Skip to main content

Vision Based Facial Action Recognition System for People with Disabilities

  • Conference paper
Book cover Information Technologies in Biomedicine

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7339))

Abstract

Human-computer interaction (HCI) is an emerging field of science aimed at providing natural ways for humans to use computers. There are various approaches to build mouse alternatives. Unfortunatelly, many existing solutions are not designed for people with severe physical disabilities.

The work presented here is part of the larger project and focusses on facial action recognition framework and its components. It uses only optical observation - camera and image analysis and recognition algorithms. Proposed system gives possibility to serve the special needs of people with various disabilities, especially to use computers and possibly other devices. Consequently, in our opinion, it can offer disabled people access to a wide range of services which help them to participate more fully in society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augustyniak, P., Tadeusiewicz, R.: Complete Scanpaths Analysis Toolbox. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 1 (2006)

    Google Scholar 

  2. Betke, M., Gips, J., Fleming, P.: The camera mouse, Visual tracking of body features to provide computer access for people with severe disabilities. IEEE Trans. on Neural Systems and Rehabilitation Eng. 10(1), 1–10 (2002)

    Article  Google Scholar 

  3. Bobick, A.F., Davis, J.W.: Action Recognition Using Temporal Templates. In: CVPR 1997, pp. 125–146 (1997)

    Google Scholar 

  4. Bradski, G.R.: Computer Vision Face Tracking For Use in a Perceptual User Interface. Intel Technology Journal Q2 (1998)

    Google Scholar 

  5. Broniec, A.: Motion and motion intention representation in eeg signal and possibilities of application in man machine interface. Master’s thesis. AGH University of Science and Technology, Krakow (2007)

    Google Scholar 

  6. Evans, D.G., Drew, R., Blenkhorn, P.: Controlling mouse pointer position using an infrared head-operated joystick. Proc. IEEE Trans. 8(1), 107–117 (2000)

    CAS  Google Scholar 

  7. Gong, S., McKenna, S.J., Psarrou, A.: Dynamic Vision, From Images to Face Recognition. Imperial College Press, London (2000)

    Google Scholar 

  8. Grossberg, S.: How Does The Cerebral Cortex Work? Learning Attention, and Grouping by the Laminar Circuits of Visual Cortex (1999)

    Google Scholar 

  9. Hjelmas, E., Low, B.K.: Face detection. A Survey: Computer Vision and Image Understanding, 236–274 (2001)

    Google Scholar 

  10. Hsu, R.-L., Abdel-Mottaleb, M., Jain, A.K.: Face detection in color images. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 696–706 (2002)

    Article  Google Scholar 

  11. Isard, M., Blake, A.: CONDENSATION - conditional density propagation for visual tracking. Int. J. Computer Vision 29(1), 5–28 (1998)

    Article  Google Scholar 

  12. Keselman, Y., Dickinson, S.: Bridging the Representation Gap Between Models and Exemplars. In: Proc. IEEE Computer Society Workshop on Models versus Exemplars in Computer Vision (2001)

    Google Scholar 

  13. Lindeberg, T.: Scale-space theory, A basic tool for analysing structures at different scales. J. of Applied Statistics 21(2), 224–270 (1994)

    Google Scholar 

  14. Ober, J., Hajda, J., Loska, J.: Applications of eye movement measuring system ober2 to medicine and technology. In: Proceedings of SPIE (1997), doi:10.1117/12.280352

    Google Scholar 

  15. Oviatt, S.: Multimodal interfaces. In: Jacko, J., Sears, A. (eds.) Handbook of Human-Computer Interaction, Mahwah NJ Lawrence Erlbaum (2002)

    Google Scholar 

  16. Przybylo, J.: Eye and nostril localization for automatic calibration of facial action recognition system. Computer Recognition Systems 3 57, 53–61 (2009)

    Article  Google Scholar 

  17. Yilmaz, A., Javedb, O., Shah, M.: Object tracking. A Survey ACM Comput. Surv. 38(4), 13 (2006), doi:10.1145/1177352.1177355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Przybyło, J. (2012). Vision Based Facial Action Recognition System for People with Disabilities. In: Piętka, E., Kawa, J. (eds) Information Technologies in Biomedicine. Lecture Notes in Computer Science(), vol 7339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31196-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31196-3_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31195-6

  • Online ISBN: 978-3-642-31196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics