does not contain s; or t;; and
- there exists an edge uv in G with u € {uq,uy} and v € {vq, va}.

For each 4-tuple (uq, uz, v1, v2), checking the above three conditions can be done in polynomial time. O

Lemma 13 enables us to construct in polynomial time an auxiliary graph I with vertices 1,...,r and edges ij if and only
if there is interference between S; and S;; see Fig. 4 for an example. This leads to the following lemma.

Lemma 14. The graph I is a disjoint union of paths.

Proof. First, we prove that d;(i) <2 for all 1 <i <r. To obtain a contradiction, assume that d;(i) > 3. Let jq, jo, j3 €
{1,...,r} be three vertices of I adjacent to i. For any pair of terminals (sp,tp) from S;US;, US;, USj,, there is an (sp, tp)-
path Rp in G, by Condition iii). Moreover, for each I € {1, 2, 3}, there are interfering terminal pairs (s;,t;) and (sj, t;) in S;
and S, respectively. Hence, by definition, there exist an (s, tj)-path Q; in G; and an (s, tj)-path Q}, in G}, respectively,
such that Q; and Qj, are not mutually induced.

By definition of the graphs G, the paths Rp, Q;, and Qj, each avoid the closed neighbourhood of terminal vertices that
are not their endpoints. In particular, for any pair Sq, S, among S;, Sj,, Sj,, and Sj,, the paths among R, Q;, and Q
whose endpoints are in T, avoid the closed neighbourhood of all terminal vertices in Ty, because H;, H;,, Hj,, and Hj, are
connected components of H.

Let R be the subgraph of G induced by the vertices of all the paths R, Q;, and Q},. Let uy, up, u3 be arbitrary terminal
vertices from T, Tj,, T}, respectively, and let v be a terminal from T;. For each I € {1, 2, 3}, there is a (v, uj)-path in R that
avoids the neighbourhoods of terminals u, for p € {1,2,3}, p # 1. In particular, recalling the observations of the previous
paragraph:

- the connectedness of H; implies that using the edges of the paths R, there is a path in R from v to s;, that avoids the
closed neighbourhood of any terminal vertex in Tj,, Tj,, T},

- the interference of Q; and Qj implies there is a path in R from s; to s; that avoids the closed neighbourhood of any
terminal vertex in T;, for I' #1;

- the connectedness of Hj, implies that using the edges of the paths R, there is a path in R from sj, to u; that avoids
the closed neighbourhood of any terminal vertex in Tj, for I'#1 and in T;.

Hence, u1, uy, us form an asteroidal triple, a contradiction.

178

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

U1 V13

Ug U11 S4 V1o V11 Vi2ty

v2 Vs vg

tl tz v

Fig. 5. The graphs G} and G3 that are constructed from the graph G shown in Fig. 2.

It remains to prove that I has no cycles. In order to obtain a contradiction, assume that igit ...ig with ig =14 is a cycle
in I. For any pair of terminals (sp, tp) from S;; U...U Si,» there is an (sp, tp)-path Ry in Gp by Condition iii). Moreover, for
eachle(1,...,q}, there are interfering terminal pairs (s;;, t;;) and (sj,,t},) in S;_, and S;, respectively. Hence, by definition,
there exists an (s, t;;)-path Qy, in G;; and an (s;,, tj,)-path Qy, in Gy, respectively, such that Q;, and Qy, are not mutually
induced.

Let R be the subgraph of G induced by the vertices of all the paths Rp, Q;, and Qy,. Let uy, ..., uq be arbitrary terminal
vertices from Hj,, ..., Hj,, respectively. Observe that for each j e {1,...,q}, there is a (uj_1, uj)-path in R that avoids the
neighbourhood of u; for each € {1,...,q}, [# j— 1, j. The existence of such a path follows along the same lines as before.
Hence, u1, uy, us form an asteroidal triple, a contradiction. O

Let Iq,...,I; be the connected components of I, and let Ji,..., J; be their vertex sets, respectively. For h=1,...,1,
we define X, = {(sj,tj) | (sj,tj) € Upe]h Sp}, and we let G; be the graph obtained from G by removing all vertices of the
closed neighbourhoods of all the terminals that are not included in Xj; see Fig. 5 for an example. Lemma 15 shows how G
is related to the graphs Gj.

Lemma 15. The instance (G, S) is a yes-instance of INDUCED DISJOINT PATHS if and only if (G}, Xj) is a yes-instance of INDUCED
DISJOINT PATHS forall1 <h <.

Proof. Clearly, a solution for (G, S) induces a solution for the instances (G}, Xp). Suppose that we have a solution for
each (GF, Xp). Then two paths from two different solutions are mutually induced, because no two terminal pairs from two
different sets X and Xj are interfering. Hence, the union of these solutions for the instances (G}, X;) forms a solution for
(G,S). O

Lemma 15 gives us the following step.

Step 6. If | is disconnected, then solve INDUCED DisJOINT PATHS for each (G}, Xp,). Return yes if the return value is yes for
all of these instances and return no otherwise.

By Step 6, we may assume that I is connected. Then, by Lemma 14, we may assume that [is a path. This leads to the
following new condition:

Condition iv) There is interference between two sets S; and S; for some 1<i < j<rif and only if j=i+1.

We are now ready to be a bit more precise, which is necessary for our algorithm. For i =1,...,r—1, let W; be the set of all
vertices u € Vg, such that there is an edge uv € E¢ with the following property: there are interfering terminal pairs (s, tp)
and (sq,tq) in S; and S;;1, respectively, such that G, has an induced (sp, tp)-path containing u and Gq has an induced
(sq, tg)-path containing v. Using this definition we can state the next lemma.

Lemma16.Fori=1,...,r — 1, thereis a set Z; C T; of at most two terminals such that W; C N(Z;).

Proof. By Lemma 12, each vertex from W; is in the neighbourhood of some terminal vertex in T;. By Lemma 6, G[T] is
triangle free. Hence, to obtain a contradiction, it is sufficient to suppose that there are two non-adjacent terminal vertices
z1,23 in T; and vertices u1 € (N(z1) \ N(z2)) N Wj, up € (N(z2) \ N(z1)) N W;. For any pair of terminals (s;, t;) from S; or
Sit1, there is an (sj,t;)-path R; in G; by Condition iii). Moreover, by the definition of W;, there are vertices vi and v;
adjacent to uq and uj, respectively, such that there are two terminal pairs (sp,tp) and (sq, tq) in S;y1 and there are (sp, tp)
and (sq, tg)-paths Q, and Qq in G, and G4 that pass through v; and vy, respectively.

Consider the subgraph R of G induced by all the vertices of the paths Rj, Qp, Qq, and the vertices u1, up. Let w be an
arbitrary terminal in S;4. It remains to observe that:

- the connectedness of H; implies that using the paths R; there is a path in R from z; to z that avoids the closed
neighbourhood of any terminal vertex in T;y1, and in particular, of w;

179

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

- the fact that z; ¢ Ti11 and uy ¢ N(z2) implies that using the vertices uq, v1, and the path Q, there is a path in R from
Z1 to sp that avoids the closed neighbourhood of z; and of any terminal in Ti1 \ {Sp};

- similarly, there is a path in R from z, to sq that avoids the closed neighbourhood of z; and of any terminal in T;y1\ {sq};

- the connectedness of H;q implies that using the paths R; there is a path in R from s, to w and from sq to w that
avoids the closed neighbourhood of any terminal vertex in T;, and in particular, of z; and z;.

Hence, z1, z;, w form an asteroidal triple, a contradiction. O
We obtain the following result on the sets Z1, ..., Zr_1 defined in Lemma 16.
Lemma 17. The sets Z1, ..., Zr—1 can be found in polynomial time.

Proof. Let 1 <i<r — 1. By Lemma 12 we can compute the set W; in polynomial time (see also the proof of Lemma 13).
By Lemma 16, it suffices to determine as Z; a set of at most two of terminals in T; that are adjacent to every vertex of Wj.
This can be done in polynomial time as well. O

3.3. Phase 3: dynamic programming

We are now ready to give a dynamic-programming algorithm for INDUCED DisJoINT PATHS. For simplicity, we solve the
decision problem here, that is, we only check for the existence of paths, but the algorithm can be modified to get the paths
themselves (if they exist).

Our algorithm is based on the information obtained from Phases 1 and 2, which leads to the following intuition. By
Condition iv), there is only interference between sets S; and S;j;1 for 1 <i <r. By Lemma 12, this interference is restricted
to the neighbourhoods of the terminals of the pairs in S; and S;;1. Even stronger, by the definition of W; and Lemma 16,
the interference caused by terminals in T; is restricted to the neighbourhoods of the terminal vertices in Z;, where |Z;| < 2.
By Lemma 7, each terminal vertex represents at most five terminals. Hence, there are at most ten vertices in N(Z;) that
cause interference between S; and S;;i. Unfortunately, we do not know these ten vertices. However, since |Z;| <2 and Z;
can be found in polynomial time (by Lemma 17), we can enumerate all possibilities for these ten vertices in polynomial
time. In fact, it suffices to enumerate only the set Y of vertices among the ten vertices that are actually used by the paths
in a solution.

This intuition leads to the following dynamic programming algorithm: for each i € {1,...,r} and Y C N(Z;) of size at
most 10, we define a routine that solves INDUCED DisjoINT PATHs for the graph Fi = G[V \ (Uje(it1...r) Uuer; Nlul)] with

the set of terminal pairs S} = U2':1 S;j under the following additional condition: the set of non-terminal vertices from
N(Z;) used by the paths in a solution is a subset of Y. Call this routine Sol(i, Y). We execute this routine sequentially for

i=1,...,r, and we are clearly interested in deciding whether Sol(r, Y) returns yes for some Y C N(Z;). The crux then is
to show what the return value for Sol(i, Y) for a particular value of i should be, using the return values for Sol(i —1,).
To this end, we construct the subroutine Component(i, X,Y): for each i € {1,...,r} and for any two sets X C

N(Zi—1), Y € N(Z;) of size at most 10 each, the subroutine solves INDUCED DisJOINT PATHsS for the graph F; = G[V \
(Ujell....r},j;éi UueTj N[u])] with set of terminal pairs S; under the following two additional conditions:

a) the paths from a solution are not adjacent to the vertices of X, and
b) the set of non-terminal vertices from N(Z;) used by the paths in a solution is a subset of Y.

Then, to determine the return value of Sol(i, Y), we consider all X € N(Z;_1) for which Sol(i — 1, X) returns yes and let
Sol(i, Y) return yes if Component(i, X, Y) returns yes. Otherwise, we let Sol(i, Y) return no.

The correctness of the above algorithm is clear from the preceding discussion, the description of the dynamic program
routine Sol, and the description of the subroutine Component. Moreover, the algorithm will run in polynomial time if the
desired subroutine Component can be constructed to run in polynomial time. We claim that Component can indeed be
so constructed, and the remainder of this section is dedicated to proving this claim.

3.3.1. Constructing the component subroutine

We are looking for an induced subgraph H; in F; obtained by subdivisions Pl/ of the paths P; of H; (under some
additional constraints). We call this a solution. Recall that D; is a dominating path of H; that joins terminals x; and y;,
which means that D; is a shortest path between x; and y; such that each vertex of H; lies on D; or has a neighbour on Dj.
We construct D; by a breadth-first search that puts path vertices in its queue first (this is only done to improve the running
time and does not influence correctness).

In order to find Hlf. we will attempt to “trace” the (x;, y;)-path D; in F; that is in the solution Hlf and is a subdivision of
D;. By Lemma 10, we are interested in only a bounded number of vertices adjacent to the vertices of D/, and by Lemma 11,
the paths outside D} have length at most 3 and D} dominates almost all vertices of these paths. Hence, vertices of H; are
“close” to D} and their number is “small”. The crux, therefore, is to find D}. To this end, we devise a dynamic-programming

180

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

algorithm that maintains a small part of D} and of the solution that we are building. We show that this is indeed possible
by relying on the AT-freeness of F;.

To formalize the preceding intuition, we require some definitions. Let u1, ..., u, be the terminal vertices on D; enumer-
ated in path order, that is, x; =u; and y; =up. Recall that P; is an (s;, t;)-path in H; for (s, t;) € S;; each P; has a single
internal vertex, its path vertex. For j e {1,..., p}, let U; be the set of terminal vertices in (Ng(uj)\ {u1,...,up}) U{u;}. Ob-

serve that Ule U; =T;, because D; is a dominating path of H; and if D; contains a path vertex (i.e. a non-terminal vertex
of Hj), then D; also contains both its neighbours, the vertices of the corresponding terminal pair (note that the ends of D;
are terminal vertices). From this observation and Condition ii), for any pair (s;,t;) € S;, we have that s;e Uj and t; e Uy
for some j, j’e€{1,...,p} and j# j'. To simplify our arguments, we assume without loss of generality that if s; € U; and
tie Uy, then j < j'. For a set R" of vertices, we let U(R') = UjeR, Uj, where the union is over all terminals in both R’ and
D;. For a vertex z of D;, we say that a terminal u € T; is behind z if u € U; for u; in the (x;, z)-subpath of D;; otherwise we
say that a terminal u € T; is ahead of z. By our earlier observation, the notions of behind and ahead of z induce a partition
of Tj.

Now, as mentioned before, we would like to “trace” an (x;, y;)-path D; in F; that is a subdivision of D;. We will argue
that, in the dynamic program, it suffices to maintain only the last five vertices of the path D] under construction. To this
end, we require the following structural property.

Lemma 18. Let C = {x1, ..., x;} be the ordered set of vertices of a cycle in an AT-free graph for some t > 3. Then there exist integers
i,jwithl1<i<t 2<j<4andi+ j<tsuchthatx; and x; ; are adjacent.

Proof. Suppose C has a chord. Then there exist indices «, 8 with 1 <a <a +1 < 8 <t such that x4xg is an edge. Choose
the chord such that 8 — « is smallest. If 8 — o <4, then the lemma holds. Hence, we may assume otherwise. Note that for
any integers y,8 with o« <y <y +1 <8 < g it holds that either v, vs is not an edge (this would contradict the choice
of a,B) or y =« and § = B. Hence, the vertices of vy,...,vg induce a cycle in the graph, which has length at least 6
since B — o > 4. Such a chordless cycle trivially has an asteroidal triple for the graph (for example, take vy, Vg+2, Vg+4), @
contradiction.

It follows that the cycle has no chord. If |C| <5, then the lemma follows immediately. Otherwise, the chordless cycle
trivially contains an asteroidal triple for the graph (for example, take v1, v3, vs5), a contradiction. O

We can now proceed with the description of the algorithm but first need a definition. Namely, a pair of paths Py, P} that
are subdivisions of Pq, Pp in G, and Gy, respectively, conflicts if P intersects P;J in a vertex v or there is an edge vw € E¢
such that v is an internal vertex of P; and w is an internal vertex of P;. In the former case, we call v an intersection conflict
vertex, or simply a conflict vertex. In the latter case, we call vw a conflict edge and both v and w conflict vertices.

Note that it would appear another potential conflict between paths P/, P,/J in Gq and Gp can occur, namely if there
is an edge between an endpoint v of (say) P; and an internal vertex w of P;. However, then w ¢ V¢, by definition (a
contradiction) or v € {sy. tp} (which is allowed). Hence, if we are able to find paths P; for all (s, t;) € S; such that Pj is an
induced path in G; and the paths do not conflict, then these paths form a mutually induced set of paths.

Intuitively, ensuring there are no conflicts would be relatively straightforward to guarantee for pairs whose path vertices
are not on Dj;, because by combining that they should have length at most 3 by Lemma 11 and an argument that we need
to consider few such pairs at any point in time, this limits the potential of conflict to polynomially many choices. However,
for the other terminal pairs, this is much more complicated, because their paths P can have arbitrary length.

We need two more definitions. Let O; C S; be the set of pairs (sq,tg) € S; for which the path vertex of P, is on D;. A
walk W in G is an ordered set {v1,..., vjw|} of vertices of G such that v;v;;; € Eg forie{l,...,|W|—1}.

Our algorithm is built on the intuition that we only ensure that Dj and the paths P| with | € O; are walks. In AT-free
graphs, however, Lemma 18 will help prove that by considering the last five vertices of D}, we avoid all conflicts.

Definition. A realization (Hj, D}, {P[}) for (H;, D;, {P;}) consists of:

- an induced subgraph H{ of F; such that no non-terminal vertices in H; are adjacent to X and all non-terminal vertices
in VH; N N(Z;) are in Y;

- awalk Dj in Hj that is a subdivision of D;; in particular, it visits u1,...,u} in order (without duplication);

for each (s;,t;) € S; \ Oj, there is an induced path Pl/ in H{ and in G; from s to t; of length 2 or 3;

for each (s, t)) € O;, there is a walk P in Hj and G; of length at least 2 from s; to t; and P is a subwalk of Dj.

A realization is an embedding if the set {Pl’} of paths is a set of mutually induced disjoint paths.

2 Note that the lemma does not use indices module t. Although the lemma is certainly true in that setting, this is not how we will use it.

181

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

Note that if (Hj, D}, {P|}) is an embedding for (H;, D;, {P1}), then the paths {P;} form a solution. Moreover, the conditions
on the paths imply that D} is an induced path of F;. Indeed, then the only possible edges between vertices of D} would be
between non-consecutive terminals on Dj. However, these edges are part of G and thus H; as well. As D} is a subdivision
of D; by the definition of a realization, this contradicts that D; is a shortest path in H;.

Observe that the preceding argument also implies that if D is not an induced path, then this is due to a conflicting pair
or because D,’. is not a subdivision of D;.

Clearly, our goal is to find an embedding, which is stronger than a realization. As mentioned, our algorithm aims to find
a realization. The crux is how to ensure that we end up with an embedding. The following lemma is crucial.
Lemma 19. Suppose (H}, D}, {P}}) is a realization for (H;, Dy, {P}) in an AT-free graph, but not an embedding. Then there is a subwalk
R’ of D} with |R’| <5 such that:

- R’ is not an induced path, or
- U(R’) contains at least one of {sq, tq} and at least one of {sp, tp} for some conflict pair P}, Pl/); moreover, if (Sq,ts) € O; (or
(Sv. ty) € O;), then R’ contains a conflict vertex of Py (or Py).

Proof. We start with the following claims.
(C1) D; is a path, or a subwalk R’ as in the lemma statement exists.

Suppose that Dj is not a path. Let x be any vertex on the walk Dj such that the distance between two occurrences of x
on D; is minimum. Let x = xq, ..., X; = x be the subwalk of D; between those two occurrences; that is, x ¢ {x2, ..., x—1},
X2,...,X—1 are distinct, and t is minimum over all choices of x. (Note that any x; might still occur multiple times on
Dj outside of the subwalk.) It follows that the subwalk forms a cycle. Then by Lemma 18, there exist integers i, j with
1<i<t-—1and 2 < j<4such that x;x;;; is an edge. Then let R’ = {x;, ..., Xj;j}. This subwalk of D; is not an induced
path and has |R’| <5.

(C2) D; is an induced path, or a subwalk R’ as in the lemma statement exists.

By (C1), we may assume that Dj is a path. Let x, y be two non-consecutive vertices of D; such that xy is an edge. Consider
the cycle x=x1,...,x =y formed by the edge xy and the part of the path D} between x and y. Then by Lemma 18, there
exist integers i, j with 1 <i<t—1 and 2 < j <4 such that x;x;;; is an edge. Then let R" = {x;, ..., Xi}j}. This subwalk of
Dj is not an induced path and has |R’| <5.

(C3) All paths in {P;} are induced paths, or a subwalk R" as in the lemma statement exists.

Note that a path P] with (s, t;) € S;\ O; is an induced path by the definition of a realization. Since a path P| with (s;, t;) € O;
is a subwalk of D}, the claim now follows from (C2).

By the preceding claims, we may assume that Dj is an induced path and that all paths in {P;} are induced paths. Hence,
what is preventing the realization from being an embedding are conflicts. We now consider any conflicting pair and show
that a subwalk R’ as in the lemma statement exists.

Suppose that P} and P,’J with (sg, ta), (Sp, tp) € O; conflict. Since both are subwalks of D; by the definition of a realization,
this implies that D] is either not a path or not induced. Then we obtain a contradiction, because (C1) or (C2) implies that a
subwalk R’ as in the lemma statement exists. Hence, we may now assume that no such conflicting pairs exist.

Suppose that P, and Pl’, with (Sq,tq) € O; and (Sp, tp) € S; \ O; conflict and have an intersection conflict vertex v. Since
PI’J has length at most 3, v is a neighbour of s, or tp; say v € N(sp). Since P; is a path in Gg, but contains v, it follows that
Sq = Sp OF tg =Sp; say Sq = Sp. Then v € N(sy) and thus v and s, are consecutive vertices of P, and thus D;. Let R’ = {v, sq}.
Note that U(R’) contains s, and s, and R’ contains a conflict vertex of P,. Thus, a subwalk R" as in the lemma statement
exists. Hence, we may now assume that no such conflicting pair exists. Since Dj is a subdivision of D; by the definition of
a realization, this also implies that we may assume that no path Pl’, with (sp, tp) € S; \ O; has an internal vertex that is a
vertex of Dj.

Suppose that P, and Pl; with (Sq,tq) € O; and (sp, tp) € S; \ O; conflict and have a conflict edge vw but no intersection
conflict vertex. Assume v € P; and w € P;. By Lemma 9, without loss of generality s, € D; and thus s; € D]. Consider the
cycle Cyy that contains the edge vw and the vertex s; of the graph induced by P, and Dj. Note that such a cycle indeed
exists and is uniquely defined, and consists of the edge vw, a part of P[, and a part of Dj. Now choose a,b and vw such
that the length of Cyy is minimum.

If |Cyw| > 5, then by Lemma 18, Cyy has a chord xy. This chord cannot have both endpoints in D} or both in Pl;, or (C2)
or (C3) implies that a subwalk R’ as in the lemma statement exists. In particular, combined with the fact that P, and P
are paths in G, and Gp respectively by the definition of a realization, this implies that the set of endpoints of the chord is
disjoint from {sq, tq, Sp, tp}. Hence, the chord xy is a conflict edge of P, and Pl/J and the cycle Cyy, induced by it is shorter
than Cyy . This contradicts the choice of vw.

182

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

It follows that |Cyw| < 5. Let R’ be the subpath of Cy,, between s, and w. Note that this is a subpath of D;. Moreover,
[R’| <4, because |Cyw| <5 and v is not on R’. Since s, € R, s, € U(R’). Moreover, since P; is a subpath of D} and s is a
terminal on R’, it must be that s; or t, is in R/, and thus at least one of them is in U(R’). Finally, we note that w € R’ by
definition. Thus, a subwalk R’ as in the lemma statement exists. Hence, we may now assume that no such conflicting pair
exists.

Suppose that P} and Pl/) with (Sg,tg) € Si\ O; and (sp,tp) € S; \ O; conflict and have an intersection conflict vertex v.
Since Pj has length at most 3, v is a neighbour of s, or tp; say v € N(sp). Since Py is a path in Gg, but contains v, it follows
that sq = sp or tqg = sp; say Sq = Sp. If sq (and thus sp) is on Dj, then let R’ = {s;} and we obtain a subwalk R’ as in the
lemma statement. Otherwise, there is a terminal vertex u in D; such that s; € N(u). Note that u € Dj. Let R’ = {u}; then
sq € U(R’) and we obtain a subwalk R’ as in the lemma statement. Hence, we may now assume that no such conflicting
pair exists.

Suppose that P} and Pl; with (Sq,tq) € Si\ O; and (sp, tp) € S; \ O; conflict and have a conflict edge vw but no intersec-
tion conflict vertex. Assume v € P; and w € P. By Lemma 9, we may assume without loss of generality that s; € D; and
sp € D;. Hence, s, € D} and sy, € D}. Consider the cycle Cy,, formed by the edge vw, the subpath of P; between v and s,
the subpath of D} between s, and s, and the subpath of P; between s, and w. Choose a,b and vw such that the length of
Cyw is minimum.

If |Cyw| > 5, then by Lemma 18, Cyy has a chord xy. This chord cannot have both endpoints in Dl’., both in P}, or both
in P}, or (C2) or (C3) implies that a subwalk R as in the lemma statement exists. Moreover, by our earlier assumption, the
chord cannot have an endpoint in D} and an endpoint in one of P, or P;. Also, combined with the fact that P; and P
are paths in G, and Gp respectively by the definition of a realization, this implies that the set of endpoints of the chord is
disjoint from {sg, tq, Sp. tp}. Hence, the chord xy is a conflict edge of P} and Pl’) and the cycle Cyy, induced by it is shorter
than Cy,. This contradicts the choice of vw.

It follows that |Cyw| <5. Let R’ be the subpath of Cy, between s; and s,. Note that this is a subpath of D;. Moreover,
|R’| <3, because |Cyw| <5 and v and w are not on R’ (as v and w are internal vertices of pairs (sq,tq) € S; \ O; and
(Sp, tp) € Si \ O;). Since sq,sp € R, sq, sp € U(R’). Thus, a subwalk R’ as in the lemma statement exists. This completes our
proof. O

3.3.2. Dynamic program
We now define the table used in the subroutine Component (i, X, Y). Each entry uses the following fields:

- an integer £ > 0;

- an ordered set of vertices R’ C V, of at most five vertices of F; such that F;[R'] is a path;
- avertex ze Dj;

- a set of non-terminal vertices N’ C VE;

and stores whether there exists a subgraph H; of F; with the following properties:

- no non-terminal vertices in Hl{ are adjacent to X and all non-terminal vertices in VH{ N Nf,(Z;) arein Y;

- there is a walk D; in H; of length £ that is a subdivision of the subpath of D; from x; to z;

- for each (s, ;) € S; \ O; for which at least one terminal is behind z, there is an induced path P| in Hj and G; from s
to t; of length 2 or 3; if s; or t; is in U(R’), then all internal vertices of this path are in N’;

- for each (s, t;) € O; for which both terminals are behind z, there is a walk P in Hj and G; of length at least 2 from s
to t; and Py is a subwalk of Dj;

- if a single terminal of (s;, t;) € O; is behind z and z is a path vertex, there is a walk P in Hj and G; of length at least 2,
starting in s; but not ending in t;, and P; is a subwalk of Dj;

- the path F;[R’] and all paths for terminal pairs (s;,t;)) € S; \ O; for which s; or t; is in U(R’) are mutually induced
disjoint;

- R’ is equal to the last min{5, |Dj|} vertices of Dj;

-NC VHI{;

- there is a subpath R of Dj, ending in z, and a map from R’ to R such that any terminal vertex v on R’ is mapped to the
same vertex on R and any non-terminal vertex v on R’ is mapped to a path vertex on R. Moreover, the map respects
the order of the terminal and path vertices of R.

The last condition is called the mappability condition and is fully determined by R’ and z. We can always pick the subpath
R to have length at most the length of R’, and thus at most 5. The first five conditions effectively ensure that H; is a partial
embedding of all terminal pairs with a terminal vertex behind z.

We use last(R) respectively last(R’) to denote the last vertex of R respectively R’. We also use term(z) to be equal to
(s1, t;) € 0; for which either z is the path vertex or the vertex immediately following z on D; is the path vertex; otherwise,
term(z) is undefined.

183

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

Table construction. The table is initialized by having an entry for £ =0, z = x;, R’ = {x;}, and each set of non-terminal
vertices N’ for which F;[N’ U {x;}] satisfies the conditions of an entry. In particular, for each (s;,t;) € S; \ 0; for which
{si,t;} N U(R) # @, there is an induced path Pl/ in H; and G from s; to t; of length 2 or 3 for which all internal (non-
terminal) vertices are in N’, and all such paths are mutually induced disjoint. Also, no non-terminal vertices in N’ are
adjacent to X and all non-terminal vertices in N’ N Ng,(Z;) are in Y.

Suppose the table has been fully filled for £ — 1. Consider all vertices u € Vf; for which the table contains an entry for
(¢ —1,R’,z, N') such that u is adjacent to last(R’) and is not adjacent to any other vertices in R’. For each such u and each
entry (£ —1,R’, z, N") with these properties, we create (possibly) new entries for the table for £. We call these new entries
successor entries. We distinguish two cases.

Casel. u ¢T;.

Note that in this case, u will be an internal vertex of a path in the solution for a terminal pair in O;. Hence, it cannot
be adjacent to internal vertices of other paths and terminals except, possibly, the terminals joined by the path. We only
construct new entries if the following conditions hold:

- u is not adjacent to any vertex in N’;

u is not adjacent to X and if it is in Nf,(Z;), then it is in Y;
- z is a path vertex or the vertex on D; after z is a path vertex;
u is a vertex in G; for the terminal pair (s;, t;) = term(z).

If the above holds, then entries (¢, R}, z,, N;,) are constructed as follows. If z is a path vertex, then z, = z; otherwise, z, is
the vertex on D; after z.

If |R’| <4, then R}, is equal to R’ and u is added as the last vertex of the ordered set. Let R and R, be the subpaths of
D; that follow from the mappability condition on R" and z respectively R;, and z,. Note that R, D R and the set of terminal
vertices of R, and R are equal. Hence, we can set N, = N’ by the above conditions.

If |[R’| =5, let x be the first vertex of R’. Then R;, is equal to the last four vertices of R" and u is added as the last vertex
of the ordered set. Let R and R, be the subpaths of D; that follow from the mappability condition on R" and z respectively
R}, and z,. If x is a non-terminal vertex, then the sets of terminal vertices of R, and R are equal and we can set N, = N'.
Otherwise, obtain N;, from N’ by removing any vertices from N’ belonging to a path for a terminal (s;, t;) € S;\ O; for which
neither s; nor ¢; is in U(R},). In either case, Nj, is correctly set by the above conditions.

Case2. u eT;.

In this case, u can be adjacent to other terminals and u can be a terminal vertex for several terminal pairs. This makes the
construction of entries slightly more involved. We only construct new entries if u is the vertex on D; after z. In that case,
entries (¢, R}, z,, N;,) are constructed as follows. Set z;, = u.

If |R'| <4, then R}, is equal to R" and u is added as the last vertex of the ordered set. If |R’| =5, then R}, is equal to the
last four vertices of R’ and u is added as the last vertex of the ordered set. Let R and R, be the subpath of D; that follow
from the mappability condition on R" and z respectively R}, and z,.

Now construct N;, from N’. If |[R’| =5, let x be the first vertex of R’. If x is a terminal vertex, then remove any vertices
from N’ belonging to a path for a terminal (s}, tj) € S; \ O; for which neither s; nor ¢t is in U(R}).

We might also add several possible sets of paths to Nj. For each terminal (s, t;) € S; \ O; for which s; or ¢; is in
U(R;) \ U(R’) while neither are in U(R’), consider all possible induced paths in G; between s; and t; of which the internal
vertices are not adjacent to any vertex in R’, R, and N’. Consider all possible combinations of such paths for such terminal
pairs, and add the internal vertices of them to N;,. Note that this creates many different sets N}, each of which yields a new
table entry.

Decision and analysis. We finish the description of the subroutine Component(i, X, Y). It can be readily verified that the
entries constructed as above satisfy all stated conditions. Finally, if there is an entry in the table for (¢, R, y;, N') for any
£, R, N’, then return yes; otherwise, return no.

The crucial property of Component(i, X, Y) is given in the following lemma.

Lemma 20. For each i € {1, ..., k}, the subroutine Component(i, X, Y) tests in polynomial time whether (H;, D;, {P;}) has an
embedding.

Proof. Suppose that (H;, D;, {P;}) has an embedding (H}, D}, {P}}). Let v1,...,v; be vertices of D} in order from x; = vy
to y; = vj. By induction, it can be readily shown from the construction of the entries that there is a sequence of successor
entries (¢, {v¢_a,...,V¢}, 2, NZ) for 1 <¢ < j and appropriate zj, N;Z that traces along D; for which there is an entry for
G Avj—4,...,vj}, i, N}) for some appropriate N;. Hence, the subroutine will return yes.

Suppose that the subroutine returns yes. Let (¢, R}, z¢, N})) be a sequence of successor entries for 1 <£ < j, R, z;, N,
for which there is an entry for (j, R’;, yi, N;) for some R’;, N;.. Let D] be the walk induced by the sets Rj. Let H} be the
subgraph of F; induced by the terminal vertices T;, the walk D, and Ulgegj Nj. Let P| be the set of walks for terminal
pairs (s;, t;) implied by the entries (¢, R}, z¢, N}).

184

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

Note that the walks for terminal pairs (s;, ;) € O; are uniquely defined by Dj. Then by Lemma 19, claims (C1) and (C2),
and the fact that each set R} is an induced path by definition, it follows that D} is an induced path.

For terminal pairs (s, t;) € S;\ O;, a small argument is needed, because potentially there is no R}, for which s;, t; € U(R}),
meaning that a path for (s, t;) appears, disappears, and then re-appears and is potentially different. Let ¢; be smallest such
that {s;, tl}ﬂU(RjZ{). Without loss of generality, s; € U(R;z,)- Suppose that t; ¢ U(Rjzl)u . -UU(R/Z’H). Note there is an induced
path P| in G; between s; and t; stored in N21’~"’N;Z,+4 that is the same path for each entry. Moreover, by construction,

no vertices of this path are adjacent to vertices of RZ,’”-’R;Z,M' Let v be the first vertex on D} after last(R’ng) that is
adjacent to a vertex of Pj. Since ¢ is not in URY),..., U(R;zl+4) by definition and t; € U(D;) by definition, v indeed exists.
Then the subpath of Dj from s; to v plus the subpath of P; from s; to the neighbour of v on P induce a cycle in F;.
Since the subpath of D} from s; to v contains at least six vertices, the length of the cycle is at least 6, a contradiction to
the AT-freeness of F;. Hence, the sequence of entries uniquely defines a path P between s; and t; for each terminal pair
(s1,t) € Si\ O;.

Consider (Hj, D}, {P}}). By construction, we know that (H}, D}, {P|}) is a realization of (H;, D;, {P;}). For sake of contra-
diction, suppose that (H;, Dj, {P}}) is not an embedding of (H;, D;, {P}). Then by Lemma 19, there is a subwalk R’ of Dj
with |R’| <5 such that:

- R’ is not an induced path, or
- U(R’) contains at least one of {sg, ts} and at least one of {sp, t;} for some conflict pair P/, P,;; moreover, if (Sq,tg) € 0;
(or (sp.tp) € O;), then R’ contains a conflict vertex of Py (or Pj).

However, the first case is excluded by the fact that each set R}, is an induced path by definition. The second case is also
excluded. Let (sq, tq) € S; and (sp, tp) € S; be terminal pairs for which U(R},) contains at least one of {sq, t;} and at least one
of {sp, tp}.

- If (sq,tq) € O; and (s, tp) € O;, then their paths cannot conflict, because R, would contain conflict vertices of both
pairs, but R} is an induced path.

- If (sq,tq) € O; and (s, tp) € S; \ O;, then their paths cannot conflict, because R, would contain a conflict vertex and Plg
would be contained in Nj, and thus is not be adjacent or intersect with R, by construction.

- If (sq, tg) € Si\ O; and (sp, tp) € S;i \ Oj, then their paths cannot conflict by the construction of N/, because at least one
of {sq,tq} and at least one of {sp, tp} and thus both P, and P,; are contained in Nj.

It follows that (H;, D}, {P}}) is an embedding of (H;, Dy, {P(}).

To prove polynomial time complexity, it suffices to bound |N’|. We argue that if (H;, Di, {P;}) has an embedding
(H;, D, {P;}) and (£, R, ={v¢4,...,v¢},2¢, Ny) for 1< £ <|Dj| is the corresponding sequence of successor entries, then
IN;| is bounded by 47 for each ¢. Hence, we may limit the size of N’ to 47 during our dynamic program. By Lemma 11,
D; will dominate all but at most two vertices of H;. We call these the special vertices. As argued in Lemma 11, the special
vertices are internal vertices of some (s;, t;) paths P}.

We claim that all non-terminals in N}, that are not special are adjacent to a terminal in R’ or the two terminal vertices
preceding R’ on Dj or the two terminal vertices succeeding R’ on Dj. Call the latter two sets of terminal vertices K and L
respectively. We consider two cases.

In the first case, consider a terminal pair (s;,t;) for which t; € U(R}) \ D} (note that this implies that (s, ;) € S; \ 0;).
Then s; € D} by Lemma 9. By Lemma 11, P; has length at most 3. If P has length 2, then the single non-terminal vertex
on P; is adjacent to s;. If P| has length 3, then the vertex of P; that follows t; is not dominated by D, or the set of paths

is not mutually induced. Note that this vertex is special. Moreover, the other internal vertex of P;. is adjacent to s;. Now let

v € R} such that t; is a neighbour of v in H}. Suppose that s; precedes the vertices of K on D} (the case that s; succeeds
L on Dj is similar). Then, as Dj is a subdivision of D;, the subpath of D; between s; and v has length at least 3, whereas
the path in H; between s; and v via the path vertex of P; and t; has length at most 3. Then either we contradict that D; is
a shortest path or, since D; was constructed by a breadth-first search that puts path vertices in its queue first, the former
path would be preferred. Hence, s; € KU R}, U L, implying the claim in the first case.

In the second case, consider a terminal pair (s;, t;) for which t; € R, and (s, t;) € S; \ 0;. If 5; ¢ D, then following the
preceding argument, any internal vertices of P; that are not adjacent to t; are not on D}, and thus special. Otherwise, s; € D].
By Lemma 11, P has length at most 3, and thus its internal vertices are adjacent to s; or t;. Suppose that s; precedes the
vertices of K on Dj (the case that s; succeeds L on D} is similar). Again, the subpath of D; between s; and t; has length at
least 3, whereas the path in H; between s; and t; via the path vertex of P; has length at most 2, contradicting that D; is a
shortest path. Hence, s; € K U R, UL, implying the claim in the second case and overall.

Now following Lemma 10, any terminal vertex of D; is adjacent to at most five path-vertices of H;. This implies that
any terminal vertex of D/ is adjacent to at most five non-terminal vertices of H}. Following the claim, all non-terminals in
Nj, (except the special vertices) are adjacent to a terminal in K U R’ U L. By definition, there are at most 9 such vertices,
implying that |N}| <9-54 2 =47. It follows that the size of the table is polynomially bounded. It can then be readily seen
that the algorithm runs in polynomial time. O

185

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

The full algorithm, its correctness, and its running time now follows from Lemma 20 and the preceding discussion.
Theorem 1. The INDUCED DIisJOINT PATHS problem can be solved in polynomial time for AT-free graphs.

4. Induced topological minors

Recall that a graph G contains a graph H as an induced topological minor if G contains an induced subgraph isomor-
phic to a subdivision of H, that is, to a graph obtained from H by a number of edge subdivisions, and that the INDUCED
ToproLocIcAL MINOR problem is the corresponding decision problem. Recall also that a graph G contains a graph H on ver-
tices x1, ..., X, as an anchored induced topological minor if there exist k pre-specified vertices u1, ..., u in G, such that G
contains an induced subgraph H’ isomorphic to a subdivision of H and the isomorphism maps x; to u; fori=1,...,k. In
that case we say that H is anchored in Vy € V. The ANCHORED INDUCED TOPOLOGICAL MINOR is the corresponding decision
problem.

As mentioned in Section 1 one can use an algorithm that solves INDUCED DisJOINT PATHS in polynomial time for any fixed
integer k on some graph class G as a subroutine for obtaining an algorithm that solves H-INDUCED TOPOLOGICAL MINOR in
polynomial time for any fixed graph H on G. This is because ANCHORED INDUCED ToPOLOGICAL MINOR can be reduced to
INDUCED DisjoINT PATHS. This reduction is known, see for example Corollary 3 of the paper of Belmonte et al. [1], where G
is the class of chordal graphs. Due to Theorem 1, we can now also let G be the class of AT-free graphs. Below we provide a
short proof for this;. In particular we do this in order to show that the reduction works when H has isolated vertices. This
case is not yet captured as condition i) excludes the case when s; =t; for some 1 <i <k.

Corollary 1. The ANCHORED INDUCED TOPOLOGICAL MINOR problem can be solved in polynomial time for AT-free graphs.

Proof. Let G and H be graphs, such that H is anchored in Vy C V. If H has no isolated vertices, then we reduce ANCHORED
INDUCED TOPOLOGICAL MINOR to INDUCED DIsJOINT PATHS on G by constructing the pair of terminals (u, v) for each edge
uv e Eg.

Suppose now that H has at least one isolated vertex. Then for each isolated vertex u in H, we do the following. First,
we check whether u is adjacent in G to some other vertex of H. If so, then we stop and return no. Otherwise, we remove
u from H and remove u with its neighbourhood in G from the graph G. If we removed all vertices of H, then we return
yes. Otherwise, denote by G’ and H’ the graphs obtained from G and H, respectively, by these removals. Now for each
edge uv € Ey/, we construct the pair of terminals (u, v) in G’ and solve the obtained instance of INDUCED DISJOINT PATHS
onG'. O

If H is a fixed graph, that is, not part of the input, then INDUCED ToPOLOGICAL MINOR can be solved in polynomial time
by a standard reduction, as mentioned in Section 1. To make our paper self-contained, we give a short proof.

Corollary 2. The INDUCED ToPOLOGICAL MINOR problem can be solved in time n**9® for pairs (G, H) where G is an n-vertex AT-free
graph and H is a k-vertex graph.

Proof. Let G be an AT-free graph on n vertices, and let H be a graph with Vy = {x1, ..., X} for some k < n. First suppose
that H has no isolated vertices. We guess k vertices uq,...,u; in G, and for each choice we check whether G has an
anchored topological minor H’ with the terminals u1, ..., u, isomorphic to H, such that the isomorphism maps v; to u; for
ie{l1,...,k}. Then H is an induced topological minor of G if and only if H’ is an anchored topological minor of G for some
choice of the vertices uq, ..., uy. We check the latter statement by applying the n°® time algorithm of Corollary 1. As we
have 0 (n) possible choices, we only have to do this O (n¥) times.

If H has one or more isolated vertices, we do the following. First, we guess a set of independent vertices in G that
correspond to the isolated vertices of H. If we cannot find such a set of isolated vertices in G, then we stop and return
no. Otherwise we remove the guessed vertices from G together with their neighbours. We check for each choice, whether
the resulting graph G’ contains the graph H’ obtained from H by removing its isolated vertices as an induced topological
minor. Note that such a new instance of INDUCED TOPOLOGICAL MINOR is trivial if G’ or H’ has no vertices. Since we have
0 (n*) new graphs G’, this only adds a O (n¥) factor to the running time. We conclude that the total running time is n¥*0@®,
as desired. O

If H is a part of the input, or if we parameterize the problem by the size of H, then the problem becomes hard even for
a subclass of AT-free graphs. A graph is cobipartite if its vertex set can be partitioned into two cliques. Hence, the class of
cobipartite graphs forms a subclass of the class of AT-free graphs.

Theorem 2. The INDUCED TOPOLOGICAL MINOR problem is NP-complete for cobipartite graphs, and W[1]-hard for cobipartite graphs
parameterized by |V .

186

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

(oy*q ~¢" o] 2 A8

\/ avay
6oy B. o00) (AEFF 5N

G H

Fig. 6. Construction of the graphs G’ and H in the proof of Theorem 2 for k = 4.

Proof. We prove W[1]-hardness. This proof immediately implies NP-hardness, as we reduce from the well-known W[1]-
complete CLIQUE problem [11]. For a graph G and a parameter k, this problem is to test whether G has a clique of size k.

Let (G, k) be an instance of CLIQUE. We assume without loss of generality that k > 5 and that G has minimum degree at
least 4. We construct a cobipartite graph G’ as follows:

e create a copy of V¢ and construct a clique U on these vertices;
e for each edge uv € Eg, create a vertex ey, adjacent to u and v;
e construct the clique W ={ey, |uv € Eg}.

Now we construct the graph H:

e create a clique X of size k with vertices xq, ..., Xk;
e create a clique Y with %k(k— 1) vertices y;j, 1<i< j<k;
o for each pair i, j with 1 <i < j <k, make x; and x; adjacent to y;;.

The construction is shown in Fig. 6. We prove that G has a clique of size k if and only if G’ contains H as an induced
topological minor.

First suppose that G has a clique {u1, ..., ug}. Then the subgraph of G’ induced by this clique and the set of vertices
{ewu; | 1 <i < j <k} is isomorphic to H, i.e., H is an induced subgraph of G’, and therefore an induced topological minor
of G'.

Now suppose that G’ contains H as an induced topological minor. Then G’ has an induced subgraph H’ that is a subdi-
vision of H. We call the vertices of H’' that are vertices of H branch vertices and all other vertices of H’ subdivision vertices.

Let x; for 1 <i <k and y;j for 1 <i < j <k be the branch vertices of H’, where x; and ygj correspond to the vertices x;
and y;; of the graph H respectively. Let X' ={x;|1<i<k} and Y' = {ygj [1<i<j<k}.

Suppose that H' has a subdivision vertex z. Assume that z € U. Since dy/(z) =2, H' contains at most two other vertices
of U. Hence, W contains at least k—2 > 3 vertices of X’ and at least one vertex ygj € Y'. Then ygj is adjacent to at least three
vertices of X’, a contradiction. For the case z€ W we use the same arguments, and conclude that H’ has no subdivision
vertices.

Assume that there are vertices ygj e U and y},q € W. Since k> 5, U or W contains at least three vertices of X’. Note
that y;j is adjacent to at least three vertices of X’ in the first case and that y;)q has at least three such neighbours in the
second, a contradiction. Therefore, either Y CU or Y/ C W.

Now we prove that either X' C U or X' € W. To obtain a contradiction, assume that there are x; € U and x;. eW.
If Y/ C U, then all vertices of Y’ are adjacent to x;, but since k > 2, at least one vertex of Y’ is not adjacent to x;, a
contradiction. We get the same conclusion if Y/ C W.

The sets X’ and Y’ clearly cannot be subsets of the same clique U or W. Moreover, because each vertex of W is adjacent
to exactly two vertices of U and each vertex of X’ is adjacent to at least four vertices of Y/, X’ C U and Y’ C W. By the
construction of G’ and H, this means that X’ is a clique of size k in G. This concludes the proof of Theorem 2. O

5. Induced paths and trees through specified vertices

In this section, we consider the k-IN-A-TREE and k-IN-A-PATH problem. Recall that this is the problem of detecting an
induced tree respectively path containing a set S of k specified vertices (called terminals as well).
We use the following structural property of AT-free graphs.

Lemma 21. Let G be an AT-free graph. For two vertices u and v of G let P be an induced (u, v)-path of length at least 4 in G. Let G’ be
the subgraph obtained from G after removing the vertices of N[V p \ {u, v}]. If G1 and G, are connected components of G’ containing
a neighbour of u and v in G, respectively, then G1 # G».

187

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

Proof. For contradiction, suppose that G; = G;. Let u’ and v’ denote the neighbours of u and v in G that belong to G; = G».
As Gp is connected, Gy contains an induced (u’, v’)-path P’. As G contains no vertices from N[Vp \ {u, v}], we then find
that P’ contains no such vertices either. As P and P’ are induced and P has length at least 4, this means that the union C
of P and P’ is an induced cycle on at least six vertices. The latter implies that C has three mutually non-adjacent vertices
that form an asteroidal triple in G, a contradiction. O

For k-IN-A-TREE, we need the following definitions and well-known observation. A tree T is a caterpillar if there are two
leaves x and y such that all other vertices are either vertices of the (x, y)-path P or are adjacent to the vertices of P. We
say that P is a central path of T.

Lemma 22. If T is an induced tree in an AT-free graph G then T is a caterpillar.
We are now ready to prove the results of this section.
Theorem 3. The k-IN-A-TREE problem can be solved in polynomial time for AT-free graphs even if k is part of the input.

Proof. Using Lemma 22, we look for an induced path P between two terminals such that Vp and S induce a caterpillar
with central path P, that is, all terminal vertices that are not in P are pairwise non-adjacent and each has exactly one
neighbour in P.

We build this caterpillar step by step, using a dynamic programming algorithm that is somewhat similar to the algorithm
used in the subroutine Component(i, X, Y) in Section 3.3.1. We use similar notations as well. The idea will be to “trace”
the central path through the graph. However, in contrast to the subroutine Component(i, X, Y), we have no “template” to
go by and need to build the central path and the caterpillar step by step.

Before we show how the dynamic programming table is constructed and updated, we first give some additional termi-

nology. For an ordered set (a sequence of distinct elements) R = {rq,...,r:}, we say that rq{ is the first element of R and
rc is the last element. The first and last elements of R are denoted first(R) and last(R) respectively. We also say that an
ordered set of vertices R = {ry,...,r.} of a graph G induces a path if ry...r. is an induced path in G. Let P be an induced

(u, v)-path P in a graph G and let c be a positive integer. By P(c) we denote the ordered set of the last ¢ vertices of P in
the path order. If P has length at most c, then P(c) is the ordered set of the vertices of P. Observe that last(P(c)) = v.

For an ordered set of vertices R that induces a path with end-vertices first(R) and last(R), A(R) denotes the set of
terminals in the connected component of G[(V¢ \ Ng[Vg \ {first(R), last(R)}]) U {last(R)}] that contains last(R). We can
think of A(R) as the terminals that are ahead of R.

Our dynamic programming algorithm creates tables that store entries with the following fields:

a non-negative integer ¢;

a terminal x € S (the starting terminal of the caterpillar);

a non-negative integer r (the number of terminals in the caterpillar as constructed so far);

a vertex z of G (the last vertex of the central path of the caterpillar as constructed so far; note that z might be but is
not necessarily equal to x); and

e an ordered set R of at most five vertices of G with z = last(R) that induces a path,

such that there is an induced (x, z)-path P in G and a partition A, B, N of S (some sets can be empty) with the following
properties:

P(5)=R;

N = SN (N¢[Vr\ {first(R), z}]);

[BUN|=r;

G[Vp UBUN] is a caterpillar; and

for A= A(R) \ {2z}, it holds that AN Vp =@ and vertices of A are not adjacent to the vertices of (Vp UN)\ {z}.

We can think of A as the set of terminals that are still ahead, of B as the set of terminals that are behind, and of N as the
set of terminals that are currently in the neighbourhood of R. Also note that since z € R, it would not be necessary to make
z a separate field; however, we will do so for notational convenience.

The tables are constructed consecutively for £ =0, ..., |V¢| — 1. We stop if one of the following occurs:

e the table contains a entry with r =k, and we return yes in this case; or
e we cannot construct any entry for the next value of ¢, and we return no in this case.

The table for £ = 0. This table only contains entries (0, 0, x, z, R), where x € S, z=x, and R = {x}.

188

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

The tables for £ > 0. Assume that the table for £ — 1 has been constructed. We consider all vertices v € V; for which the
table for £ — 1 contains a entry (¢ — 1, x,r, w, R) such that v is adjacent to w but is not adjacent to any other vertices of R.
Then, for each v and (¢ — 1,x,r, w, R), we create new entries in the table for £. In order to do this, we construct the sets
A=A(R)\ {w} and N = SN (Ng[Vg \ {first(R), last(R)}]). Then we construct R’ by adding v to R as the last element. Let
U= (N¢g(w)N A)\ {v}. Then we check whether the following holds:

e each vertex of U is adjacent to exactly one vertex of R’ (i.e. only to the vertex w);
e each vertex of U is not adjacent to the vertices of N\ {w};
o for the set A’ = A\ ({v}UU), it holds that A’ = A(R") \ {v}.

The first two verify that we are indeed inducing a caterpillar, whereas the last verifies that we are expanding the caterpillar
in the correct direction (towards the remaining terminals that are ahead). If these conditions are fulfilled, then we set
R” =R\ {first(R)} if |R| =5, and R” = R’ otherwise. Let ' =1 + |A| — |A’|. Then we include the entry (¢, x,1’, v, R”) in the
table.

Observe that by Lemma 21, any vertex of G adjacent to z = last(R) but non-adjacent to other vertices of R, is not
adjacent to the vertices of the (x, z)-path P, except the last vertex z, and is not adjacent to the vertices of B. Then the
correctness of our algorithm follows from the description and this observation.

It remains to prove that the algorithm is polynomial. Let n = |V]|. Since r <k, there are k possibilities for the terminal x
and at most n®> ways to choose z and R. Hence, the total size of the table for any ¢ is at most k2 - n°. Since ¢ <n — 1, the
running time is polynomial. O

Theorem 4. The k-IN-A-PATH problem can be solved in polynomial time for AT-free graphs even if k is part of the input.

Proof. We use a dynamic programming algorithm that is constructed along the same lines as for the k-IN-A-TREE problem.
We have to find an induced path P between two terminals such that S C Vp. As in the proof of Theorem 3, for an
ordered set of vertices R that induces a path with the end-vertices first(R) and last(R), A(R) is the set of terminals in the
connected component G[(Vs \ Ng[Vg \ {first(R), last(R)}]) U {last(R)}] that contains last(R).
Our dynamic programming algorithm creates tables that store entries with the following fields:

e a non-negative integer ¢;

e a terminal x € S (the starting terminal of the path);

e a non-negative integer r (the number of terminals on the path as constructed so far);

e a vertex z of G (the last vertex of the path as constructed so far; note that z might be but is not necessarily equal to
x); and

e an ordered set R of at most five vertices of G with z =last(R) that induces a path,

such that there is an induced (x, z)-path P in G, and a partition A, B, N of S (some sets can be empty) with the following
properties:

P(5)=R;

N=SNR;

BCVp\R;

|[BUN|=r; and

for A= A(R) \ {z}, it holds that AN Vp =@ and vertices of A are not adjacent to the vertices of Vp \ {z}.

The intuition for A, B, and N are similar as before.
The tables are constructed consecutively for £ =0, ..., |V¢| — 1. We stop if one of the following occurs:

e the table contains a entry with r =k, and we return yes in this case;
e we cannot construct any entry for the next value of ¢, and we return no in this case.

The tables are constructed and updated as follows.
The table for £ = 0. This table only contains entries (0, 0, u, z, R), where u € S, z=u, and R = {u}.

The tables for £ > 0. Assume that the table for £ — 1 has been constructed. We consider all vertices v € V¢ for which the
table for £ — 1 contains a entry (¢ — 1,x,r, w, R) such that v is adjacent to w but is not adjacent to any other vertices of
R. Then, for each v and (¢ — 1, x,r, w, R), we create new entries for the table for ¢. In order to do this, we construct the
set A= A(R)\ {w}. Then we construct R’ by adding v to R as the last element. Let A’ = A\ {v}. Then we check whether
A’ = A(R) \ {v}. This verifies that we are expanding the path in the correct direction (towards the remaining terminals that
are ahead). If this holds, then we set R” = R\ {first(R)} if |[R| =5, and R” = R’ otherwise. Let I’ =1+ |A| — |A’|. Then we
include the entry (¢, x,1’, v, R”) in the table.

189

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

Observe that by Lemma 21, any vertex of G adjacent to z = last(R) but non-adjacent to other vertices of R, is not
adjacent to the vertices of the (x, z)-path P, except the last vertex z. Then the correctness of our algorithm follows from
the description and the preceding observation.

It remains to prove that the algorithm is polynomial. Let n = |V]|. Since r <k, there are k possibilities for the terminal x
and at most n> ways to choose z and R. Hence, the total size of the table for any ¢ is at most k? - n>. Since ¢ <n — 1, the
running time is polynomial. O

6. Concluding remarks

We have presented a polynomial-time algorithm that solves INDUCED DisjoINT PATHS for AT-free graphs, and we used this
algorithm for a polynomial-time algorithm that solves H-INDUCED ToPoLOGICAL MINOR on this graph class for every fixed
graph H. We complemented the latter result by proving that INDUCED TOPOLOGICAL MINOR, restricted to cobipartite graphs, is
NP-complete and W[1]-hard when parameterized by |Vy|. We also showed that the problems k-IN-A-TREE and k-IN-A-PATH
can be solved in polynomial time for AT-free graphs even if k is part of the input.

6.1. Open problem 1

Motivated by our application on testing for induced topological minors, we assumed that all terminal pairs in an instance
(G, S) of INDUCED DIsJOINT PATHS are distinct. For general graphs, we can easily drop this assumption by replacing a vertex u
representing £ > 2 terminals by ¢ new mutually non-adjacent vertices, each connected to all neighbours of u via subdivided
edges. This yields an equivalent instance of INDUCED DIisJOINT PATHS, in which all terminal pairs are distinct. However, we
cannot apply this reduction for AT-free graphs, because it may create asteroidal triples. Hence, the complexity of this more
general problem remains an open question.

We note that the special case in which all terminal pairs coincide, that is, in which (s1,t1) = --- = (S, ty) is already
NP-compete for k =2 [2,12] and solvable in O (n?) time on n-vertex planar graphs for arbitrary k [36]. We can solve this
case in polynomial time for AT-free graphs as follows.

Let G be an AT-free graph with k terminal pairs that are copies of the same terminal pair (s,t). If k =1, then the
problem is trivial: we have to find an (s, t)-path in G. Hence, we assume that k > 2. Suppose that (s, t)-paths Pq,..., Py
form a solution. Then each path P; has length at most 4. Otherwise, if there is a path P; of length at least 5, this path
and any other path P; would induce a cycle with at least six vertices, but an AT-free graph has no induced cycles of length
at least 6. Moreover, at most two paths P;, P; have length at least 3. To obtain a contradiction, assume that three paths
P;, P, P, have length at least 3. Let u, v, w be the vertices adjacent to t in P;, Pj, P; respectively. Then u, v, w form an
asteroidal triple, a contradiction. By these observations, we consider cases when a solution has r =0, 1, 2 paths of length at
least 3 and at most 4. For each r, we guess these paths by brute force. Then we construct the graph G’ by the deletion of
all internal vertices of these paths, together with their neighbours different from s, t. Now we have to find k' (s, t)-paths in
G’ of length 2, where k' =k —r if s, t are non-adjacent, and k' =k —r —1 if s, t are neighbours. These paths exist if and only
if the graph H = G’[N¢/(s) N N¢/(s)] has an independent set of size at least k’. It remains to observe that H is an AT-free
graph, and that the INDEPENDENT SET problem can be solved in polynomial time for AT-free graphs [3].

6.2. Open problem 2

Our three algorithms for solving INDUCED DisJOINT PATHS, k-IN-A-TREE and k-IN-A-PATH on AT-free graphs are polynomial-
time algorithms, but the polynomials in the running time bounds have high degree. It may be interesting to construct
more efficient algorithms even for subclasses of the AT-free graphs, such as the class of permutation graphs or the class of
cocomparability graphs. In contrast to the class of AT-free graphs, both these graph classes are known to have a geometric
intersection model.

6.3. Open problem 3

Our last open problem is whether it is possible to extend our result for INDUCED DISJOINT PATHS to some superclass of
AT-free graphs, such as graphs of bounded asteroidal number. An asteroidal set in a graph G is an independent set S C Vg,
such that every triple of vertices of S is asteroidal. The asteroidal number introduced by Walter [41] (see also Kloks, Kratsch
and Miiller [22]) is the size of a largest asteroidal set in G. Note that complete graphs are exactly those graphs that have
asteroidal number at most 1, and that AT-free graphs are exactly those graphs that have asteroidal number at most 2. There
exist problems for which polynomial-time algorithms for AT-free graphs could be extended to polynomial-time algorithms
for graphs of bounded asteroidal number (see, e.g., [3,27,28]). Is this also possible for INDUCED DisjoINT PATHS, or will this
problem become NP-complete for some constant value of the asteroidal number?

CRediT authorship contribution statement
We confirm that all three authors contributed to the manuscript.

190

PA. Golovach, D. Paulusma and E.J. van Leeuwen Journal of Computer and System Sciences 124 (2022) 170-191

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] R. Belmonte, PA. Golovach, P. Heggernes, P. van 't Hof, M. Kaminski, D. Paulusma, Detecting fixed patterns in chordal graphs in polynomial time,
Algorithmica 69 (2014) 501-521.
[2] D. Bienstock, On the complexity of testing for odd holes and induced odd paths, Discrete Math. 90 (1991) 85-92, see also Corrigendum, Discrete Math.
102 (1992) 109.
[3] HJ. Broersma, T. Kloks, D. Kratsch, H. Miiller, Independent sets in asteroidal triple-free graphs, SIAM]. Discrete Math. 12 (1999) 276-287.
[4] K. Cameron, Induced matchings, Discrete Appl. Math. 24 (1989) 97-102.
[5] M. Chudnovsky, P.D. Seymour, The structure of claw-free graphs, in: London Mathematical Society Lecture Notes Series, vol. 327, 2005, pp. 153-171.
[6] M. Chudnovsky, P.D. Seymour, The three-in-a-tree problem, Combinatorica 30 (2010) 387-417.
[7] N. Derhy, C. Picouleau, Finding induced trees, Discrete Appl. Math. 157 (2009) 3552-3557.
[8] N. Dehry, C. Picouleau, N. Trotignon, The four-in-a-tree problem in triangle-free graphs, Graphs Comb. 25 (2009) 489-502.
[9] D.G. Corneil, S. Olariu, L. Stewart, Asteroidal triple-free graphs, SIAM J. Discrete Math. 10 (1997) 299-430.
[10] D.G. Corneil, S. Olariu, L. Stewart, Linear time algorithms for dominating pairs in asteroidal triple-free graphs, SIAM]. Comput. 28 (1999) 1284-1297.
[11] R.G. Downey, M.R. Fellows, Parameterized Complexity, Monographs in Computer Science, Springer-Verlag, New York, 1999.
[12] M.R. Fellows, The Robertson-Seymour theorems: a survey of applications, in: Proc. AMS-IMS-SIAM Joint Summer Research Conference, in: Contempo-
rary Mathematics, vol. 89, 1989, pp. 1-18.
[13] J. Fiala, M. Kamifski, B. Lidicky, D. Paulusma, The k-in-a-path problem for claw-free graphs, Algorithmica 62 (2012) 499-519.
[14] PA. Golovach, D. Paulusma, E.J. van Leeuwen, Induced disjoint paths in AT-free graphs, in: Proc. SWAT 2012, in: Lecture Notes in Computer Science,
vol. 7357, 2012, pp. 153-164.
[15] PA. Golovach, D. Paulusma, E.J. van Leeuwen, Induced disjoint paths in circular-arc graphs in linear time, Theor. Comput. Sci. 640 (2016) 70-83.
[16] PA. Golovach, D. Paulusma, EJ. van Leeuwen, Induced disjoint paths in claw-free graphs, SIAM J. Discrete Math. 29 (2015) 348-375.
[17] G.C.]M. Gomes, V.F. dos Santos, M.V.G. da Silva,].L. Szwarcfiter, FPT and kernelization algorithms for the induced tree problem, in: Proc. CIAC 2021, in:
Lecture Notes in Computer Science, vol. 12701, 2021, pp. 158-172.
[18] M. Grohe, K. Kawarabayashi, D. Marx, P. Wollan, Finding topological subgraphs is fixed-parameter tractable, in: Proc. STOC 2011, 2011, pp. 479-488.
[19] P. Heggernes, P. van 't Hof, R. Saei, EJ. van Leeuwen, Finding disjoint paths in split graphs, Theory Comput. Syst. 57 (2015) 140-159.
[20] L. Jaffke, O. Kwon, J.A. Telle, Mim-width I. Induced path problems, Discrete Appl. Math. 278 (2020) 153-168.
[21] R.M. Karp, On the complexity of combinatorial problems, Networks 5 (1975) 45-68.
[22] T. Kloks, D. Kratsch, H. Miiller, On the structure of graphs with bounded asteroidal number, Graphs Comb. 17 (2001) 295-306.
[23] K. Kawarabayashi, Y. Kobayashi, B.A. Reed, The disjoint paths problem in quadratic time, J. Comb. Theory, Ser. B 102 (2012) 424-435.
[24] Y. Kobayashi, K. Kawarabayashi, Algorithms for finding an induced cycle in planar graphs and bounded genus graphs, in: Proc. SODA 2009, 2009,
pp. 1146-1155.
[25] Y. Kobayashi, K. Kawarabayashi, A linear time algorithm for the induced disjoint paths problem in planar graphs, J. Comput. Syst. Sci. 78 (2012)
670-680.
[26] D. Kratsch, Domination and total domination on asteroidal triple-free graphs, Discrete Appl. Math. 99 (2000) 111-123.
[27] D. Kratsch, H. Miiller, Colouring AT-free graphs, in: Proc. ESA 2012, in: Lecture Notes in Computer Science, vol. 7501, 2012, pp. 707-718.
[28] D. Kratsch, H. Miiller, I. Todinca, Feedback vertex set and longest induced path on AT-free graphs, in: Proc. WG 2003, in: Lecture Notes in Computer
Science, vol. 2880, 2003, pp. 309-321.
[29] K.-Y. Lai, H.-I. Lu, M. Thorup, Three-in-a-tree in near linear time, in: Proc. STOC 2020, 2020, pp. 1279-1292.
[30] N.K. Le, Detecting induced subdivision of Ky,]J. Graph Theory 90 (2019) 160-171.
[31] C.G. Lekkerkerker,].Ch. Boland, Representation of a finite graph by a set of intervals on the real line, Fundam. Math. 51 (1962) 45-64.
[32] B. Lévéque, D.Y. Lin, F. Maffray, N. Trotignon, Detecting induced subgraphs, Discrete Appl. Math. 157 (2009) 3540-3551.
[33] B. Lévéque, F. Maffray, N. Trotignon, On graphs with no induced subdivision of K4,]. Comb. Theory, Ser. B 102 (2012) 924-947.
[34] W. Liu, N. Trotignon, The k-in-a-tree problem for graphs of girth at least k, Discrete Appl. Math. 158 (2010) 1644-1649.
[35] J.F. Lynch, The equivalence of theorem proving and the interconnection problem, SIGDA Newsl. 5 (1975) 31-36.
[36] CJ.H. McDiarmid, B.A. Reed, A. Schrijver, F.B. Shepherd, Induced circuits in planar graphs, J. Comb. Theory, Ser. B 60 (1994) 169-176.
[37] S. Natarajan, A.P. Sprague, Disjoint paths in circular arc graphs, Nord. J. Comput. 3 (1996) 256-270.
[38] M. Radovanovic, N. Trotignon, K. Vuskovi¢, The (theta, wheel)-free graphs part IV: induced paths and cycles, J. Comb. Theory, Ser. B 146 (2021) 495-531.
[39] N. Robertson, P.D. Seymour, Graph minors XIII. The disjoint paths problem,]. Comb. Theory, Ser. B 63 (1995) 65-110.
[40] J. Stacho, 3-Colouring AT-free graphs in polynomial time, Algorithmica 64 (2012) 384-399.
[41] J.R. Walter, Representations of chordal graphs as subtrees of a tree,]J. Graph Theory 2 (1978) 265-267.

191

http://refhub.elsevier.com/S0022-0000(21)00100-8/bibF871086D2EE3F708C9E83A0126DB5556s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibF871086D2EE3F708C9E83A0126DB5556s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib404629D6671155A960500F7C2BC5B96Cs1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib404629D6671155A960500F7C2BC5B96Cs1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib1FE9481A7225FC37E0E0B77BD821CFB5s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib1223CCFAF2829A090FA65543EF149DBBs1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibDD9F799386E27C0D8CC93556AB819203s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibC22C08F230C41AC47D20D0FC8C4EB35Bs1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibBCC24C69F6F3FCC1EE645ABE21988072s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibC167D2FD601C79C1D1EA0913F64C7886s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibECD337E21ADCE2E6D9C979282FD74BE2s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib84403384006B72FCF038CF6BACD739C9s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib4C2F1D727A59176A1100759720F0374Es1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibEC2891564DD14114E91AE3CBB7A131CFs1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibEC2891564DD14114E91AE3CBB7A131CFs1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib0B94D567A011704A5D5D56AE53E626DCs1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib64811C319D2E50DC4726BE13B708CC16s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib64811C319D2E50DC4726BE13B708CC16s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibD5CEBDE2813A3D342EE541B3E2E0BCD0s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibB47602D425E2B63560B27626F0793D00s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib83B7A44171ED656DCC70E959AB830444s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib83B7A44171ED656DCC70E959AB830444s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib15917818D5F5E54A0BBB831DFA83B311s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib37FA2A88633CDFFBD5EE355952115FEBs1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib2873EEC7C5F7D4815242523F87C68F8Es1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibF396A685D969DE1E7163383BD4A37EDBs1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibA163453740E916BD5891F13A8343987Bs1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibB437BFEDC1B8BAEC53800499ACBBD9B0s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib8867C62AECDAD0B0CD8F0BE961B70D63s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib8867C62AECDAD0B0CD8F0BE961B70D63s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib9C5C900E4068B0EFC65D53CCF2F113A2s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib9C5C900E4068B0EFC65D53CCF2F113A2s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib93D4FA8E4E96496FD0E026173E2C8998s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib8CCD2EB55114BFBD28D51E30C426829As1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib617EE5A7F5C664711CE3424C99BFB231s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib617EE5A7F5C664711CE3424C99BFB231s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib89BFF214CA10A42CAA74388B5ECFE22Ds1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib374B19EB3C1E51C298351DE3BAA1A161s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib5229D5E699F27FF4547FBC0CDFCBEA65s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib43490708BEAAB784676EA78288ABA9BDs1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib56951CF4422F54DAC6256C2D5AA86098s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib62F6AC3B2963A8A0F91B05206B6A3F44s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib6B2F6286DA096F34694E589497F780CCs1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibBE6AC744B8360C1C44161285045743E4s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib92514D8786A1F7DF8570B36DB86CCBD5s1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bib8C8B601FC0671CF6B3CBB913A708665Es1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibD74355A822B87F7E3BF787A0B725398Ds1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibBF1C82BDD596F3F4CCC0454ED909572Ds1
http://refhub.elsevier.com/S0022-0000(21)00100-8/bibCEF67BA6A8A6F60067E62BC60CB11B84s1

	Induced Disjoint Paths in AT-free graphs
	1 Introduction
	1.1 Known results
	1.2 Our main result
	1.3 Applications to other containment relation problems

	2 Preliminaries
	3 Induced disjoint paths
	3.1 Phase 1: preprocessing
	3.2 Phase 2: obtaining structural results
	3.3 Phase 3: dynamic programming
	3.3.1 Constructing the component subroutine
	3.3.2 Dynamic program
	Table construction.

	4 Induced topological minors
	5 Induced paths and trees through specified vertices
	6 Concluding remarks
	6.1 Open problem 1
	6.2 Open problem 2
	6.3 Open problem 3

	CRediT authorship contribution statement
	Declaration of competing interest
	References

