Skip to main content

Sensitivity of Self-tuning Histograms: Query Order Affecting Accuracy and Robustness

  • Conference paper
Book cover Scientific and Statistical Database Management (SSDBM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7338))

Abstract

In scientific databases, the amount and the complexity of data calls for data summarization techniques. Such summaries are used to assist fast approximate query answering or query optimization. Histograms are a prominent class of model-free data summaries and are widely used in database systems.

So-called self-tuning histograms look at query-execution results to refine themselves. An assumption with such histograms is that they can learn the dataset from scratch. We show that this is not the case and highlight a major challenge that stems from this. Traditional self-tuning is overly sensitive to the order of queries, and reaches only local optima with high estimation errors. We show that a self-tuning method can be improved significantly if it starts with a carefully chosen initial configuration. We propose initialization by subspace clusters in projections of the data. This improves both accuracy and robustness of self-tuning histograms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baltrunas, L., Mazeika, A., Böhlen, M.H.: Multi-dimensional histograms with tight bounds for the error. In: IDEAS, pp. 105–112 (2006)

    Google Scholar 

  2. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When Is ”Nearest Neighbor” Meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Bruno, N., Chaudhuri, S., Gravano, L.: Stholes: a multidimensional workload-aware histogram. SIGMOD Rec. 30, 211–222 (2001)

    Article  Google Scholar 

  4. Deshpande, A., Garofalakis, M., Rastogi, R.: Independence is good: dependency-based histogram synopses for high-dimensional data. SIGMOD Rec. 30, 199–210 (2001)

    Article  Google Scholar 

  5. Gunopulos, D., Kollios, G., Tsotras, V.J., Domeniconi, C.: Approximating multi-dimensional aggregate range queries over real attributes. SIGMOD Rec. 29, 463–474 (2000)

    Article  Google Scholar 

  6. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Yormark, B. (ed.) SIGMOD 1984, Proceedings of Annual Meeting, Boston, Massachusetts, June 18-21, pp. 47–57. ACM Press (1984)

    Google Scholar 

  7. Khachatryan, A., Müller, E., Böhm, K., Kopper, J.: Efficient Selectivity Estimation by Histogram Construction Based on Subspace Clustering. In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 351–368. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Luo, J., Zhou, X., Zhang, Y., Shen, H.T., Li, J.: Selectivity estimation by batch-query based histogram and parametric method. In: ADC 2007, pp. 93–102. Australian Computer Society, Inc., Darlinghurst (2007)

    Google Scholar 

  9. Müller, E., Günnemann, S., Assent, I., Seidl, T.: Evaluating clustering in subspace projections of high dimensional data. PVLDB 2(1), 1270–1281 (2009)

    Google Scholar 

  10. Muthukrishnan, S., Poosala, V., Suel, T.: On Rectangular Partitionings in Two Dimensions: Algorithms, Complexity, and Applications. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 236–256. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Poosala, V., Ioannidis, Y.E.: Selectivity estimation without the attribute value independence assumption. In: VLDB 1997, pp. 486–495. Morgan Kaufmann Publishers Inc., San Francisco (1997)

    Google Scholar 

  12. Roh, Y.J., Kim, J.H., Chung, Y.D., Son, J.H., Kim, M.H.: Hierarchically organized skew-tolerant histograms for geographic data objects. In: SIGMOD 2010, pp. 627–638. ACM, New York (2010)

    Google Scholar 

  13. SDSS Collaboration. Sloan Digital Sky Survey (August 27, 2011)

    Google Scholar 

  14. Sellis, T.K., Roussopoulos, N., Faloutsos, C.: The r+-tree: A dynamic index for multi-dimensional objects. In: VLDB, pp. 507–518 (1987)

    Google Scholar 

  15. Srivastava, U., Haas, P.J., Markl, V., Kutsch, M., Tran, T.M.: Isomer: Consistent histogram construction using query feedback. In: ICDE 2006, p. 39. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

  16. Wang, H., Sevcik, K.C.: A multi-dimensional histogram for selectivity estimation and fast approximate query answering. In: CASCON 2003, pp. 328–342. IBM Press (2003)

    Google Scholar 

  17. Wang, H., Sevcik, K.C.: Histograms based on the minimum description length principle. The VLDB Journal 17 (May 2008)

    Google Scholar 

  18. Yiu, M.L., Mamoulis, N.: Frequent-pattern based iterative projected clustering. In: ICDM 2003, pp. 689–692 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khachatryan, A., Müller, E., Stier, C., Böhm, K. (2012). Sensitivity of Self-tuning Histograms: Query Order Affecting Accuracy and Robustness. In: Ailamaki, A., Bowers, S. (eds) Scientific and Statistical Database Management. SSDBM 2012. Lecture Notes in Computer Science, vol 7338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31235-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31235-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31234-2

  • Online ISBN: 978-3-642-31235-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics