
A Simple Framework for the Generalized Nearest

Neighbor Problem

Tomas Hruz and Marcel Schöngens
Institute of Theoretical Computer Science, ETH Zurich, Switzerland

{tomas.hruz, schoengens}@inf.ethz.ch

Abstract

The problem of finding a nearest neighbor from a set of points in Rd to
a complex query object has attracted considerable attention due to vari-
ous applications in computational geometry, bio-informatics, information
retrieval, etc. We propose a generic method that solves the problem for
various classes of query objects and distance functions in a unified way.
Moreover, for linear space requirements the method simplifies the known
approach based on ray-shooting in the lower envelope of an arrangement.

1 Introduction

During the last decades the nearest neighbor problem and its variants have at-
tracted considerable attention in computational geometry, information retrieval,
pattern recognition, bio-informatics, and many more areas of computer science.
In its classical version, the problem is stated as follows: Given an n-point set
P ⊂ Rd together with a metric distance function D : Rd×Rd → R+, preprocess
P such that for a query point ρ ∈ Rd we can efficiently find a point π ∈ P
with D (π, ρ) ≤ D (π′, ρ) for all π′ ∈ P . The point π is usually called a closest
point or a nearest neighbor of the query point. There are situations in which
we want the query to be an object more complex than a point, as for example
a line or simplex in Rd. Consequently, we generalize the notion of a query and
define a query object Q to be a subset of Rd that has a constant description
complexity. Furthermore, we denote the collection of all allowed query objects
by Θ. As an example, consider Θ as the set of all lines in R3 where a query
object Q ∈ Θ is the point set of a line. A natural generalization of the problem
statement is as follows. Preprocess P such that for a query object Q ∈ Θ we can
efficiently find a point π in P with D (π,Q) ≤ D (π′, Q) for all π′ ∈ P , where
D (π,Q) = min {D (π, ρ) | ρ ∈ Q} is the distance between the point π and the
query object Q. We refer to this version as the generalized nearest neighbor
problem (GNN problem). In this paper we consider the dimension d as a fixed
constant.

1

1.1 Our contribution

We present a novel, simple framework that solves the generalized nearest neigh-
bor problem uniformly for many natural query objects by a combination of
ε-nets and range searching algorithms. Although the results rely on known con-
cepts, we are not aware of any prior work that brings the following contributions:

• Our solution to the GNN problem uses range searching data structures,
but does not rely on Megiddo’s parametric search [18] that usually causes
a logarithmic overhead. Parametric search is a powerful but complex
technique to reduce optimization problems to decision problems which we
substitute by an application of ε-nets (see Section 2).

• Applying the framework to three sets of query objects improves previously
published results: If the query objects are lines in 2-dimensional Euclidean
space [19] we improve the query time by a factor of O

(
n0.195

)
. In the case

of query planes in 3-dimensional Euclidean space [20] and in the case of
query circles [21] we improve two recent results by reducing the space
requirements by a logarithmic factor (see Section 3).

• In the case of query lines in 3-space with Manhattan and Euclidean dis-
tance, a problem that has not been considered before, we show that, for a
parameter f > 0, our framework obtains a query time of O

(
n2/3+f

)
while

using linear space (see Section 3).

• The current state-of-the-art idea to approach the GNN problem, which
is referred to as generalized Voronoi diagrams, exploits duality proper-
ties of the distance function. In the case of linear space requirements our
framework simplifies this approach by avoiding any consideration of dual-
ity (see Section 4). Furthermore, as opposed to the concept provided by
Voronoi diagrams, we give easy to derive bounds on query time and space
requirements (see Section 2).

Furthermore, our method is intuitive, natural and could also be applied for
the classical nearest neighbor problem. From a practical point of view, the
method can use range searching data structures as a black-box.

1.2 Intuitive idea of our approach

When designing a data structure to solve the GNN problem we have a trade-off
between space and query time that manifests in two extreme cases: Either we
want logarithmic query time and accept larger space requirements, or we aim
for linear space but accept larger, still sub-linear, query time. It is common
and reasonable to focus on these extreme cases, since space/query time trade-
offs in between can usually be derived by a combination of the respective data
structures [15]. In this paper we focus on linear space data structures.

Our framework relies on the existence of data structures for the range search-
ing problem that can be formulated as follows [8]: Preprocess a set P ⊂ Rd of

2

n points, such that for a given query range R ⊂ Rd one can efficiently report all
points in P ∩R. Now, consider a concrete nearest neighbor problem for a query
collection Θ and a distance function D. Let us define the range Br(Q) as the set
of points within distance r from Q. Observe that this range has the property
that for a large enough value of r it contains a nearest neighbor of Q. For ex-
ample, when the query objects are lines in Euclidean 3-space, for a query Q the
range Br(Q) is a cylinder with axis Q and radius r (see Section 3). Since known
range searching data structures can efficiently report all points in P ∩ Br(Q),
the only problem to identify a nearest neighbor is to find a value r∗ such that
the nearest neighbor lies in P ∩Br∗(Q), but not too many other points. This is
achieved by identifying a candidate nearest neighbor α ∈ P such that there are
only few points in P closer to the query object Q. The candidate point is found
by searching a nearest neighbor in a preprocessed ε-net N of P ; the definition
and properties of ε-nets are introduced in Section 2. Krauthgamer et al. [12]
also use ε-nets to bound search space for proximity search, but their definition
describes a completely different notion, which does not provide general worst
case guarantees.

Intuitively, the method is correct since either α is a closest point to Q or one
of the points in P ∩ Br∗(Q). Both settings are checked by the algorithm. The
obtained query time is sub-linear and it depends on the time needed to search
the set N and the time needed to report and check all points in P ∩ Br∗(Q).
To search N one can either perform a linear scan or recursively apply of the
above mentioned procedure. The time for the range searching depends on how
much space we accept for the data structure. For many natural query objects
there are suitable range searching algorithms with space/query time trade-offs
in between the above mentioned two extreme cases. The size of the resulting
set P ∩Br∗(Q) is guaranteed to be at most εn which follows from the properties
of the ε-net N (see Section 2). The space requirements of the framework are
dominated by the space requirements of the range searching data structure. For
details on the algorithm and the analysis we refer the reader to Section 2.

1.3 Related work

Cole and Yap considered the case of 2-dimensional query lines in Euclidean space
[7]. They presented an algorithm which preprocesses n points in O

(
n2
)

time
and space such that a point closest to a query line can be found in O (log n) time.
The problem was later reconsidered for space/query time trade-offs: Mitra et
al. [19] presented an algorithm with O (n log n) preprocessing time, using O (n)
space and O

(
n0.695

)
query time, and Mukhopadhyay [22] provided an algorithm

based on the Partition Theorem [15] with preprocessing time in O
(
n1+f

)
, space

requirements in O (n log n) and a query time in O
(
n1/2+f

)
for any f > 0.

Another type of query objects, namely planes in Euclidean 3-space, was
studied by Mitra et al. [20] who provided an algorithm with O

(
n1+f

)
prepro-

cessing time, O (n log n) space and O
(
n2/3+f

)
query time for any f > 0. The

underlying data structure is also based on Matoušek’s partition theorem [15].

3

For the case in which queries are disc boundaries in 2-dimensional Euclidean
space, the authors of [21] provided two algorithms that give space/ query time
trade-offs: the first has O

(
n3
)

preprocessing time and space, and O
(
log2 n

)
query time, and the second has O

(
n1+f

)
preprocessing time, O (n log n) space

and O
(
n2/3+f

)
query time.

There has also been a general idea how to approach the GNN problem.
This approach is based on a generalization of Voronoi diagrams (see e.g. [1])
and it can be understood as a kind of guide to solve GNN related problems.
Roughly speaking, the idea is based on ray-shooting in the lower envelope of an
arrangement of surfaces that are induced by the distance function D and the
point set P . An application of this idea to the above problems works analogously
to the analysis in Section 3.1 and yield similar improvements as our framework.
However, the idea of applying Voronoi diagrams for the GNN problem is a high
level concept that does not directly imply any space or query time guarantees.
In contrast, our framework provides these guarantees (Theorem 2 and 3) while
being less complex in the application (Section 2 and 4).

2 A Unified Framework for the GNN Problem

We formally introduce the main concepts in the theory of range searching and
its connection to our approach. A range space R is a tuple (X,Γ), where X is
a set and Γ is a collection of subsets of X. The elements of X are called points
and the elements of Γ are called ranges. An example for a well-studied range
space is (Rd,ΓH), where ΓH is the set of all half-spaces. The range searching
problem for a range space (X,Γ) and a finite point set P ⊆ X can be stated as
follows: Preprocess P such that one can efficiently answer the following query.
For a range R ∈ Γ, report all points in R ∩ P . This formulation is the so-called
reporting version of the problem [3, 6]. There is also the counting version,
where one is interested in computing |R ∩ P |. The restriction of Γ to a set
Y ⊆ X, denoted by Γ|Y , is the set {Y ∩R | R ∈ Γ}. An important measure
for the complexity of a range space is its VC-dimension: A range space R has
VC-dimension z if there exists a subset Y ⊆ X of maximal cardinality z such
that Γ|Y equals the power-set of Y [10]. Though range spaces are formulated
on a set theoretic level, in this paper we only need the special case for which
X = Rd.

As a first step to use range searching, we need to define an appropriate range
space (Rd,Γ) for a collection Θ of query objects and a distance function D. The
Minkowski sum of two sets A and B is A + B = {α+ β | α ∈ A, β ∈ B}. By
Br(X) we denote the r-neighborhood of a set X ⊂ Rd, which equals the open
set X+

{
ρ ∈ Rd | D (ρ, 0) < r

}
=
{
ρ ∈ Rd | D (ρ,X) < r

}
. The r-neighborhood

Br(Q) of all Q ∈ Θ is a natural set for a range in Γ, and consequently, we define
the desired range space to be RΘ = (Rd, {Br(Q) | Q ∈ Θ, r ≥ 0}). For
example, consider the query collection of all lines in Euclidean 3-space. The
1-neighborhood of a line ` is the Minkowski sum of ` with the Euclidean unit
ball centered at the origin. This forms a cylinder of radius 1 with axis `. Our

4

framework depends on the existence of an efficient range searching algorithm
for RΘ.

When performing range queries, the resulting sets should not be too large,
as otherwise the performance degenerates. We obtain the desired small sets by
using ε-nets: Let P be an n-point set of the range space (X,Γ) and let ε ≤ 1/2.
A subset N of P is an ε-net of P for (X,Γ) if the following holds. For all
R ∈ Γ, if |R ∩ P | ≥ ε |P | then R ∩ N 6= ∅. This concept was first introduced
to computational geometry by Haussler and Welzl [10], but had also significant
impact on other fields of computer science. To simplify notation an ε-net of
P is denoted by Nε(P). A notable fact is that for range spaces of finite VC-
dimension one can always find ε-nets of P with a size that depends only on ε
and not the size of P as the following lemma states.

Lemma 1 (see e.g. [16]). Let (X,Γ) be a range space with finite VC-dimension
z ≥ 1. For a constant cz, a parameter ε ≤ 1/2 and an n-point subset P of X,
there exists an ε-net of P for (X,Γ) of size at most (cz/ε) log(1/ε).

2.1 The framework

We present our framework for the generalized nearest neighbor problem, which
we call GNN-framework for short. Let P ⊆ Rd be an n-point set, Θ the
collection of query objects, and D the underlying metric distance function.
The query collection together with the distance function form the range space
RΘ =

(
Rd, {Br(Q) | Q ∈ Θ, r ≥ 0}

)
, which is a fundamental element of the de-

scribed framework. The framework solves the GNN problem if the range space
RΘ satisfies two properties:

1. There is an algorithm AN that constructs small ε-nets for RΘ

2. There is a reasonable efficient range searching algorithm AR for RΘ.

These are the only limitations of the framework. Due to Lemma 1 small ε-nets
exist for range spaces of finite VC-dimensionality and can be found either by
random sampling or deterministically [5]. The existence of an efficient range
searching algorithm is not implied by finite VC-dimensionality, but for many
natural range spaces efficient algorithms have been found. For example, range
spaces that are defined by a constant number of bounded polynomials have
been studied by Agarwal et al. [3]. This indicates the potential for solving
various concrete instances of the GNN problem as shown in Section 3. The
GNN-framework works as follows:

Preprocessing. We preprocess P0 = P into a data structure D which is a
(k + 1)-tuple ((P0,S0), (P1,S2), . . . , (Pk, ∅)) of the following elements. The
sets Pi are hierarchically constructed ε-nets for the range space RΘ that are
build by AN in the following way: For a parameter a ∈ (0, 1/2) we define
εi = na/ |Pi−1| and Pi = Nεi(Pi−1) for 1 ≤ i ≤ k. The choice of a depends on
the application and influences the query time; We only require that a is chosen

5

such that |Pi| < |Nεi(Pi−1)|. The Si are range searching data structures for
RΘ build by AR on the sets Pi for 0 ≤ i < k. The parameter k also depends
on the application and has only impact on the query time.

Query processing. (see Algorithm 1) For a query object Q ∈ Θ we describe
how a closest point in P0 is found. Note that the algorithm works in a recursive
fashion and each recursive instance has access to D while processing the query.
The initial call of the algorithm works on (P0,S0), the i-th recursive call works
on (Pi,Si) and the recursion stops at the k-th recursive call. We describe the
initial call of the algorithm since it is representative for the others: First, the
algorithm finds a point α closest to Q in the ε-net P1 by recursively calling itself
on P1. Then, the distance r from α to Q is used to define a range Br(Q) =
BD(α,Q)(Q). The range searching algorithm AR utilizing the data structure S0

is asked to retrieve the points R = P0 ∩ Br(Q). The resulting set R is searched
point-by-point for the nearest neighbor of Q. If the resulting set is empty, α
is outputted. As stated above, the last recursive call at recursion depth k is
handled specially: The set Pk is searched point-by-point for a nearest neighbor
of Q.

Algorithm 1. Data Structure: D = ((P0,S0), (P1,S1), . . . , (Pk, ∅))
Initial call: Query(Q, 0) Input: query object Q Output: nearest neighbor of Q;
Comment: RangeSearch(BD(α,Q)(Q), i) returns BD(α,Q)(Q) ∩ Pi;
1 Function: Query(Q, i) 8 For each π ∈ R do

2 If i < k then 9 If D(α,Q) ≥ D(π,Q) then

3 α = Query(Q, i+ 1) 10 α = π

4 R = RangeSearch(BD(α,Q)(Q), i) 11 end

5 else 12 end

6 R = Pk 13
7 end 14 return α

Theorem 1. Let P be an n-point set, Θ a query collection and D a distance
function. For a query object Q ∈ Θ, Algorithm 1 correctly outputs a point π ∈ P
with D (π,Q) ≤ D (π′, Q) for all π′ ∈ P .

Proof. We prove the theorem by induction on the recursion depth. All line
numbers refer to Algorithm 1. As induction basis we focus on the highest level
of recursion, where i = k. In this case R is set to Pk (line 6) and the for-loop
(line 8-12) finds a point α in Pk = R that is closest to Q. This point is returned,
so the last recursive call of the algorithm returns a point in Pk that is closest
to Q.

As induction hypothesis, we assume that at recursion depth i + 1 the algo-
rithm returns a point in Pi+1 that is closest to Q.

For the induction step let i < k. The point returned by the recursive call is α
(line 3), and by the induction hypothesis it is a point in Pi+1 closest to Q. The
range searching algorithm returns all points in Pi∩BD(α,Q)(Q), consequently all

6

the points in the D(α,Q)-neighborhood of Pi are put in R. If R is non-empty
it must contain the desired point and the for-loop (line 8-12) finds it. If R is
empty, the point α, which is a point in Pi and Pi+1, is closest to Q. Thus the
algorithm works correctly.

To bound query time and space requirements, we introduce further notation
for the time and space requirements of the subroutines. For the range searching
algorithm AR let T ∗R(n) be the time needed to preprocess an n-point set P into
a range searching data structure of size SR(n), and let TR(n,m) be the time
needed to report all m points in the intersection of P with any query range.
Furthermore, let T ∗N (n) be the time needed by the ε-net algorithm AN . The
time needed to compute the distance between the query object and a point is
at most TD. We proceed with a bound on the query time.

Theorem 2. Let P be an n-point set, Θ a query collection and D a distance
function. Furthermore, let a ∈ (0, 1/2] and k ∈ N be parameters of the data
structure D described above. Then, Algorithm 1 using Algorithm AR finds a
nearest neighbor of Q ∈ Θ in time T (n) ≤ kTR(n, na) + knaTD + |Pk| TD.

Proof. We prove the theorem by solving a recurrence equation that we derive
from the query algorithm. All line numbers refer to Algorithm 1. At the highest
depth of recursion the algorithm works on (Pk, ∅) and searches Pk for a closest
point to Q (line 6, line 8-12). Thus, we get T (|Pk|) = TD |Pk|. The running
time T (|Pi|) of all recursive calls at depth i < k working on (Pi,Si) is bounded
by the following components. First, by T (|Pi+1|) which is the running time of
the recursive call on Pi+1 (line 3). Then, by TR(|Pi| , |R|) which is the running
time of the range searching algorithm AR on Pi, and finally, by the time needed
to search the resulting set R for the closest point to Q which is bounded by
TD |R| (line 8-12). From this we get

T (|Pi|) ≤ T (|Pi+1|) + TR (|Pi| , |R|) + TD |R| ,

for i < k. The size of the resulting set R = Pi ∩BD(α,Q)(Q) can be bounded by
the following arguments. Since α is point in Pi+1 closest to Q, by the definition
of Br(.) we deduce that Pi+1∩BD(α,Q)(Q) is empty. The set Pi+1 is an (na/ |Pi|)-
net of Pi. Thus, by the definition of ε-nets the size of R = Pi ∩ BD(α,Q)(Q) is
at most (na/ |Pi|) |Pi| = na. This yields

T (|Pi|) ≤ T (|Pi+1|) + TR (|Pi| , na) + naTD.

We solve this recurrence equation from i = 0 up to k and obtain

T (|P0|) ≤
k−1∑
i=0

(TR (|Pi| , na) + naTD) + |Pk| TD

We have chosen a such that the size of Pi is monotone decreasing in i, thus by
|Pi| ≤ |P0| = n we get T (n) ≤ kTR(n, na) + knaTD + |Pk| TD, which proves the
theorem.

7

Theorem 3. Let P be an n-point set, Θ a query collection and D a distance
function. Furthermore, let a ∈ (0, 1/2] and k ∈ N be parameters of the data
structure D described above. The time needed to preprocess P into D using al-
gorithms AN and AR is T ∗(n) ≤ k (T ∗R(n) + T ∗N (n)) and the space requirement
is S(n) ≤ k(n+ SR(n)).

Proof. The parameter a used for the construction of the ε-nets P1, P2, . . . , Pk
is chosen such that the size of Pi is monotone decreasing in i. Both, the time
T ∗N (n) to create an ε-net on n points as well as the time T ∗R(n) increase in n.
Thus, the preprocessing time is

T ∗(n) ≤
k∑
i=0

(T ∗R(|Pi|) + T ∗N (|Pi|)) ≤ k (T ∗R(|P0|) + T ∗N (|P0|)) ,

which proves the first part of the theorem.
The space requirements SR(n) of the range searching data structure is mono-

tone increasing in n. Hence the space requirement of D is

S(n) ≤
k∑
i=0

(|Pi|+ SR(|Pi|)) ≤ k(|P0|+ SR(|P0|)),

which proves the second part of the theorem.

We observe that setting the recursion depth k larger than 1 is important when
searching the points of the ε-net takes more time than the range searching.

3 Solutions for Concrete Query Collections

In this section we consider several types of query objects and distance functions,
some which have been considered before (Section 3.3) and some which we an-
alyze for the first time (Section 3.1 and 3.2). During the explanation we also
follow the ideas of Voronoi diagrams to provide a better understanding of the
similarities and differences to our framework (Section 3.1). Moreover, in the
case of the `1-distance, we show that the details of a full analysis needed for the
a generalization of Voronoi diagrams can lead to large difficulties, however, our
framework stays easily applicable (Section 3.2).

3.1 Query lines in 3-dimensional space under `2-norm

The problem of searching an n-point set P in R3 for a nearest neighbor to a given
query line has not been considered in literature. The analysis can be generalized
to Rd, however, to stay in a geometrically well studied space we focus on d = 3.
To compare both concepts, we first solve the problem by following the ideas of
Voronoi diagrams and afterwards by applying our framework, which obtains the
results in a more direct way.

8

The idea of generalized Voronoi diagrams is based on ray-shooting in the
lower envelope of the arrangement induced by the distance function. This
arrangement lives in the space of query objects which can be considered as
space dual to the point space. Therefore, the first step is to identify the dis-
tance function between a point and a line for a suitable representation of a
line in R3. Let the Euclidean norm be denoted by ‖.‖, the corresponding
metric by D and standard scalar product by 〈ρ, ρ′〉. Any line Q can be rep-
resented by 4 parameters χQ = (l1, l2, l3, l4); one possible interpretation for
these parameters is that α = (l1, l2, 0) and β = (l3, l4, 1) determine the in-
tersection of the line with the plane through the origin and the plane shifted
upwards (w.r.t. the last coordinate) by one. The collection of all query lines is
Θ` =

{
{α+ t(β − α) | t ∈ R} | (l1, l2, l3, l4) ∈ R4

}
.

The distance between a line α + t(β − α) and a point π ∈ R3 equals the
distance between (α−π) + t(β−α) and the origin, for t ∈ R. Let δ ∈ R3 be the
vector of shortest distance pointing to the line. It satisfies two properties: First,
〈δ, (β − α)〉 = 0 and secondly, δ = (β − π) + s(β − α) for some s ∈ R. Inserting

the second into the first property yields s = −〈α− π, β − α〉 / ‖β − α‖2. After
some calculation based on properties of the scalar product, the squared length
of δ is ‖δ‖2 = ‖α− π‖2− 〈α− π, β − α〉2 / ‖β − α‖2. We translate this rational

function to the following polynomial function in π, χQ and denote r = ‖δ‖2:

F(π, χQ, r) = ‖α− π‖2 ‖β − α‖2 − 〈α− π, β − α〉2 − r ‖β − α‖2 = 0. (1)

We write Fπ(χ, r) for the polynomial F(π, χ, r) in which the parameter space is
χ, r but π is fixed. We call the space in which the polynomial Fπ lives dual space.
Analogously, we call the space where Fχ,r(π) lives primal space. The solutions
of Fπ(χ, r) = 0 for all π ∈ P form an arrangement of algebraic varieties, which
have the property that the first algebraic variety hit by a ray starting from
(χQ, 0) going into the direction (χQ, 1) represents a nearest neighbor of the line
Q.

As described in the introduction it is not known how to perform ray-shooting
in an arrangement with linear space. This is indicated by the fact that the
complexity of the lower envelope defined by a (d−1)-variate function is generally
Ω(nd−1) [23]. Thus, we translate the situation to primal space: Every surface
Fπ = 0 is dual to the point π and a ray {(χ, r) | r ≥ 0} translates to a family of
ranges {Fχ,r(π) | r ≥ 0}. If the ray hits the first surface Fπ at the point (χ, r∗),
then the boundary of the range Fχ,r∗ intersects the point π. So, in primal space
the ray-shooting translates to (algebraic) range searching that is solved by using
a partitioning tree as data structure [3, 23]. Additionally the data structure can
be equipped with ε-nets for every node to constrain the resulting range search
operations [17].

Our method, which has the same asymptotic complexity as the method
above, does not consider duality at all: We only need to define the range space
RΘ`

=
(
R3, {Br(Q) | Q ∈ Θ`, r ≥ 0}

)
of all cylinders around all possible query

lines using the algebraic variety Fχ,r ≤ 0. On P we construct the range searching
data structure of [3] for the range space RΘ`

which yields a query time of

9

O
(
n2/3+f

)
and space requirements in O (n). Secondly, on the point set P we

generate a (n−1/2)-net N of size O
(
n0.5 log n

)
(Lemma 1). We directly derive

the following Observation:

Observation 1. An n-point set P from 3-dimensional Euclidean space can be
preprocessed in a linear space data structure, such that, for a constant parameter
f > 0, a closest point to given query line can be found in time O

(
n2/3+f

)
.

3.2 Query lines in 3-dimensional space under `1-norm

The GNN problem in 3-dimensional space with Manhattan distance has not been
considered in literature. We show that, when following the ideas of generalized
Voronoi diagrams, the details get complicated since the distance function is
not described by a polynomial any more. In contrast our framework is easily
applicable.

The distance between a line Q represented by χQ as above and a point
π = (p1, p2, p3) is

D (π,Q) = min
{
|p1 − l3 + p3(l1 − l3)|+ |p2 − l4 + p3(l2 − l3)| ,∣∣∣∣p1 − l3 +

(p2 + l4)(l1 − l3)

l2 − l4

∣∣∣∣+

∣∣∣∣p3 +
p2 + l4
l2 − l4

∣∣∣∣ ,∣∣∣∣p2 − l4 +
(p1 + l3)(l2 − l4)

(l1 − l3)

∣∣∣∣+

∣∣∣∣p3 +
p1 + l3
l1 − l3

∣∣∣∣ },
because the distance can be computed as a minimum of `1-distances between
the point π and the points σ1, σ2, σ3, where σi is the intersection of the line Q
with the i-th hyperplane that is orthogonal to the coordinate axis and intersects
π. The fact that the distance function is a minimum is not harmful since we can
take all three functions into the lower envelope with only constant overhead. The
real problem comes from the functions themselves, because they are absolute
values of rational functions. Known techniques for the decomposition of the
lower envelope induced by such functions cannot be directly applied. Further
investigation is needed to see that the intersection of the functions is linear so
that a projection yields a suitable Voronoi diagram.

On the other hand, the presented framework is easier to apply: It requires
only to identify the range space that is naturally given by constant number of
simplices. To obtained a range Br(Q), it is necessary to project the points of
the r-ball of the l1-metric to the hyperplane that is orthogonal to the query line.
The convex hull of the projected points implicitly describes the range. With
a standard simplex range searching data structure [4] we obtain the following
result.

Observation 2. An n-point set P from 3-dimensional space with Manhattan
distance can be preprocessed into a linear space data structure, such that, for a
constant parameter f > 0, a closest point to given query line can be found in
time O

(
n2/3+f

)
.

10

3.3 Previously considered query collections

In the same way we can easily derive data structures and query time bounds for
several kind of query objects. Here, we focus on the Euclidean distance.

The case of 2-dimensional query lines has been considered by Mitra et al. and
Mukhopadhyay [19, 22] who used ham-sandwich cuts or Matoušek’s simplicial
partion theorem to solve the problem. For linear space with O (n log n) prepro-
cessing time, the query time isO

(
n0.695

)
and forO (n log n) space withO

(
n1+f

)
preprocessing time, the query time is O

(
n1/2+f

)
, for f > 0. Furthermore, the

case of query 3-dimensional hyperplanes has been considered by Mitra et al. [20]
who obtained a query time of O

(
n2/3+f

)
using O

(
n1+f

)
preprocessing time and

O (n log n) space.
An application of our framework for general query hyperplanes in Euclidean

space of dimension d achieves a faster query time while using less space. The
required range space contains all possible cuts of two parallel half-spaces. An
appropriate standard simplex range searching data structures as e.g.[15] can be
used. An epsilon-net can be obtained by random sampling in O (n) time which,
however, leads to a randomized algorithm. At the cost of larger preprocessing
time, one could also use deterministic ε-net algorithms [14].

Observation 3. An n-point set P from d-dimensional Euclidean space can be
preprocessed in O (n log n) time into a linear space data structure, such that, for
a parameter f > 0, a closest point to a given query hyperplane can be found in
time O

(
n1−1/d+f

)
w.h.p.

In [21] the authors consider circles as query objects and obtain a query time
of O

(
n2/3+f

)
and O (n log n) space. Using a standard lifting transform, the

simplex range searching algorithm from above and sampling for the ε-net, we
improve the space requirements by a logarithmic factor.

Observation 4. An n-point set P from 2-dimensional Euclidean space can be
preprocessed in O (n log n) time into a linear space data structure, such that, for
a parameter f > 0, a closest point to given query circle can be found in time
O
(
n2/3+f

)
w.h.p.

These bounds could also be achieved by following the ideas of generalized
Voronoi diagrams, which lead to analogous steps as in Section 3.1, but there is
no publication considering such an analysis.

4 Comparison with Generalized Voronoi Diagrams

In this section we want to compare the presented framework with the ideas
behind generalized Voronoi diagrams. There are two aspects in favor of our
framework that are worth mentioning. First, the approach of using Voronoi
diagrams has been formulated on a high-level. The authors are not aware of any
work that allows to directly derive a data structure with bounds on query time
or space for a given query collection. In contrast, these properties are contained

11

in the presented Theorems. Secondly, following the ideas of generalized Voronoi
diagrams might be more complex than using our framework, especially if a
linear space data structure is required. The reasons for that lie in the details.
Applying the ideas of Voronoi diagram to a concrete query collection might end
up in a complex analysis in dual space as e.g. in Section 3 (query lines in 3-space
with `1-norm). Such a complicated analysis is not necessary for the application
of the here presented framework.

The idea behind generalized Voronoi diagrams benefits from geometric du-
ality defined by the distance function. The concept of geometric duality is
usually a powerful tool [13] that provides a different view on the problem, even
if the mathematics might be very similar. We discuss that in the case of linear
space requirements, solving a concrete variant of the GNN problem might be
disadvantageous due to a detour through dual space.

Let χQ ∈ Rq be a vector representing a query object Q and let D (π, χQ) be
the distance between a point π ∈ P and Q. For a fixed parameter π ∈ P the
distance D (π, χQ) is a function in χQ. Consider the graphs (χQ,D (π, χQ)) of
this function for all π ∈ P . These graphs produce an arrangement of surfaces in
a (q+1)-dimensional space called dual space. The d-dimensional space in which
the points P live is called primal space. We introduce these notions because
the distance function plays the role of a geometric duality transformation [8]: A
point in dual space, say (χQ1

, t), is below (w.r.t. to the last coordinate) a surface
(χQ,D (π1, χQ)), if and only if π1 is not contained in the set of all points within
distance t from Q1. The standard approach makes use of this property in the
following way. For a query object Q1, a nearest neighbor is found by shooting
a ray that starts in (χQ1

, 0) and goes into the direction of (χQ1
, 1). The first

surface that is hit, say (χQ,D (π1, χQ)), represents the desired point π1 [9, 1].
So, the nearest neighbor problem reduces to ray-shooting in an arrangement
of surfaces, more precisely, the ray starts below all surfaces in the cell that
is bounded by the point-wise minima of all graphs (χQ,D (π, χQ)) for π ∈ P .
This cell, or its boundary, is commonly known as the lower envelope of the
arrangement [8, 1]. Note that the projection of the lower envelope onto Rq
corresponds to a Voronoi diagram of the points P for the query collection Θ [1]
and the distance function D.

Ray-shooting in the lower envelope of an arrangement that is induced by ar-
bitrary surfaces is generally a hard task and cannot be done efficiently. However,
if the arrangement is induced by algebraic varieties, it is standard practice to
reduce ray-shooting to the segment-emptiness problem combined with paramet-
ric search [2, 17, 11]. Generally, this works by turning an optimization problem
into a decision problem, with a parallel decision algorithm, and querying this
algorithm several times in a kind of binary search to find the optimal value of
the optimization problem. In our case we are interested in a data structure that
decides whether a line segment (χQ1

, 0), (χQ1
, t) intersects with any of the given

algebraic varieties. Then, this data structure is queried several times to find the
value t∗ such that (χQ1

, t∗) is the first intersection of the ray with the algebraic
variety corresponding to a point π1 of smallest distance D (π1, χQ1

). The para-
metric search technique usually generates a logarithmic overhead. For details

12

we refer the reader to [18, 2]. The decision problem for the segment emptiness
problem is directly related to point location: If a point (χQ1 , t) is contained in
the lower envelope of the arrangement, the segment (χQ1

, 0), (χQ1
, t) does not

intersect any of the given algebraic varieties.

Primal Dual

Ray Shooting in
Lower Envelope

Range Searching
(Partition Tree)

Point Location

Segment Emptiness

Nearest Neighbor
Problem

Figure 1: The diagram illustrates the trans-
formations from the nearest neighbor problem
to the final problem and its corresponding data
structure. Primary and Dual denote spaces
between which problem specific duality trans-
formations are defined. The dashed path de-
scribes the chain of transformations considered
in the standard approach while the solid arrow
shows our approach.

Point location cannot be done in
linear time when working with ar-
rangements, since their complexity is
usually super-linear in n. Therefore,
the algebraic varieties are translated
back to primal space using the dis-
tance function as the duality transfor-
mation, such that an algebraic variety
(χQ,D (π1, χQ)) becomes the point
π1 again. In this way, in primal
space, the point location problem re-
duces to (algebraic) range searching:
A point (χQ1

, t) in dual space is con-
tained in the lower envelope if in pri-
mal space none of the points in P are
contained in the range that is defined
by D (χQ1

, π)−t < 0, which is a func-
tion in π ∈ Rd with fixed parameters
χQ1

and t [17]. In the end the prob-
lem is also reduced to a range search-
ing data structure, but with a kind of mental overhead. If one aims for linear
space, it is a simpler alternative to stay directly in primal space and use the
presented framework.

Acknowledgments The authors would like to thank Peter Widmayer for
stimulating discussions and continuous support of this project. We are also
grateful to Jiri Matoušek for several discussions on the duality, arrangements
and tricky details.

References

[1] P. Agarwal and M. Sharir. Arrangements and their Applications. Handbook
of Computational Geometry, pages 49–119, 1998.

[2] P. K. Agarwal and J. Matoušek. Ray Shooting and Parametric Search. In
STOC’92: Proceedings of the 24th Annual ACM Symposium on Theory of
Computing, pages 517–526. ACM, 1992.

[3] P. K. Agarwal and J. Matoušek. On Range Searching with Semialgebraic
Sets. Discrete and Computational Geometry, 11(1):393–418, 1994.

13

[4] T. M. Chan. Optimal Partition Trees. In SCG’10: Proceedings of the 2010
Annual Symposium on Computational Geometry, pages 1–10. ACM, 2010.

[5] B. Chazelle. The Discrepancy Method. Cambridge University Press, 2000.

[6] B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite
VC-dimension. Discrete and Computational Geometry, 4(1):467–489, 1989.

[7] R. Cole and C.-K. Yap. Geometric Retrieval Problems. In FOCS’83: Pro-
ceedings of the 24th Annual IEEE Symposium on Foundations of Computer
Science, pages 112–121, 1983.

[8] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-
tational Geometry - Algorithms and Applications. Springer, 2nd edition,
2000.

[9] H. Edelsbrunner and R. Seidel. Voronoi Diagrams and Arrangements. Dis-
crete and Computational Geometry, 1(1):25–44, 1986.

[10] D. Haussler and E. Welzl. Epsilon-nets and Simplex Range Queries. In
SCG’86: Proceedings of the 2nd Annual Symposium on Computational Ge-
ometry, page 71. ACM, 1986.

[11] V. Koltun. Almost Tight Upper Bounds for Vertical Decompositions in
Four Dimensions. In FOCS’01: Proceedings of the 42nd Annual IEEE
Symposium on Foundations of Computer Science, pages 56–65. IEEE, 2001.

[12] R. Krauthgamer and J. Lee. Navigating Nets: Simple Algorithms for Prox-
imity Search. In SODA’04: Proceedings of the 15th annual ACM-SIAM
Symposium on Discrete Algorithms, pages 798–807. ACM, 2004.

[13] D. T. Lee and Y. T. Ching. The Power of Geometric Duality Revisited.
Information Processing Letters, 21:117–122, 1985.

[14] J. Matoušek. Construction of epsilon-Nets. Discrete & Computational
Geometry, 5:427–448, 1990.

[15] J. Matoušek. Efficient Partition Trees. Discrete and Computational Geom-
etry, 8(1):315–334, 1992.

[16] J. Matoušek. Geometric Discrepancy. Springer, 1999.

[17] J. Matoušek and O. Schwarzkopf. On Ray shooting in Convex Polytopes.
Discrete and Computational Geometry, 10(1):215–232, 1993.

[18] N. Megiddo. Applying Parallel Computation Algorithms in the Design of
Serial Algorithms. Journal of the ACM, 30(4):852–865, 1983.

[19] P. Mitra and B. B. Chaudhuri. Efficiently computing the closest point to
a query line. Pattern Recognition Letters, 19(11):1027–1035, 1998.

14

[20] P. Mitra and A. Mukhopadhyay. Computing a Closest Point to a Query
Hyperplane in Three and Higher Dimensions. In ICCSA’03: Proceedings
of the 2003 International Conferecnce on Computational Science and Its
Applications, pages 787–796, 2003.

[21] P. Mitra, A. Mukhopadhyay, and S. V. Rao. Computing the Closest Point
to a Circle. In CCCG’03: Proceedings of the 15th Canadian Conference on
Computational Geometry, pages 132–135, 2003.

[22] A. Mukhopadhyay. Using simplicial partitions to determine a closest point
to a query line. Pattern Recognition Letters, 24(12):1915–1920, 2003.

[23] M. Sharir and H. Shaul. Ray Shooting Amid Balls, Farthest Point from
a Line, and Range Emptiness Searching. In SODA’05: Proceedings of the
16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 525–
534, 2005.

15

