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MINIMUM CONVEX PARTITIONS AND MAXIMUM EMPTY POLYTOPES∗

Adrian Dumitrescu,† Sariel Har-Peled,‡ and Csaba D. Tóth §

Abstract. Let S be a set of n points in R
d. A Steiner convex partition is a tiling of

conv(S) with empty convex bodies. For every integer d, we show that S admits a Steiner
convex partition with at most ⌈(n − 1)/d⌉ tiles. This bound is the best possible for points
in general position in the plane, and it is best possible apart from constant factors in every
fixed dimension d ≥ 3. We also give the first constant-factor approximation algorithm for
computing a minimum Steiner convex partition of a planar point set in general position.

Establishing a tight lower bound for the maximum volume of a tile in a Steiner
convex partition of any n points in the unit cube is equivalent to a famous problem of
Danzer and Rogers. It is conjectured that the volume of the largest tile is ω(1/n). Here we
give a (1 − ε)-approximation algorithm for computing the maximum volume of an empty
convex body amidst n given points in the d-dimensional unit box [0, 1]d.

Keywords: Steiner convex partition, Horton set, epsilon-net, lattice polytope, approxima-
tion algorithm.1 Introdution
Let S be a set of n ≥ d+ 1 points in R

d, d ≥ 2. A convex body C is empty if its interior is
disjoint from S. A convex partition of S is a partition of the convex hull conv(S) into empty
convex bodies (called tiles) such that the vertices of the tiles are in S. In a Steiner convex
partition of S the vertices of the tiles are arbitrary: they can be points in S or Steiner
points. For instance, any triangulation of S is a convex partitions of S, where the convex
bodies are simplices, and so conv(S) can be always partitioned into O(n⌊d/2⌋) empty convex
tiles [13].

In this paper, we study the minimum number of tiles that a Steiner convex partition
of every n points in R

d admits, and the maximum volume of a single tile for a given point
set. The research is motivated by a longstanding open problem by Danzer and Rogers [2,
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6, 10, 19, 35]: What is the maximum volume of an empty convex body C ⊂ [0, 1]d that can
be found amidst any set S ⊂ [0, 1]d of n points in a unit cube? The current best bounds are
Ω(1/n) and O(log n/n), respectively (for a fixed d). The lower bound, for instance, can be
deduced by decomposing the unit cube by n parallel hyperplanes, each containing at least
one point, into at most n + 1 empty convex bodies. The upper bound is tight apart from
constant factors for n randomly and uniformly distributed points in the unit cube. It is
suspected that the largest volume is ω(1/n) in any dimension d ≥ 2, i.e., the ratio between
this volume and 1/n tends to ∞.

For a convex body C in R
d, denote by vol(C) the Lebesgue measure of C, i.e., its

area when d = 2, or its volume when d ≥ 3.Minimum number of tiles in a onvex partition. A minimum convex partition of S is
a convex partition of S with a minimum number of tiles. Denote this number by fd(S).
Further define (by slightly abusing notation)

fd(n) = max{fd(S) : S ⊂ R
d, |S| = n}.

Similarly define a minimum Steiner convex partition of S as one with a minimum number
of tiles and let gd(S) denote this number. We also define

gd(n) = max{gd(S) : S ⊂ R
d, |S| = n}.

There has been substantial work on estimating f2(n), and computing f2(S) for a
given set S in the plane. It has been shown successively that f2(n) ≤ 10n−18

7 by Neumann-
Lara et al. [34], f2(n) ≤ 15n−24

11 by Knauer and Spillner [29], and f2(n) ≤ 4n−6
3 for n ≥ 6

by Sakai and Urrutia [36]. From the other direction, Garćıa-López and Nicolás [20] proved
that f2(n) ≥ 12n−22

11 , for n ≥ 4, thereby improving an earlier lower bound f2(n) ≥ n + 2
by Aichholzer and Krasser [1]. Knauer and Spillner [29] have also obtained a 30

11 -factor
approximation algorithm for computing a minimum convex partition for a given set S ⊂ R

2,
no three of which are collinear. There are also a few exact algorithms, including three fixed-
parameter algorithms [17, 21, 38].

The state of affairs is much different in regard to Steiner convex partitions. As
pointed out in [15], no corresponding results are known for the variant with Steiner points.
Here we take the first steps in this direction, and obtain the following results.

Theorem 1. For n ≥ d + 1, we have gd(n) ≤
⌈

n−1
d

⌉

. For d = 2, this bound is the best
possible, that is, g2(n) = ⌈(n − 1)/2⌉; and for every fixed d ≥ 2, we have gd(n) = Ω(n).

We say that a set of points in R
d is in general position if every k-dimensional affine

subspace contains at most k + 1 points for 0 ≤ k < d. We show that in the plane every
Steiner convex partition for n points in general position, i of which lie in the interior of the
convex hull, has Ω(i) tiles. This leads to a simple constant-factor approximation algorithm.

Theorem 2. Given a set S of n points in general position in the plane, a ratio 3 ap-
proximation of a minimum Steiner convex partition of S can be computed in O(n log n)
time.
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The average volume of a tile in a Steiner convex partition of n points in the unit
cube [0, 1]d is an obvious lower bound for the maximum possible volume of a tile, and for the
maximum volume of any empty convex body C ⊂ [0, 1]d. The lower bound gd(n) = Ω(n)
in Theorem 1 shows that the average volume of a tile is O(1/n) in some instances, where
the constant of proportionality depends only on the dimension. This implies that a simple
“averaging” argument is not a viable avenue for finding a solution to the problem of Danzer
and Rogers.Maximum empty polytope among n points in a unit ube. In the second part of the
paper, we consider the following problem: Given a set of n points in a rectangular box
B in R

d, find a maximum-volume empty convex body C ⊂ B. Since the ratio between
volumes is invariant under affine transformations, we may assume without loss of generality
that B = [0, 1]d. We therefore have the problem of computing a maximum volume empty
convex body C ⊂ [0, 1]d for a set of n points in [0, 1]d. It can be argued that the maximum
volume empty convex body is a polytope, however, the number and location of its vertices
is unknown and this represents the main difficulty. For d = 2 there is a polynomial-time
exact algorithm (see Section 5) while for d ≥ 3 we are not aware of any exact algorithm.
Thus the problem of finding faster approximations naturally suggests itself.

There exist exact algorithms for some related problems. Eppstein et al. [16] find
the maximum area empty convex k-gon with vertices among n points in O(kn3) time, if
it exists. As a byproduct, a maximum area empty convex polygon with vertices among
n given points can be computed exactly in O(n4) time with their dynamic programming
algorithm. The running time was subsequently improved to O(n3 log n) by Fischer [18] and
then to O(n3) by Bautista-Santiago et al. [9].

By John’s ellipsoid theorem [32], the maximum volume empty ellipsoid in [0, 1]d

gives a 1/dd-approximation. Here we present a (1 − ε)-approximation for a maximum
volume empty convex body Copt by first guessing a good approximation of the bounding
hyperrectangle of Copt of minimum volume, and then finding a sufficiently close approx-
imation of Copt inside it. We obtain the following two approximation algorithms. The
planar algorithm runs in quadratic time in n, however, the running time degrades with the
dimension.

Theorem 3. Given a set S of n points in [0, 1]2 and parameter ε > 0, one can compute an
empty convex body C ⊆ [0, 1]2, such that vol(C) ≥ (1 − ε)vol(Copt). The running time of
the algorithm is O

(

ε−6n2
)

.

Theorem 4. Given a set S of n points in [0, 1]d, d ≥ 3, and a parameter ε > 0, one
can compute an empty convex body C ⊆ [0, 1]d, such that vol(C) ≥ (1 − ε)vol(Copt). The
running time of the algorithm is

exp
(

O
(

ε−d(d−1)/(d+1) log ε−1
))

n1+d(d−1)/2 logd n.

As far as the problem of Danzer and Rogers is concerned, one need not consider
convex sets—it suffices to consider simplices—and for simplices the problems considered
are much simpler. Specifically, every convex body C in R

d, d ≥ 2, contains a simplex T
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of volume vol(T ) ≥ vol(C) /(d + 2)d [30]. That is, for fixed d, the largest empty simplex
amidst n points in the unit cube [0, 1]d yields a constant-factor approximation of the largest
volume convex body (polytope) amidst the same n points. Consequently, the asymptotic
dependencies on n of the volumes of the largest empty simplex and convex body are the
same. For d = 2 there is a polynomial-time exact algorithm for computing the largest empty
triangle amidst n points in [0, 1]2 (see Section 5) while for d ≥ 3 we are not aware of any
exact algorithm for computing the largest empty simplex amidst n points in [0, 1]d.Related work. Decomposing polygonal domains into convex sub-polygons has been also
studied extensively. We refer to the article by Keil [26] for a survey of results up to the
year 2000. For instance, when the polygon may contain holes, obtaining a minimum convex
partition is NP-hard, regardless of whether Steiner points are allowed. For polygons without
holes, Chazelle and Dobkin [12] obtained an O(n + r3) time algorithm for the problem of
decomposing a polygon with n vertices, r of which are reflex, into convex parts, with Steiner
points permitted. Keil [26] notes that although there are an infinite number of possible
locations for the Steiner points, a dynamic programming approach is amenable to obtain
an exact (optimal) solution; see also [27, 37].

Fevens et al. [17] designed a polynomial time algorithm for computing a minimum
convex partition for a given set of n points in the plane if the points are arranged on a
constant number of convex layers. The problem of minimizing the total Euclidean length of
the edges of a convex partition has been also considered. Grantson and Levcopoulos [20],
and Spillner [38] proved that the shortest convex partition and Steiner convex partition
problems are fixed parameter tractable, where the parameter is the number of points of P
lying in the interior of conv(P ). Dumitrescu and Tóth [15] proved that every set of n points
in R

2 admits a Steiner convex partition which is at most O(log n/ log log n) times longer
than the minimum spanning tree, and this bound cannot be improved. Without Steiner
points, the best upper bound for the ratio of the minimum length of a convex partition and
the length of a minimum spanning tree (MST) is O(n) [28].

A largest area convex polygon contained in a given (non-convex) polygon with n
vertices can be found by the algorithm of Chang and Yap [11] in O(n7) time. The problem
is known as the potato-peeling problem. On the other hand, a largest area triangle contained
in a simple polygon with n vertices, can be found by the algorithm of Melissaratos and
Souvaine [33] in O(n4) time. Hall-Holt et al. [22] compute a constant approximation in
time O(n log n). The same authors show how to compute a (1 − ε)-approximation of the
largest fat triangle inside a simple polygon (if it exists) in time O(n). Given a triangulated
polygon (with possible holes) with n vertices, Aronov et al. [4] compute the largest area
convex polygon respecting the triangulation edges in O(n2) time.

For finding a maximum volume empty axis-parallel box amidst n points in [0, 1]d,
Backer and Keil [5] reported an algorithm with worst-case running time of O(nd logd−2 n).
An empty axis-aligned box whose volume is at least (1−ε) of the maximum can be computed

in O
(

(

8ed
ε2

)d
n logd n

)

time by the algorithm of Dumitrescu and Jiang [14].

Lawrence and Morris [31] studied the minimum integer kd(n) such that the com-
plement R

d \ S of any n-element set S ⊂ R
d, not all in a hyperplane, can be covered by
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kd(n) convex sets. They prove kd(n) = Ω(log n/d log log n). It is known that covering the
complement of n uniformly distributed points in [0, 1]d requires Ω(n/d log n) convex sets,
which follows from the upper bound in the problem of Danzer and Rogers.2 Combinatorial bounds
In this section we prove Theorem 1. We start with the upper bound. The following simple
algorithm returns a Steiner convex partition with at most ⌈(n− 1)/d⌉ tiles for any n points
in R

d.

Algorithm A1:

Step 1. Compute the convex hull R← conv(S) of S. Let A ⊆ S be the set of hull vertices,
and let B = S \ A denote the remaining points.

Step 2. Compute conv(B), and let H be the supporting hyperplane of an arbitrary (d−1)-
dimensional face of conv(B). Denote by H+ the halfspace that contains B, and
H− = R

d \H+. The hyperplane H contains d points of B, and it decomposes R into
two convex bodies: R∩H− is empty and R∩H+ contains all points in B \H. Update
B ← B \H and R← R ∩H+.

Step 3. Repeat Step 2 with the new values of R and B until B is the empty set. (If
|B| < d, then any supporting hyperplane of B completes the partition.)

3

1
2

Figure 1: Steiner convex partitions with Steiner points drawn as hollow circles. Left: A Steiner
convex partition of a set of 13 points. Middle: A Steiner partition of a set of 12 points into three
tiles. Right: A Steiner partition of the same set of 12 points into 4 tiles, generated by Algorithm
A1 (the labels reflect the order of execution).

It is obvious that the algorithm generates a Steiner convex partition of S. An
illustration of Algorithm A1 on a small planar example appears in Figure 1 (right). Let h
and i denote the number of hull and interior points of S, respectively, so that n = h + i.
Each hyperplane used by the algorithm removes d interior points of S (with the possible
exception of the last round if i is not a multiple of d). Hence the number of convex tiles is
1 + ⌈i/d⌉, and we have 1 + ⌈i/d⌉ = ⌈(i+ d)/d⌉ ≤ ⌈(n − 1)/d⌉, as required.Lower bound in the plane. A matching lower bound in the plane is given by the following
construction. For n ≥ 3, let S = A ∪ B, where A is a set of 3 non-collinear points in
the plane, and B is a set of n − 3 points that form a regular (n − 3)-gon in the interior
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of conv(A), so that conv(S) = conv(A) is a triangle. If n = 3, then conv(S) is an empty
triangle, and g2(S) = 1 = ⌈(n − 1)/2⌉. If 4 ≤ n ≤ 5, S is not in convex position, and so
g2(S) ≥ 2 = ⌈(n − 1)/2⌉. Suppose now that n ≥ 6.

Consider an arbitrary convex partition of S. Let o be a point in the interior of
conv(B) such that the lines os, s ∈ S, do not contain any edges of the tiles. Refer to Figure 2.
For each point s ∈ B, choose a reference point r(s) ∈ R

2 on the ray −→os in conv(A)\conv(B)
sufficiently close to point s, and lying in the interior of a tile. Note that the convex tile
containing o cannot contain any reference points. We claim that any tile contains at most
2 reference points. This immediately implies g2(S) ≥ 1 + ⌈(n − 3)/2⌉ = ⌈(n − 1)/2⌉.

Suppose, to the contrary, that a tile τ contains 3 reference points r1, r2, r3, corre-
sponding to the points s1, s2, s3. Refer to Figure 2. Note that o cannot be in the interior of

o

s1

s2

s3

r1

r2

r3

Figure 2: Lower bound construction in R
2.

τ , otherwise τ would contain all points s1, s2, s3 in its interior. Hence conv({o, s1, s2, s3}) is
a quadrilateral, and conv({o, r1, r2, r3}) is also a quadrilateral, since the reference points are
sufficiently close to the corresponding points in B. We may assume w.l.o.g. that vertices of
conv({o, s1, s2, s3}) are o, s1, s2, s3 in counterclockwise order. Then s2 lies in the interior
of conv({r1, r2, r3}). Hence the tile containing r1, r2, and r3, must contain point s2 in its
interior, a contradiction. We conclude that every tile τ contains at most 2 reference points,
as required.Lower bounds for d ≥ 3. A similar construction works in for any d ≥ 2, but the lower
bound no longer matches the upper bound gd(n) ≤ ⌈(n− 1)/d⌉ for d ≥ 3.

Recall that a Horton set [25] is a set S of n points in the plane such that the convex
hull of any 7 points is non-empty. Valtr [39] generalized Horton sets to R

d. For every d ∈ N,
there exists a minimal integer h(d) with the property that for every n ∈ N there is a set S
of n points in general position in R

d such that the convex hull of any h(d) + 1 points in S
is non-empty. It is known that h(2) = 6, and Valtr proved that h(3) ≤ 22, and in general
that h(d) ≤ 2d−1(N(d− 1) + 1), where N(k) is the product of the first k primes.

We construct a set S of n ≥ d + 1 points in R
d as follows. Let S = A ∪ B, where

A is a set of d + 1 points in general position in R
d, and B is a generalized Horton set of
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n − (d + 1) points in the interior of conv(A), such that the interior of any h(d) + 1 points
from B contains some point in B.

Consider an arbitrary Steiner convex partition of S. Every point b ∈ B is in the
interior of conv(S), and so it lies on the boundary of at least 2 convex tiles. For each b ∈ B,
place two reference points in the interiors of 2 distinct tiles incident to b. Every tile contains
at most h(d) reference points. Indeed, if a tile contains h(d) + 1 reference points, then it is
incident to h(d) + 1 points in B, and some point of B lies in the interior of the convex hull
of these points, a contradiction.

There are 2(n−d−1) reference points, and every tile contains at most h(d) of them.
So the number of tiles is at least ⌈2(n − d− 1)/h(d)⌉. Consequently, for every fixed d ≥ 2,
we have gd(n) = Ω(n).3 Approximating the minimum Steiner onvex partition in R

2

In this section we prove Theorem 2 by showing that our simple-minded algorithm A1 from
Section 2 achieves a constant-factor approximation in the plane if the points in S are in
general position.

Approximation ratio. Recall that algorithm A1 computes a Steiner convex partition of
conv(S) into at most 1 + ⌈i/2⌉ parts, where i stands for the number of interior points of S.

If i = 0, the algorithm computes an optimal partition, i.e., ALG = OPT = 1.
Assume now that i ≥ 1. Consider an optimal Steiner convex partition Π of S with OPT
tiles. We construct a planar multigraph G = (V,E) as follows. The faces of G are the
convex tiles and the exterior of conv(S) (the outer face). The vertices V are the points in
the plane incident to at least 3 faces (counting the outer face as well). Since i ≥ 1, G is
non-empty and we have |V | ≥ 2. Each edge in E is a Jordan arc on the common boundary of
two faces. An edge between two bounded faces is a straight line segment, and so it contains
at most two interior points of S. An edge between the outer face and a bounded face is a
convex arc, containing hull points from S. Double edges are possible if two vertices of the
outer face are connected by a straight line edge and a curve edge along the boundary—in
this case these two parallel edges bound a convex face. No loops are possible in G. Since Π
is a convex partition, G is connected.

Let v, e, and f , respectively, denote the number of vertices, edges, and bounded
(convex) faces of G; in particular, f = OPT. By Euler’s formula for planar multigraphs, we
have v−e+f = 1, that is, f = e−v+1. By construction, each vertex of G is incident to at
least 3 edges, and every edge is incident to two vertices. Therefore, 3v ≤ 2e, or v ≤ 2e/3.
Consequently, f = e − v + 1 ≥ e − 2e/3 + 1 = e/3 + 1. Since S is in general position,
each straight-line edge of G contains at most 2 interior points from S. Curve edges along
the boundary do not contain interior points. Hence each edge in E is incident to at most
two interior points in S, thus i ≤ 2e. Substituting this into the previous inequality on f
yields OPT = f ≥ e/3 + 1 ≥ i/6 + 1. Comparing this lower bound with the upper bound

ALG ≤ ⌈i/2⌉+1, we conclude that
ALG

OPT
≤ ⌈i/2⌉ + 1

i/6 + 1
≤ 3

i+ 3

i+ 6
< 3, and the approximation

ratio of 3 follows.
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is tight for Algorithm A1. We construct a planar point set S as follows. Refer to Fig-
ure 3 (left). Consider a large (say, hexagonal) section of a hexagonal lattice. Place Steiner
vertices at the lattice points, and place two points in S on each lattice edge. Slightly per-
turb the lattice, and add a few more points in S near the boundary, and a few more Steiner
points, so as to obtain a Steiner convex partition of S with no three points collinear. Denote
by v, e, and f , the elements of the planar multigraph G as before. Since we consider a large
lattice section, we have v, e, f → ∞. We write a ∼ b, whenever a/b → 1. As before, we
have f + v = e + 1, and since each non-boundary edge is shared by two convex faces, we
have e ∼ 6f/2 = 3f . By construction, i ∼ 2e ∼ 6f , hence f ∼ i/6. Therefore the convex
partition constructed above has f ∼ i/6, while Algorithm A1 constructs one with about
i/2 faces. Letting e→∞, then i→∞, and the ratio ALG/OPT approaches 3 in the limit:
ALG/OPT ∼ (i/2)/(i/6) = 3.

Figure 3: Left: two points on each edge of a section of a perturbed hexagonal lattice in R
2, and four

extra vertices of a bounding box. Right: Points in general position on a saddle surface in R
3.Time analysis. Algorithm A1 can be implemented to run in O(n log n) time for a set S of

n points in the plane. We employ the semi-dynamic (delete only) convex hull data structure
of Hershberger and Suri [24]. This data structure supports point deletion in O(log n) time,
and uses O(n) space and O(n log n) preprocessing time. We maintain the boundary of a
convex polygon R in a binary search tree, a set B ⊂ S of points lying in the interior of
R, and the convex hull conv(B) with the above semi-dynamic data structure [24]. Initially,
R = conv(S), which can be computed in O(n log n) time; and B ⊂ S is the set of interior
points. In each round of the algorithm, consider the supporting line H of an arbitrary edge
e of conv(B) such that B lies in the halfplane H+. The two intersection points of H with
the boundary of R can be computed in O(log n) time. At the end of the round, we can
update B ← B\H and conv(B) in O(k log n) time, where k is the number of points removed
from B; and we can update R← R∩H+ in O(log n) time. Every point is removed from B
exactly once, and the number of rounds is at most ⌈(n− 3)/2⌉, so the total update time is
O(n log n) throughout the algorithm.
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constant-factor approximation. For every integer n, one can construct a set S of n points
in general position in R

3 such that i = n − 4 of them lie in the interior of conv(S), but
the minimum Steiner convex partition has only O(

√
n) tiles. In contrast, Algorithm A1

computes a Steiner partition with i/3 = (n− 4)/3 convex tiles.

We first construct the convex tiles, and then describe the point set S. Specifically, S
consists of 4 points of a large tetrahedron, and 3 points in general position on the common
boundary of certain pairs of adjacent tiles.

Let k = ⌈
√

(n− 4)/3⌉. Place (k + 1)2 Steiner points (a, b, a2 − b2) on the saddle
surface z = x2− y2 for pairs of integers (a, b) ∈ Z

2, −⌊k/2⌋ ≤ a, b ≤ ⌈k/2⌉. The four points
{(x, y, x2 − y2) : x ∈ {a, a + 1}, y ∈ {b, b + 1}} form a parallelogram for every (a, b) ∈ Z

2,
−⌊k/2⌋ ≤ a, b ≤ ⌈k/2⌉ − 1. Refer to Figure 3 (right). These parallelograms form a terrain
over the region {(x, y) : −⌊k/2⌋ ≤ x, y ≤ ⌈k/2⌉}. Note that no two parallelograms are
coplanar. Subdivide the space below this terrain by vertical planes x = a, −⌊k/2⌋ ≤ a ≤
⌈k/2⌉. Similarly, subdivide the space above this terrain by planes y = b, −⌊k/2⌋ ≤ b ≤
⌈k/2⌉. We obtain 2k interior-disjoint convex regions, k above and k below the terrain, such
that the common boundary of a region above and a region below is a parallelogram of the
terrain. The points in R

3 that do not lie above or below the terrain can be covered by 4
convex wedges.

Enclose the terrain in a sufficiently large tetrahedron T . Clip the 2k convex regions
and the 4 wedges into the interior of T . These 2k + 4 convex bodies tile T . Choose 3
noncollinear points of S in each of the k2 parallelograms, such that no 4 points are coplanar
and no 2 are collinear with vertices of T . Let the point set S be the set of 4 vertices of the
large tetrahedron T and the 3k2 points selected from the parallelograms.4 Approximating the maximum empty onvex body
Let S be a set of points in the unit cube [0, 1]d ⊆ R

d. Our task is to approximate the largest
convex body C ⊆ [0, 1]d that contains no points of S in its interior. Let Copt = Copt(S)
denote this body.4.1 Approximation by the disrete hull
In the following, assume that m > 0 is some integer, and consider the grid point set

G(m) =
{

(i1, . . . , id)/m
∣

∣

∣
i1, . . . , id ∈ {0, 1, . . . ,m}

}

.

Let S ⊆ [0, 1]d be a point set, and let Copt be the corresponding largest empty convex body
in [0, 1]d. Given a grid G(m), we call conv(Copt ∩ G(m)) the discrete hull of Copt [23]. We
need the following easy lemma.

Lemma 1. Let C ⊆ [0, 1]d be a convex body and D = conv(C ∩ G(m)). Then we have
vol(C)− vol(D) = O(1/m), where the constant of proportionality depends only on d.

http://jocg.org/


JoCG 5(1), 86–103, 2014 95

Journal of Computational Geometry jocg.org

Proof. Consider a point p ∈ C, and the cube p+ [−2, 2]d/m centered at p with side length
4/m. If this cube is contained in C, then all grid points of the grid cell of G(m) containing
p are in C, and p lies in D. Therefore, for every point p ∈ C \D, the cube p+ [−2, 2]d/m is
not contained in C. By convexity, at least one of the vertices of the cube p+[−2, 2]d/m lies
outside of C. Therefore, the distance from p to the boundary of C is at most the distance
from p to a corner of this cube, which is 2

√
d/m.

It follows that all the points in the corridor C \D are at distance at most 2
√
d/m

from the boundary of C. The volume of the boundary of C is bounded from above by
the volume of the boundary of the unit cube, namely 2d. As such, the volume of this
corridor is vol(∂C) 2

√
d/m ≤ (2d)(2

√
d/m) = O(d3/2/m). For a fixed d, this is O(1/m), as

claimed.

Lemma 1 implies that if vol(Copt) ≥ ρ, in order to obtain a (1 − ε)-approximation,
we can concentrate our search on convex polytopes that have their vertices at grid points
in G(m), where m = O(1/(ερ)). If ρ is a constant, then the maximum volume empty
lattice polytope in G(m) with m = O(1/ε) is an (1 − ε)-approximation for Copt. However,
for arbitrary vol(Copt) = Ω(1/n), a much finer grid would be necessary to achieve this
approximation.4.2 An initial brute fore approah
In this section we present approximation algorithms (for all d) relying on Lemma 1 alone,
approximating the maximum volume empty polytope by a lattice polytope in a sufficiently
fine lattice (grid). We shall refine our technique in Subsections 4.3 and 4.4.

For the plane, we take advantage of the existence of an efficient solution for a related
search problem. Refining a natural dynamic programming approach by Eppstein et al. [16]
and Fischer [18], Bautista-Santiago et al. [9] obtained the following result.

Lemma 2 ([9]). Given a set S of m points and a set Q of O(m) points in the plane, one
can compute a convex polygon with the largest area with vertices in S that does not contain
any point of Q in its interior in O(m3) time.

Remark. The algorithm has the same running time if Q is a set of O(m) forbidden
rectangles.

The combination of Lemmas 1 and 2 readily yields an approximation algorithm for
the plane, whose running time depends on vol(Copt).

Lemma 3. Given a set S ⊆ [0, 1]2 of n points, such that vol(Copt) ≥ ρ, and a parameter
ε > 0, one can compute an empty convex body C ⊆ [0, 1]2 such that vol(C) ≥ (1−ε)vol(Copt).
The running time of the algorithm is O

(

n+ 1/(ερ)6
)

.

Proof. Consider the grid G(m) with m = O(1/(ερ)). By Lemma 1 we can restrict our search
to a grid polygon. Going a step further, we mark all the grid cells containing points of S as
forbidden. Arguing as in Lemma 1, one can show that the area of the largest convex grid
polygon avoiding the forbidden cells is at least vol(Copt)− c/m, where c is a constant.
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We now restrict our attention to the task of finding a largest polygon. We have a
set Q of O(m2) grid points that might be used as vertices of the grid polygon, and a set of
O(m2) grid cells that cannot intersect the interior of the computed polygon. By Lemma 2,
a largest empty polygon can be found in O(m6) time. Setting m = O(1/(ερ)), we get an
algorithm with overall running time O

(

n+ 1/(ερ)6
)

.

For dimensions d ≥ 3, we are not aware of any analogue of the dynamic programming
algorithm in Lemma 2. Instead, we use a brute force approach that enumerates all feasible
subsets of a sufficiently fine grid.

Lemma 4. Given a set S ⊆ [0, 1]d of n points such that vol(Copt) ≥ ρ, and a parameter
ε > 0, one can compute an empty convex body C ⊆ [0, 1]d, such that vol(C) ≥ (1 −
ε)vol(Copt). The running time of the algorithm is O(n) + exp

(

O
(

md(d−1)/(d+1) logm
))

,
where m = O(1/(ερ)) and d is fixed.

Proof. Consider the grid G(m) with m = O(1/(ερ)). Let X be the set of vertices of all grid
cells of G(m) that contain some point from S (i.e., 2d vertices per cell). Note that |X| =
O(md). Andrews [3] proved that a convex lattice polytope of volume V has O(V (d−1)/(d+1))
vertices. Hence a convex lattice polytope in G(m) has O(md(d−1)/(d+1)) vertices. By the
well-known inequality

∑k
i=0

(

n
i

)

≤ (enk )k, the number of subsets of size O(md(d−1)/(d+1))
from G(m) is

O(md(d−1)/(d+1))
∑

i=0

(

md

i

)

≤
(

m2d/(d+1)
)O(md(d−1)/(d+1))

≤ exp
(

O(md(d−1)/(d+1) logm)
)

.

For each such candidate subset G of size O(md(d−1)/(d+1)), test whether conv(G) is empty
of points from X. For each point in X, the containment test reduces to a linear pro-
gram that can be solved in time polynomial in m. Returning the subset with the largest
hull volume found yields the desired approximation. The runtime of the algorithm is
exp

(

O(md(d−1)/(d+1) logm)
)

.

Bárany and Vershik [8] proved that there are exp
(

O(md(d−1)/(d+1))
)

convex lattice
polytopes in G(m). If the polytopes can also be enumerated in this time (as in the planar
case [7]), then the runtime in Lemma 4 reduces accordingly.4.3 A faster approximation in the plane
If Copt is long and skinny (e.g., ρ is close to 1/n), then the uniform grid G(m) we used in
Lemmas 3 and 4 is unsuitable for finding a (1 − ε)-approximation efficiently. Instead, we
employ a rotated and stretched grid (an affine copy of G(m)) that has similar orientation
and aspect ratio as Copt. This overcomes one of the main difficulties in obtaining a good
approximation. Since we do not know the shape and orientation of Copt, we guess these
parameters via the minimum area rectangle containing Copt.
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Lemma 5. Given a set S ⊆ [0, 1]2 of n points such that vol(Copt) ≥ ρ, and a parameter
ε > 0, one can compute an empty convex body C ⊆ [0, 1]2 such that vol(C) ≥ (1−ε)vol(Copt).
The running time of the algorithm is O

(

ρ−1
(

n+ ρ−1ε−6
))

.

Proof. The idea is to first guess a rectangle R that contains Copt such that vol(Copt) is at
least a constant fraction of the area of vol(R), and then to apply Lemma 3 to the rectangle
R (as the unit square) to get the desired approximation.

Let B0 be the minimum area rectangle (of arbitrary orientation) that contains Copt;
see Figure 4 (left). We guess an approximate copy of B0. In particular, we guess the lengths
of the two sides of B0 (up to a factor of 2) and the orientation of B0 (up to an angle of
O(1/n)), and then try to position a scaled copy of the guessed rectangle so that that it fully
contains Copt.

Copt
B0

B1

B1

B2

o

x

y

a
b kB2

Figure 4: Left: Copt, a minimum area rectangle B0, Copt ⊆ B0, and a minimum area rectangle
B1, B0 ⊆ B1, with canonical side lengths and the same orientation as B0. Right: Rectangle B1, a
rotated copy B2 with the closest canonical orientation, and a minimum area scaled copy kB2 such
that B1 ⊆ kB2.

Assume for convenience that n ≥ 10. We now show that vol(Copt) ≥
√
2/n, using

Theorem 1. Augment the point set S with the four corners of the unit square [0, 1]2 into a
set of n+ 4 points. By Theorem 1, the augmented point set has a Steiner convex partition
into at most g2(n + 4) = ⌈n+4−1

2 ⌉ tiles. The area of the largest tile is at least that of the

average tile in this partition, that is, vol(Copt) ≥ 1/⌈n+4−1
2 ⌉ ≥ 2

n+4 ≥ 2√
2n

=
√
2
n , for n ≥ 10.

Therefore, we may assume that vol(Copt) ≥ ρ ≥
√
2/n.

Denote by a and b the lengths of the two sides of B0, where a ≤ b. It is clear that
b ≤

√
2, the diameter of the unit square. We also have a = vol(B0) /b ≥ vol(Copt) /b ≥√

2/(bn) ≥ 1/n, hence the aspect ratio of B0 is b/a ≤
√
2/a ≤

√
2n.

Assume now that 2i−1ρ ≤ vol(Copt) < 2iρ for some i = 1, 2, . . . ,
⌈

log2(
√
2n)

⌉

. If we
want to guess the aspect ratio of B0 up to a factor of two, we need to consider only O(log ρ−1)
possibilities. Indeed, we consider the canonical aspect ratios 2j for j = 0, . . . ,

⌈

log2(
√
2/ρ)

⌉

−
i, and canonical side lengths 2(i+j)/2√ρ and 2(i−j)/2√ρ. Let B1 be a minimum area rectangle
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with canonical side lengths and the same orientation as B0, so that B0 ⊆ B1.

The orientation of a rectangle is given by the angle between one side and the x-axis.
We approximate the orientation of B0 by canonical orientations α = rπ/(5 · 2j), for r =
0, 1, . . . , 5·2j−1. Let B2 be a congruent copy of B1 rotated clockwise to the nearest canonical
orientation about the center of B1. We show that B1 ⊂ 2B2, i.e., a scaled copy of B2 contains
B1. Let k ≥ 1 be the minimum scale factor such that B1 ⊆ kB2. Refer to Figure 4 (right).
Denote by o the common center of B1 and B2, let x be a vertex of B1 on the boundary of
kB2, and let y be the corresponding vertex of kB2. Clearly, sin(∠xoy) ≤ π/(5 · 2j) since we
rotate by at most π/(5 · 2j). The aspect ratio of the rectangle kB2 is cot(∠oyx) = 2j . Since
∠oyx < π/4, we have sin(∠oyx) = tan(∠oyx) cos(∠oyx) ≥ 2−j cos π

4 = 2−j−1/2 > π/(5 · 2j).
The law of sines yields |ox| > |xy|; and we have |ox|+ |xy| > |oy| by the triangle inequality.
If follows that |oy| < 2|ox|, and so k ≤ 2 suffices. Summing over all possible areas, canonical
aspect ratios, and orientations, the number of possibilities is

⌈log2(
√
2/ρ)⌉

∑

i=0

⌈log2(
√
2/ρ)⌉−i

∑

j=0

5 · 2j ≤
⌈log2(

√
2/ρ)⌉

∑

i=0

10 · 2⌈log2(
√
2/ρ)⌉−i

≤ 20 · 2⌈log2(
√
2/ρ)⌉ = O(ρ−1).

So far we have guessed the canonical side lengths and orientation of B2, however,
we do not know its location in the plane. If a translated copy B2 + v of B2 intersects Copt,
then 3B2 + v contains it, since Copt ⊆ B0 ⊆ B1 ⊆ 2B2. Consider an arbitrary tiling of
the plane with translates of B2. By a packing argument, only O(1/ρ) translates intersect
the unit square [0, 1]2. One of these translates, say B2 + v, intersects Copt, and hence the
rectangle R = 3B2 + v contains Copt.

We can apply Lemma 3 to the rectangle R (as the unit square) to get the desired
approximation. Specifically, let T : R2 → R

2 be an affine transformation that maps R into
the unit square [0, 1]2, and apply Lemma 3 for the point set T (S∩R) and T (R∩ [0, 1]2). The
grid G(m) clipped in T (R ∩ [0, 1]2) corresponds to a stretched and rotated grid in R; each
grid cell of G(m) is stretched to a rectangle with the same aspect ratio as R. The convex
polygon Copt occupies a constant fraction of the area of R, and so the resulting running
time is O(n1 + 1/ε6), where n1 is the number of points in R. Note that the algorithm of
Lemma 3 partitions R into a grid with O(1/ε2) cells. The approximation algorithm only
cares about which cells are empty and which are not.

Since the algorithm of Lemma 3 is repeated for all possible positions of R, the overall
running time is O

(

ρ−1
(

n+ ρ−1ε−6
))

, where the first factor of ρ−1 counts possible areas,
canonical aspect ratios, and orientations, and the second factor of ρ−1 inside the parenthesis
counts possible positions of the rectangle R.

Remark. If ρ = Ω(1) the running time of this planar algorithm is linear in n.

Since ρ = Ω(1/n), the running time of the algorithm in Lemma 5 is bounded by
O
(

ε−6n2
)

. We summarize our result for the plane in the following.
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Theorem 3. Given a set S of n points in [0, 1]2 and a parameter ε > 0, one can compute
an empty convex body C ⊆ [0, 1]2, such that vol(C) ≥ (1 − ε)vol(Copt). The running time
of the algorithm is O

(

ε−6n2
)

.4.4 A faster approximation in higher dimensions
Given a set S ⊆ [0, 1]d of n points and a parameter ε > 0, we compute an empty convex body
C ⊆ [0, 1]d such that vol(C) ≥ (1−ε)vol(Copt). Similarly to the algorithm in Subsection 4.3,
we guess a hyperrectangle R that contains Copt such that vol(Copt) is at least a constant
fraction of vol(R); and then apply Lemma 4 to R (as the hypercube) to obtain the desired
approximation.

Consider a hyperrectangle B0 of minimum volume (and arbitrary orientation) that
contains Copt. The d edges incident to a vertex of a hyperrectangle B are pairwise orthog-
onal. We call these d directions the axes of B; and the orientation of B is the set of its
axes.

We next enumerate all possible discretized hyperrectangles of volume Ω(1/n), guess-
ing the lengths of their axes, their orientations, and their locations as follows:

Guess the length of every axis up to a factor of 2. Since the minimum length of an
axis in our case is Ω(1/n) and the maximum is

√
d, the number of possible lengths to be

considered is O
(

logd n
)

. Let B1 be a hyperrectangle of minimum volume with canonical
side lengths and the same orientation as B0 such that B0 ⊆ B1.

We can discretize the orientation of a hyperrectangle as follows. We spread a dense
set of points on the sphere of directions, with angular distance O(1/n) between any point
on the sphere and its closest point in the chosen set. O(nd−1) points suffice for this purpose.
We try each point as the direction of the first axis of the hyperrectangle, and then generate
the directions of the remaining axes analogously in the orthogonal hyperplane for the chosen

direction. Overall, this generates O(n
∑d−1

i=1 i) = O(nd(d−1)/2) possibilities.

Successively replace each axis of B1 by an approximate axis that makes an angle at
most α = 1/(cn) with its corresponding axis, where c = c(d) is a constant depending on
d. Let B2 be a congruent copy of B1 obtained in this way. If c = c(d) is sufficiently small,
then B1 ⊆ 2B2.

Consider a tiling of Rd with translates of B2. Note that only O(1/vol(Copt)) = O(n)
translates intersect the unit cube [0, 1]d. One of these translates B2 + v intersects Copt,
and then the hyperrectangle R = 3B2 + v contains Copt. Since Copt(S) takes a constant
fraction of the volume of R, we can deploy Lemma 4 in this case, and get the desired
(1− ε)-approximation in exp

(

O
(

ε−d(d−1)/(d+1) log ε−1
))

time. Putting everything together,
we obtain the following.

Theorem 4 Given a set S of n points in [0, 1]d, d ≥ 3, and a parameter ε > 0, one can
compute an empty convex body C ⊆ [0, 1]d, such that vol(C) ≥ (1−ε)vol(Copt). The running
time of the algorithm is

exp
(

O
(

ε−d(d−1)/(d+1) log ε−1
))

n1+d(d−1)/2 logd n.
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Remark. Consider a set S of n points in R
d. The approximation algorithm we have

presented can be modified to approximate the largest empty tile, i.e., the largest empty
convex body contained in conv(S), rather than [0, 1]d. The running time is slightly worse,
since we need to take the boundary of conv(S) into account. We omit the details.5 Conlusions
In this section we briefly outline two exact algorithms for finding the largest area empty
convex polygon and the largest area empty triangle amidst n points in the unit square. At
the end we list a few open problems.Largest area onvex polygon. Let S ⊂ U = [0, 1]2, where |S| = n. Let T be the set of
four vertices of U . Observe that the boundary of an optimal convex body, Copt, contains at
least two points from S ∪T . By convexity, the midpoint of one of these O(n2) segments lies
in Copt. For each such midpoint m, create a weakly simple polygon Pm by connecting each
point p ∈ S to the boundary of the square along the ray mp. The polygon Pm has O(n)
vertices and is empty of points from S in its interior. Then apply the algorithm of Chang
and Yap [11] for the potato-peeling problem (mentioned in Section 1) in these O(n2) weakly
simple polygons. The algorithm computes a largest area empty convex polygon contained
in a given (non-convex) polygon with n vertices in O(n7) time. Finally, return the largest
convex polygon obtained in this way. The overall running time is O(n9).

The running time can be reduced to O(n8 log n) as follows. Instead of considering
the O(n2) midpoints, compute a set P of O(n log n) points so that every convex set of
area at least 2/(n + 4) contains at least one of these points. In particular, Copt contains a
point from P . The set P can be computed by starting with a O(n)× O(n) grid, and then
computing an ε-net for it, where ε = O(1/n), using discrepancy [32]. The running time of
this deterministic procedure is roughly O(n2), and the running time of the overall algorithm
improves to O(n7 · n log n) = O(n8 log n).Largest area empty triangle. The same reduction can be used for finding largest area
empty triangle contained in U , resulting in O(n2) weakly simple polygons Pm. Then the
algorithm of Melissaratos and Souvaine [33] for finding a largest area triangle contained in
a polygon is applied to each of these O(n2) polygons. The algorithm finds such a triangle
in O(n4) time, given a polygon with n vertices. Finally, return the largest triangle obtained
in this way. The overall running time is O(n6). Via the ε-net approach (from the previous
paragraph) the running time of the algorithm improves to O(n4 · n log n) = O(n5 log n).Open questions. Interesting questions remain open regarding the structure of optimal
Steiner convex partitions and the computational complexity of computing such partitions.
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Other questions relate to the problem of finding the largest empty convex body in the
presence of points.

(1) Is there a polynomial-time algorithm for computing a minimum Steiner convex parti-
tion of a given set of n points in R

d? Is there one for points in the plane?

(2) Is there a constant-factor approximation algorithm for the minimum Steiner convex
partition of an arbitrary point set in R

d (without the general position restriction)? Is
there one for points in the plane?

(3) For d > 2, the running time of our approximation algorithm for the maximum empty
polytope has a factor of the form nO(d2). It seems natural to conjecture that this term
can be reduced to nO(d). Another issue of interest is extending Lemma 2 to higher
dimensions for a faster overall algorithm.

(4) Given n points in [0, 1]d, the problem of finding the largest convex body in [0, 1]d that
contains up to k (outlier) points naturally suggests itself and appears to be also quite
challenging.Aknowledgement. The authors thank Joe Mitchell for helpful discussions regarding the

exact algorithms in Section 5, in particular for suggesting the reduction of the maximum-
area-empty-convex-body problem to the potato-peeling problem. Many thanks also go
to Sergio Cabello and Maria Saumell for pointing us to the recent results of Bautista-
Santiago et al. [9] and for suggesting logarithmic factor improvements in the running time
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