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Abstract. Software design patterns reflect software engineering prac-
tices and experience by documenting approved design solutions. We con-
sider here two widely used patterns, the Half-Sync/Half-Async and the
Leader/Followers pattern, which aim for efficient processing of messages
in multi-core environments.

We will analyze the performance differences not only between both de-
sign patterns but also between different implementation variants. These
variants use different event notification mechanisms which are used to
sense message arrivals on a set of connections. We will show that perfor-
mance depends not simply on data sharing or lock contention but on the
selected event notification primitives and their specific characteristics.

In more detail, we evaluated both patterns in terms of three different
event notification mechanisms: select, level-triggered and edge-triggered
epoll. The latter two are the operation modes of the epoll API. In
particular, the right choice of the API can influence the performance by
a factor of two. Secondly, the more recent epoll is overall faster, but in
some aspects slower which strongly degrades the Half-Sync/Half-Async
performance. Existing performance evaluations for these patterns do not
analyze their multi-core performance. Furthermore, they do not include
analysis of bottlenecks, data sharing, or operating system primitives.

1 Introduction

It is well known that designing efficient software is a challenging task. Software
design patterns can help in this process. They are created through careful anal-
ysis of existing software and capture designs that have proven useful and have
been used in many different systems. These design patterns then aid developers
by providing extensive experience.

We consider the problem of handling messages from a large number of input
streams on multiple cores of a single machine. There exist several design pat-
terns that aim to solve this problem. For this paper we choose two of the most
prominent ones, namely Half-Sync/Half-Async and Leader/Followers.

The Half-Sync/Half-Async pattern is widely used. It is used in the imple-
mentations of network stacks of most operating systems [9]. The work in [3]



found the pattern in 3 of 21 analyzed legacy software systems and their docu-
mentations. Both Half-Sync/Half-Async and Leader/Followers are also used in
multi-threaded implementations of OMG’s CORBA[2, 5, 7, 10].

Both patterns differ mainly in their distribution of tasks to threads. For in-
stance, the Leader/Followers pattern uses a pool of identical threads which have
to synchronize their access to the input streams. In contrast, Half-Sync/Half-
Async has a pipeline-architecture. It uses a dedicated thread to retrieve incom-
ing messages and forwards them to the remaining threads which process these
messages.

The performance of both patterns does not solely depend on their architec-
ture, i.e. usage of locks or sharing of data, but also on the availability of efficient
API’s to retrieve events about new messages from the operating system. In our
paper, we analyze the common API’s: select and the more recent epoll. Both
are used to retrieve such events from a set of open connections through a single
call. But the more recent epoll API was designed to handle high amounts of
connections more efficiently compared to select. Both are widely used in many
software systems but current software, e.g. Apache HTTP Server3, Kamailio4

(former OpenSER), or SQUID5, use epoll if available.

Our aim is to analyze the performance of the aforementioned design patterns
in conjunction with the different event notification mechanisms. We will show
that both design patterns have significantly different performance characteristics.
And we will show that performance depends not only on data sharing or lock
contention but on the event notification primitives selected and their specific
characteristics.

Both, the software design patterns and the event notification mechanisms
have been subject of evaluations before. These evaluations consider very specific
applications like web servers[1, 6] or CORBA [2, 5, 7, 10]. These include opera-
tions which are unrelated to patterns or notification mechanisms but affect per-
formance. Also, these benchmarks do not consider scalability but performance
for a particular set up. These set ups include up to quad-core CPU’s. Here, we
evaluate performance and scalability for up to 16 cores. Our set up uses two
comparable implementations of the patterns, which focus on the core problem.

2 I/O and Event Notification Mechanisms

In this section, we present the different event notification mechanisms which we
used to implement the Half-Sync/Half-Async and Leader/Followers patterns.

Retrieving information about message arrival on a single connection can be
done by reading from that connection. That operation will block until a message
arrives. For multiple connections this approach requires one thread per connec-
tion which is inefficient and often does not scale.

3 httpd.apache.org
4 www.kamailio.org
5 www.squid-cache.org



Another approach is to group all connections into a so-called interest set.
Instead of waiting for messages from a single connection, a specific call, the
event notification mechanism, is used to wait for messages on any connection
that is contained in the interest set.

We used two common event notification mechanisms: Firstly, the select

system call which is available on most operating systems. And secondly, the more
recent epoll, a Linux specific API which provides two modes: level-triggered and
edge-triggered. All three mechanisms are summarized in the following:

select The select API maintains the interest set, actually a bit set, in user
space. On each invocation that set is copied into kernel-space. select does
not return occurred events for a connection but the state of the same. Thus,
it does not report incoming messages but that data is available for reading.

epoll The epoll API maintains the interest set in kernel-space using a red-
black tree. Unlike select, an invocation returns a sub-set of the interest set,
such that idle connections are omitted. This makes epoll suitable for big
sets with a high number of idle connections.

level-triggered This mode behaves much like select since it returns the
state of a connection instead of events. Multi-threaded software has to
avoid that a connection is falsely reported several times to have data
available. For this purpose it is possible to deactivate a connection au-
tomatically. Once a connection is deactivated it has to be reactivated
explicitly using another system call.

edge-triggered In this mode, epoll does indeed return occurred events
and the software is required to manage connection state which hinders
programming. Since only new events are reported, it is not necessary to
de- and reactivate connections. This saves a system call per event and
may provide for better performance.

3 Design Patterns

In this section we briefly introduce the Half-Sync/Half-Async and the Leader/
Followers pattern. For a detailed description including both patterns we refer to
[8].

3.1 Half-Sync/Half-Async

The Half-Sync/Half-Async pattern provides parallelism by executing different
services in different threads. These services may communicate with each other
by utilizing a central queue and are divided into two groups:

Asynchronous services are triggered by events. These services can also pro-
cess data read from the queue.

Synchronous services get their data from the queue exclusively. If no data is
available these services wait for it to arrive.



Our implementation of Half-Sync/Half-Async, shown in Fig. 1, uses two kinds
of services. The first one, an asynchronous service, multiplexes events from a set
of event sources, indicating incoming messages. Each new event is inserted into
the queue for further processing. This service utilizes one thread. That decision
is motivated by the Leader/Followers pattern which has to synchronize its access
to the set of connections. We will explain this in detail in the next section. To
remain comparable only a single thread is allowed to multiplex these events.
Apart from this, a multi-threaded asynchronous service is possible. The second
service, a synchronous one, demultiplexes events from the queue to multiple
threads which process them, one at a time. Processing essentially consists of
reading the message, sending the response and, in case of level-triggered epoll

and select, reactivation of the connection. Pseudo code for both services is
shown in Fig. 2 and 3.
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Fig. 1. Components of the Half-Sync/Half-Async pattern

loop f o r e v e r
do

p o l l system f o r events

f o r each repor ted event
do

push event in to queue
done

done

Fig. 2. Pseudo code of the asynchro-
nous service

loop f o r e v e r
do

pop event from queue

read message
proce s s message
send response
r e a c t i v a t e connect ion

done

Fig. 3. Pseudo code of the synchronous
service; the code is executed by each of
the multiple threads

The access to the event sources is more subtle than shown in Fig. 1. The asyn-
chronous service must access these to report any new events. The synchronous
service on the other hand must access these when sending or receiving on the
associated connection.

The pattern as shown above has three potential bottlenecks: the asynchronous
service, the queue, and the synchronous service. The asynchronous service may



bottleneck because of his single thread. If the thread reaches full utilization, the
throughput reaches its maximum. The queue is a central resource protected by a
mutex. If the number of threads is too high, lock contention is going to decrease
overall performance. The threads of the synchronous service, especially in case
of level-triggered epoll, have to perform connection reactivation. It includes a
lock (in the kernel) which may be heavily contended.

3.2 Leader/Followers

The Leader/Followers pattern organizes its threads in a thread pool. All threads
try to access the set of event sources and therefore must synchronize. To obtain
an event one of the synchronous notification mechanisms are used and, if neces-
sary, the connection is deactivated. Once a new event is obtained, it is processed
by the same thread. Several threads may process distinct events in parallel. As
was the the case for Half-Sync/Half-Async, processing consists of reading the
message, sending the response and, in case of level-triggered epoll and select,
reactivation of the connection. After processing has been finished the thread
becomes idle and tries again to get access to the set of event sources. Figure 4
shows this cycle and Fig. 5 shows the pseudo code.

Process 
Event

De-Multiplex 
Event

Serializerevent
sources

(connections)

Fig. 4. Execution cycle each thread in the Leader/Followers pattern performs

loop f o r e v e r
do

ente r mutual e x c l u s i v e s e c t i o n
p o l l system f o r one new event

l eave mutual e x c l u s i v e s e c t i o n

read message that caused event
p roce s s message
send response

r e a c t i v a t e connect ion
done

Fig. 5. Pseudo code of the work that each thread in the Leader/Followers pattern
performs



The performance of the Leader/Followers pattern is governed by a serial sec-
tion in which the event notification mechanism is invoked. In our implementation
serial access is enforced by a mutex.

Since all threads execute the same tasks they also have to share all data. In
particular these are the state of the event sources and the data needed for any
specific event notification mechanism.

4 Evaluation Set-Up

For the evaluation, presented in Sect. 5, we use two measurement metrics to sup-
port our findings: throughput and the time required for certain operations. These
metrics were not measured during a complete run. Instead each run consists of
3 phases. The initialization phase, the measurement phase and the shutdown
phase. The first and the last did not participate in measurements.

The steady-state throughput is measured in messages per second. For more
detailed analysis we measured the service times of certain operations. Each par-
ticular measurement was run 5 times over a period of 5 minutes each. We present
the mean value of these 5 runs. For the measurement of the service times an oper-
ation was surrounded by primitives returning the time difference in nano-second
granularity.

For the evaluation we use a request-response micro-benchmark utilizing 512
TCP/IP connections lasting over an entire run. The client component sends for
each connection at most one request at a time. Only when the reply was received
a new request is send. To support high throughput the client maintains as many
threads as CPU cores are assigned to it.

The evaluation was performed on an AMD Opteron 6134 system with 4
CPU’s supporting 8 cores each, and clocked at 2.3GHz. As operating system
we are using Linux with kernel-version 2.6.35. Client and server component are
assigned to 2 CPUs each, hence each use up to 16 cores. The distribution was
chosen so that CPU resources, e.g. caches or the memory bus, are not shared
between both components.

For the evaluation the Leader/Followers pattern was run with 1 to 16 threads
and Half-Sync/Half-Async with 2 to 16 threads, since that pattern requires at
least two threads.

Message processing consists of reading the message, performing a simulated
workload through busy waiting a defined duration, and sending a response.
Throughout Sect. 5 we assume that this workload takes 0µs.

5 Evaluation Results

In the following, we discuss the main results of our evaluation, comparing the
two patterns and APIs in detail.

Figure 6 shows the steady-state throughput of both patterns and all event
notification mechanisms described in Sect. 2. In the best case, i.e. using edge-
triggered epoll, the Half-Sync/Half-Async pattern outperforms the Leader/



Followers pattern. Figure 7 also shows that this is achieved with 10 instead
of 13 threads. However, beyond 11 threads Leader/Followers shows better per-
formance, as the Half-Sync/Half-Async has significant performance loss if too
many cores are used.
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Fig. 6. Steady-state throughput of the Half-Sync/Half-Async and Leader/Followers
patterns; both patterns are shown with their three implementation variants: select,
level-triggered epoll, and edge-triggered epoll
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Fig. 7. Scaling of Half-Sync/Half-Async and Leader/Followers (both edge-triggered
epoll) over increasing numbers of threads

5.1 Half-Sync/Half-Async

The Half-Sync/Half-Async pattern consists of a two-staged pipeline: The first
stage is the asynchronous service and the second stage is the synchronous one.
Thus, best performance is achieved if both services are fully utilized and perform
equally fast.

In case of edge-triggered epoll and select both services are fully utilized if
the synchronous service uses 9 threads (Fig. 8), i.e. 10 threads are used overall.
Using fewer threads causes an under-utilization of the asynchronous service.
Figure 9 shows the time which is required to obtain a new event and the time it
takes to put it into the queue. For small numbers of threads the asynchronous
service spends its time waiting on new events, i.e. incoming messages. Adding
threads to the synchronous service increases processing rate and in turn increases
the number of overall messages in our benchmark system. This increased rate is
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Fig. 9. Half-Sync/Half-Async (edge-triggered epoll): Average required time to obtain
one event and to insert it into the queue

observable through the reduced time spent for waiting. This rate is decreasing
with the same rate as threads are added to the synchronous service.

The gap between the peak performance of the select- and the edge-triggered
epoll-based implementation is caused by differences in the API’s. Since select

maintains its interest set in the user space, that set is required as parameter
to the call. The same parameter is used to return the desired information and
is therefore altered in place. This has to effects: On the one hand, a copy of
the interest set is required instead of the original one. One the other hand,
since the interest set is a bit set, the returned set has to be scanned for the
desired information. In the worst case, the entire set contains only one event
indication. We evaluated the number of events returned in average. We found
that, in case of Half-Sync/Half-Async, no more than 8 such events are reported.
In contrast, epoll omits the copy and also requires no scan since all returned
elements indicate events.

The case of level-triggered epoll requires a more detailed analysis: Figure 10
shows the time it takes to process a single message and breaks that time down
into the three operations reception, connection re-activation, and transmission
of the response.

Connection deactivation is needed for select and level-triggered epoll to
avoid that new messages are reported several times. Deactivation is performed
automatically without performance loss and we do not consider it here. Re-
activation after reading data is needed to receive the next data on one socket.
In case of select it is performed by atomically setting a bit in the interest set.
In case of level-triggered epoll the operation is much more time consuming.
It requires a switch into kernel space, where the epoll API then searches the
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gle event, split into its basic operations receive, re-activate (connection), and send (a
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connection within a red-black tree and makes it available for subsequent calls.
Afterwards it checks if events are already available and sets a specific flag in the
control structure. Both operations are part of a serial section which is guarded by
a lock. As Fig. 10 shows, the costs of these operations increase with the number
of threads which inhibits a further increase of overall throughput.

5.2 Leader/Followers

The performance of the Leader/Followers pattern is limited by the serial section
in which the set of event sources is accessed. Thus, there is a sweet spot at which
the time required to process a message divided by the number of threads equals
the time required to perform the serial section. Adding more threads does not
increase performance.

Figure 11 shows the throughput achieved with each notification mechanism.
Striking is the performance difference between the edge-triggered epoll- and the
select-based implementation. Also the graph of level-trigger epoll is peculiar.
We will explain both peculiarities in the following:
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Compared to Half-Sync/Half-Async the Leader/Followers pattern is more
sensible for the efficiency of select. The Half-Sync/Half-Async pattern is not
limited by its asynchronous service and hence, not limited by the efficiency of
select. On the contrary, in case of Leader/Followers the lower performance of
select takes effect (Fig. 12). Thus, on average a call to select needs almost 80%
longer to complete than one to edge-triggered epoll. Hence, the serial section
takes longer which causes a lower performance limit.
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The case of level-triggered epoll is similar to that of the Half-Sync/Half-
Async pattern. As Fig. 13 shows the time required for processing a message
increases as well. As before, this is again caused by connection re-activation. In
consequence, increasing the number of threads compensates for the increased
processing time but does not increase performance.
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6 Related Work

In the existing literature, patterns and multi-threading strategies related to
event handling are often implemented and evaluated in the context of OMG’s
CORBA[2, 5, 7, 10] and web servers[4, 1, 6]. In both cases Half-Sync/Half-Async
and Leader/Followers are used to parallelize request processing.

Evaluation of performance is present in most of these papers but is performed
on quad-core processors at best. Also benchmarks are affected by application-
specific infrastructure. Only [7] compares Half-Sync/Half-Async and Leader/Fol-
lowers but does not provide any detailed analysis about the results. The authors
found that Leader/Followers generally outperforms Half-Sync/Half-Async. Al-
though not stated explicitly, the description of Half-Sync/Half-Async suggests
that asynchronous operations are used for notification about incoming requests
while select is used for Leader/Followers. In an earlier paper[4] the authors
found that those asynchronous operations are efficient only for big messages of
at least 50kByte.



In [1] select and epoll are evaluated in the context of userver6 using dual-
core Xeon system. In case of many idle connections, the authors found epoll to
perform better than select. On the contrary, in case of few or no idle connec-
tions, both can perform equally well. Similar findings are presented in [6]. This
paper uses a quad-core Xeon system but does not evaluate scalability. Both pa-
pers evaluated level-triggered epoll and used connection de- and reactivation.
They consistently found that connection reactivation slowed down their bench-
marks.

7 Conclusions

In this paper we evaluated the software design patterns Half-Sync/Half-Async
and Leader/Followers. We implemented both patterns in terms of three different
event notification mechanisms: select, level-triggered and edge-triggered epoll.
The latter two are the operation modes of the epoll API.

In summary, we found that the performance of both patterns highly depends
on the efficiency of the utilized API. We observed speed-ups up to 2 just by
switching from select to edge-triggered epoll. Hence, the developer of such
patterns currently has to know the multi-core or parallel performance impact
of the specific aspects of the patterns and APIs in order to obtain optimal
performance.

The Leader/Followers pattern has lower peak performance but does not de-
grade as strongly as Half-Sync/Half-Async if too many cores are used. In prac-
tice, this means that the patterns should adapt the number of cores according
to load.

In more detail: Although epoll is generally faster, connection reactivation
is slower than the corresponding select implementation. I.e. the operation of
reactivation is slower and in particular does not perform well for multi-core
environments with many threads. In our case, this has led to the case that Half-
Sync/Half-Async has performed better with select than with level-triggered
epoll. The reason is that the reactivation is performed within the critical
pipeline stage of this pattern. Hence, it causes performance loss.

On the other hand, if the event notification mechanism is called within the
critical path, as is the case for the Leader/Followers pattern, select is outper-
formed by epoll.
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