The complexity of string partitioning

Anne Condon ${ }^{1}$, Ján Maňuch ${ }^{1,2}$, and Chris Thachuk ${ }^{1}$
${ }^{1}$ Dept. of Computer Science, University of British Columbia, Vancouver BC, Canada, \{condon, jmanuch, cthachuk\}@cs.ubc.ca
${ }^{2}$ Dept. of Mathematics, Simon Fraser University, Burnaby BC, Canada

Abstract

Given a string w over a finite alphabet Σ and an integer K, can w be partitioned into strings of length at most K, such that there are no collisions? We refer to this question as the string partition problem and show it is NP-complete for various definitions of collision and for a number of interesting restrictions including $|\Sigma|=2$. This establishes the hardness of an important problem in contemporary synthetic biology, namely, oligo design for gene synthesis.

1 Introduction

Many problems in genomics have been solved by the application of elegant polynomial-time string algorithms, while others amount to solving known NPcomplete problems; for instance, sequence assembly amounts to solving shortest common superstring [11], and genome rearrangement to sorting strings by reversals and transpositions [2]. The hardness of these problems has motivated extensive research into heuristic algorithms as well as polynomial-time algorithms for useful restrictions $[6,10,19,9,8,14,16]$. In a similar vein, we establish the hardness of the following fundamental question: can a string be partitioned into factors (i.e. substrings), of bounded length, such that no two collide? We refer to this as the string partition problem and study it under various restrictions and definitions of what it means for two factors to collide.

The study of string partitioning is motivated by an increasingly important problem arising in contemporary synthetic biology, namely gene synthesis. This technology is emerging as an important tool for a number of purposes including the determination of RNAi targeting specificity of a particular gene [12], design of novel proteins [5] and the construction of complete bacterial genomes [7]. There have been numerous studies utilizing synthetic genes to determine the potential of gene vaccines $[13,3,17,1]$. Despite the tremendous need for synthetic genes for both interrogative studies and for therapeutics, construction of genes, or any long DNA or RNA sequence, is not a trivial matter. Current technology can only produce short oligonucleotides (oligos) accurately. As such, a common approach is to design a set of oligos that could assemble into the desired sequence [18].

To understand the connection between string partitioning and gene synthesis, consider the following. A DNA oligo, or strand is a string over the four letter alphabet $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$. The reverse complement F^{\prime} of an oligo F is determined from F by replacing each A with a T and vice versa, each C with a G and
vice versa, and reversing the resulting string. Two DNA oligos F and F^{\prime} are said to hybridize if a sufficiently long factor of F is the reverse complement of a factor of F^{\prime} (see Figure 1). A DNA duplex consists of a positive strand and its reverse complement, the negative strand. The collision-aware oligo design for gene synthesis (CA-ODGS) problem is to determine cut points in the positive and negative strands, which demarcate the oligos to be synthesized, such that the resulting design will successfully self-assemble. For the oligos to self-assemble correctly, they should 1) alternate between the positive and negative strands, with some overlap between successive oligos, and 2) only hybridize to the oligos they overlap with by design. Since there is variability in the length of the selected oligos, there are exponentially many designs.

Fig. 1. An intended self-assembly (top) of a set of oligos for a desired DNA duplex. A foiled self-assembly (bottom) of the same oligos due to d and h being identical.

In previous work [4], the authors provided some evidence that the CA-ODGS problem may be hard by showing that partitioning a string into factors, of bounded length, such that no two are equal is NP-complete, even for strings over a quaternary alphabet. See Figure 1 for an example design that assembles incorrectly into two fragments, with the wrong ordering of oligos and therefore primary sequence, due to identical oligos. In this work, we study the underlying string partition problem in much greater detail. We show that partitioning strings such that no selected string is a copy/factor/prefix/suffix of another is NP-complete. We begin by showing that the more general problem of partitioning a set of strings is hard and then we show how those instances can be reduced to single string instances, for each respective definition of collision. See Figure 2 for an example of a single string instance (left) and set of strings instance (right). In all cases, we demonstrate the problems remain hard even when restricted to binary strings.

Fig. 2. (Left) Two partitions are shown for the string mississippi. The selected strings in both partitions have maximum length 2. The partition shown above the string is factor-free: no selected string is a factor of another; however, the partition shown below the string is not factor-free. (Right) A valid factor-free multiple string partition of a set of three strings into selected strings of maximum length 3 .

2 Preliminaries

A string w is a sequence of letters over an alphabet Σ. Let $|w|$ denote the length of w, w^{R} a mirror image (reversal) of w, and let $(w)^{i}$ denote the string w repeated i times. The empty string is denoted as ε. String x is a factor of w if $w=\alpha x \beta$, for some (possibly empty) strings α and β. Similarly, x is a prefix (suffix) of w if $w=x \beta(w=\alpha x)$ for some (possibly empty) strings α and β. The prefix (suffix) of length k of w will be denoted as $\operatorname{prefix}_{k}(w)\left(\operatorname{suffix}_{k}(w)\right)$.

A K-partition of w is a sequence $P=p_{1}, p_{2}, \ldots, p_{l}$, for some l, where each p_{i} is a string over Σ of length at most K and $w=p_{1} p_{2} \ldots p_{l}$. We say that strings p_{1}, \ldots, p_{l} are selected in the K-partition and that strings $p_{i} \ldots p_{j}, 1 \leq i \leq j \leq l$, are super-selected, with respect to the selected strings. We say P is equalityfree, prefix-free, suffix-free, or factor-free if for all $i, j, 1 \leq i \neq j \leq l$, neither p_{i} nor p_{j} is a copy, prefix, suffix, or factor, respectively, of the other. We say such partitions are valid (for the problem in question); otherwise, we say the partition contains a collision. We generalize the notion of a K-partition to a set of strings \mathcal{W} to mean a K-partition for each string in \mathcal{W}. The length of \mathcal{W} is the combined length of the strings in the set and will be denoted by $\|\mathcal{W}\|$. A K-partition for a set of strings is valid if no two elements in any, possibly different, partition collide. Finally, we will refer to the boundaries of a partition of string w as cut points, where the first cut point 0 and the last cut point $|w|$ are called trivial. For instance, the first partition of mississippi in Figure 2 has the following non-trivial cut points $1,3,5,7$ and 9 .

In what follows we will prove NP-completeness of various string partitioning problems by showing a polynomial reduction from an arbitrary instance of 3SAT(3), a problem shown to be NP-complete by Papadimitriou [15].

Problem 1 (3SAT(3)).
Instance: A formula ϕ with a set C of clauses over a set X of variables in conjunctive normal form such that:

1. every clause contains two or three literals,
2. each variable occurs in exactly three clauses, once negated and twice positive.

Question: Is ϕ satisfiable?

3 The String Partition Problems

Fig. 3. Chain of reductions for different string partition variations from original 3SAT(3) problem. K is maximum selected string size and L is maximum alphabet size. Parameters are unbounded if not shown. $E F, F F$ and $P F$ are equality-free, factor-free, and prefix(suffix)-free, respectively.

For each \mathcal{X} in \{equality, prefix, suffix, factor\}, we will consider two string partition problems.

Problem 2 (\mathcal{X}-Free Multiple String Partition (\mathcal{X}-MSP) Problem).
Instance: Finite alphabet Σ of size L, a positive integer K, and a set of strings \mathcal{W} over Σ^{*}.
Question: Is there an \mathcal{X}-free, K-partition P of \mathcal{W} ?
Problem 3 (\mathcal{X}-Free String Partition (\mathcal{X}-SP) Problem).
Instance: Finite alphabet Σ of size L, a positive integer K, and a string w over Σ^{*}.
Question: Is there an \mathcal{X}-free, K-partition P of w ?
We will show NP-completeness of all these problems even when restricted to the constant size of the partition $(K=2,3)$, or to the binary alphabet $(L=2)$. See Figure 3 showing the chain of reductions used to prove the complexity of the three variations and related restrictions of the problem.

4 Equality-Free String Partition Problems

4.1 Equality-Free Multiple String Partition with Unbounded Alphabet

We now describe a polynomial reduction from 3SAT(3) to EF-MSP with $K=$ 2 and unbounded alphabet. Let ϕ be an instance of $3 \operatorname{SAT}(3)$, with set $C=$ $\left\{c_{1}, \ldots, c_{m}\right\}$ of clauses, and set $X=x_{1}, \ldots, x_{n}$ of variables. We shall define an alphabet Σ and construct a set of strings \mathcal{W} over Σ^{*}, such that \mathcal{W} has a
collision-free 2-partition if and only if ϕ is satisfiable. Let $\left|c_{i}\right|$ denote the number of literals contained in the clause c_{i} and let $c_{i}^{1}, \ldots, c_{i}^{\left|c_{i}\right|}$ be the literals of clause c_{i}.

We construct \mathcal{W} to be a union of three types of strings: clause strings (\mathcal{C}), enforcer strings (\mathcal{E}) and forbidden strings (\mathcal{F}). First, for each clause of ϕ, we create a clause string C such that an equality-free 2-partition of \mathcal{C} unambiguously selects exactly one literal from C. We refer to the selected strings corresponding to literals as selected literals. Intuitively, the selected literals of the clause strings are intended to be a satisfying truth assignment for the variables of ϕ. Second, for each variable we create an enforcer string to ensure that selected literals are consistent. Specifically, the enforcer strings ensure that a positive and a negative literal for the same variable cannot be simultaneously selected. Finally, we find it helpful to create so called forbidden strings that ensure certain strings cannot be selected in the clause and enforcer strings.

We construct an alphabet Σ, formally defined below, which includes a letter for each literal occurrence in the clauses, one letter for each variable, and the letters \boxminus and \boxplus used as delimiters.

$$
\Sigma=\left\{\hat{x}_{i} ; x_{i} \in X\right\} \cup\left\{\hat{c}_{i}^{j} ; c_{i} \in C \wedge 1 \leq j \leq\left|c_{i}\right|\right\} \cup\{\boxminus, \boxplus\}
$$

Note that $|\Sigma|$ is linear in the size of the $3 \mathrm{SAT}(3)$ problem ϕ (at most $n+$ $3 m+2$).

Construction of forbidden strings: To ensure that certain strings cannot be selected in \mathcal{C} or \mathcal{E}, we will use the following set of forbidden strings $\mathcal{F}=\{\boxminus, \boxplus\}$.
Observation 1 No string from the forbidden set \mathcal{F} can be selected in \mathcal{C} or \mathcal{E}.
Construction of clause strings: For each clause $c_{i} \in C$, construct the i-th clause string to be $\hat{c}_{i}^{1} \boxminus \hat{c}_{i}^{2}$ if $\left|c_{i}\right|=2$, and $\hat{c}_{i}^{1} \boxminus \hat{c}_{i}^{2} \boxminus \hat{c}_{i}^{3}$ if $\left|c_{i}\right|=3$.

Fig. 4. The 2-literal clause string (left) and 3-literal clause string (right) used in the reduction from 3SAT(3) to EF-MSP. Shown below each string are all valid 2-partitions. Selected literals of a partition are shown in red.

Lemma 1. Given that no string from the forbidden set \mathcal{F} is selected in \mathcal{C}, exactly one literal letter must be selected for each clause string in any equality-free 2partition of \mathcal{C}.
Proof. Consider the clause string for clause c_{i}. Whether c_{i} has two or three literals, the forbidden substring \boxminus cannot be selected alone. Therefore, each \boxminus must be selected with an adjacent literal letter. This leaves exactly one other literal letter which must be selected (see Figure 4).

Construction of enforcer strings: We must now ensure that no literal of ϕ that is selected in \mathcal{C} is the negation of another selected literal. By definition of $3 \mathrm{SAT}(3)$, each variable appears exactly three times: twice positive and once negated. Let c_{i}^{p} and c_{j}^{q} be the two positive and c_{k}^{r} the negated occurrences of a variable x_{v}. Then construct the enforcer string for this variable as follows $\hat{c}_{i}^{p} \boxplus \hat{c}_{k}^{r} \hat{x}_{v} \hat{c}_{k}^{r} \hat{x}_{v} \hat{c}_{k}^{r} \boxplus \hat{c}_{j}^{q}$.

Fig. 5. All possible 2-partitions are shown for the enforcer string of a variable x_{v} having two positive literals c_{i}^{p} and c_{j}^{q}, and one negative literal c_{k}^{r}. In each partition, either \hat{c}_{k}^{r} is selected or both \hat{c}_{i}^{p} and \hat{c}_{j}^{q} are which guarantees that letters for positive and negated literals of x_{v} cannot be simultaneously selected in \mathcal{C}.

Lemma 2. Given that no string from the forbidden set \mathcal{F} is selected in $\mathcal{C} \cup \mathcal{E}$, any equality-free 2-partition of $\mathcal{C} \cup \mathcal{E}$ must be consistent. In addition, for any consistent choice of selecting letters for literals in \mathcal{C}, there is an equality-free 2-partition of $\mathcal{C} \cup \mathcal{E} \cup \mathcal{F}$.
Proof. Consider the enforcer string for variable x_{v} with positive literals $c_{i}^{p}=$ $c_{j}^{q}=x_{v}$, and the negated literal $c_{k}^{r}=\neg x_{v}$. Figure 5 shows all 9 possible 2 partitions of the enforcer string (since \boxplus is a forbidden string, each \boxplus must be selected with an adjacent letter). It follows that in each of them either \hat{c}_{k}^{r} is selected or both \hat{c}_{i}^{p} and \hat{c}_{j}^{q} are. In the first case, \hat{c}_{k}^{r} cannot be selected in \mathcal{C} and thus satisfied literals are chosen consistently for x_{v}. In the second case, letters for neither of the positive occurrences of x_{v} can be selected in \mathcal{C}.

To show the second part of the claim, observe that there is a 2-partition of the enforcer string compatible with any of four valid combinations of selecting letters for the corresponding literals in \mathcal{C} (for example, by choosing the fifth or the last 2-partitions in Figure 5). Since enforcer strings share only one letter in common, namely, \boxplus, which is never selected in the enforcer strings, there are no collisions between 2-partitions of all enforcer strings. Furthermore, there are no collisions between strings selected in \mathcal{C} and in \mathcal{E} : strings of length two selected in \mathcal{C} contain the letter \boxminus, which does not appear in the enforcer strings; strings of length one are literals and the partitioning of enforcer strings was chosen in a way that literals (in \mathcal{C}) cannot be selected again in \mathcal{E}.

This completes the reduction. Notice that the reduction is polynomial as the combined length of the constructed set of strings $\mathcal{W}=\mathcal{C} \cup \mathcal{E} \cup \mathcal{F}$ is at most $5 m+9 n+2$.

Theorem 1. Equality-Free Multiple String Partition (EF-MSP) is $\boldsymbol{N P}$-complete for $K=2$.
Proof. It is easy to see that EF-MSP Problem is in NP: a nondeterministic algorithm need only guess a partition P where $\left|p_{i}\right| \leq K$ for all p_{i} in P and check in polynomial time that no two strings in P are equal. Furthermore, it is clear that an arbitrary instance ϕ of $3 \mathrm{SAT}(3)$ can be reduced to an instance of EF-MSP, specified by a set of strings $\mathcal{W}=\mathcal{C} \cup \mathcal{E} \cup \mathcal{F}$, in polynomial time and space by the reduction detailed above.

Now suppose there is a satisfying truth assignment for ϕ. Simply select one corresponding true literal per clause in \mathcal{C}. The construction of clause strings guarantees that a 2-partition of the rest of each clause string is possible. Also, since a satisfying truth assignment for ϕ cannot assign truth values to opposite literals, then Lemma 2 guarantees that a valid partition of the enforcer strings is possible which does not conflict with the clause strings. Therefore, there exists an equality-free multiple string partition of \mathcal{W}.

Likewise, consider an equality-free multiple string partition of \mathcal{W}. Lemma 1 ensures that at least one literal per clause is selected. Furthermore, Lemma 2 guarantees that if there is no collision, then no two selected variables in the clauses are negations of each other. Therefore, this must correspond to a satisfying truth assignment for ϕ (if none of the three literals of a variable is selected in the partition of \mathcal{C} then this variable can have arbitrary value in the truth assignment without affecting satisfiability of ϕ).

4.2 Equality-Free String Partition with Unbounded Alphabet

Theorem 2. Equality-Free String Partition (EF-SP) is $\mathbf{N P}$-complete for $K=$ 2.

Proof. To show that EF-SP Problem for $K=2$ is NP-complete, we will reduce EF-MSP Problem for $K=2$ to it. Consider an arbitrary instance I of EF-MSP having a set of strings $\mathcal{W}=\left\{w_{1}, w_{2}, \ldots, w_{\ell}\right\}$ over alphabet Σ, and maximum partition size $K=2$. We construct an instance \bar{I} of EF-SP as follows. Let $\widehat{\Sigma}=\{\boxtimes\} \cup\left\{d_{i}\right.$, for $\left.1 \leq i<\ell\right\}$, where $\widehat{\Sigma} \cap \Sigma=\emptyset$. Set the alphabet of \bar{I} to $\bar{\Sigma}=\Sigma \cup \widehat{\Sigma}$ and the maximum partition size to $\bar{K}=2$. Note that $|\bar{\Sigma}|=|\Sigma|+\ell$. Finally, construct the string

$$
\bar{w}=\boxtimes \boxtimes \boxtimes \boxtimes \boxminus w_{1} d_{1} \boxtimes \boxtimes d_{1} w_{2} d_{2} \boxtimes \boxtimes d_{2} \ldots d_{\ell-1} \backsim \square d_{\ell-1} w_{\ell}
$$

The prefix of \bar{w} of length five can be partitioned in two different ways each selecting \boxtimes. Consequently, in any 2-partition of \bar{w}, remaining occurrences of \checkmark must be selected together with an adjacent letter different from \square, i.e., all strings $d_{i} \square$ and $\boxtimes d_{i}$ must be selected. Therefore, any 2-partition of \bar{w} contains a 2-partition of \mathcal{W} and the strings $\mathcal{D}=\left\{\square, \boxtimes \square, \boxtimes \boxminus, d_{1} \square, \square d_{1}, \ldots, d_{\ell-1} \square, \square d_{\ell-1}\right\}$. On the other hand, since all strings in \mathcal{D} contain $\boxtimes \notin \Sigma$, any 2-partition of \bar{w} together with \mathcal{D} forms a 2-partition of \mathcal{W}. It follows that there is a 2-partition of \mathcal{W} if and only if there is a 2 -partition of \bar{w}. The reduction is in polynomial time and space as $|\bar{w}|=\|\mathcal{W}\|+4 \ell+1$.

4.3 Equality-Free Multiple String Partition with Binary Alphabet

Theorem 3. The EF-MSP with maximum partition size $K=2$ can be polynomially reduced to the EF-MSP Problem with the alphabet size $L=2$. Consequently, the EF-MSP is NP-complete for binary alphabet. In addition, this reduction satisfies the following property: for any set C containing n distinct strings of length δ, where n is the size of the alphabet of the EF-MSP with maximum partition size $K=2$ and $\delta \geq \log _{2} n$, every selected word in a valid partition (if it exists) of the EF-MSP with the binary alphabet is a prefix of a string in C^{2}, and its maximum partition size is $\bar{K}=2 \delta$.

Proof. We will show a reduction from the EF-MSP with maximum partition size $K=2$. Consider an arbitrary instance I of EF-MSP having a set of strings $\mathcal{W}=\left\{w_{1}, w_{2}, \ldots, w_{\ell}\right\}$ over alphabet $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$, and maximum partition size $K=2$. We will construct an instance \bar{I} of EF-MSP over binary alphabet $\bar{\Sigma}=\{0,1\}$. Let δ be any number greater or equal to $\log _{2} n$. Let $C=\left\{c_{1}, \ldots, c_{n}\right\}$ be a set of any distinct binary codewords of length δ. We set \bar{K} to 2δ. Let h be a homomorphism from Σ to C such that $h\left(a_{i}\right)=c_{i}$, for every $i=1, \ldots, n$. The set of strings of \bar{I} will contain $h(\mathcal{W})$, i.e., the original strings in \mathcal{W} mapped by h to the binary alphabet $\bar{\Sigma}$. However, we need to guarantee that the partition of strings in $h(\mathcal{W})$ does not contain fragments of codewords. For this reason, we also add to $\overline{\mathcal{W}}$ the following strings:

$$
\begin{aligned}
\widehat{\mathcal{W}}= & \left\{\operatorname{prefix}_{i}(c) ; c \in C, i=1, \ldots, \delta-1\right\} \cup \\
& \left\{\operatorname{prefix}_{i}(c d) ; c, d \in C, i=\delta+1, \ldots, 2 \delta-1\right\}
\end{aligned}
$$

We set $\overline{\mathcal{W}}=h(\mathcal{W}) \cup \widehat{\mathcal{W}}$.
First, consider a valid 2-partition P of \mathcal{W}. We construct a \bar{K}-partition \bar{P} of $\overline{\mathcal{W}}$ as follows. For each string s selected in P, we select the corresponding $h(s)$ in \bar{P}. For each string $t \in \widehat{\mathcal{W}}$, we select t entirely. Note that strings selected from $h(\mathcal{W})$ have length either δ or 2δ, while strings selected from $\widehat{\mathcal{W}}$ have lengths different from δ and 2δ. Therefore, there cannot be any collisions between these two groups of selected strings. Furthermore, there are no collisions in the first group, since there were no collisions in P. Obviously, there are no collisions in the second group of selected strings. It follows that \bar{P} is a valid \bar{K}-partition of $\overline{\mathcal{W}}$.

Conversely, consider a valid \bar{K}-partition \bar{P} of $\overline{\mathcal{W}}$. First, we will show that all strings in $\widehat{\mathcal{W}}$ are selected without non-trivial cut points. We will prove that by induction on the length i of strings. The base case, $i=1$, is trivially true, as one-letter strings cannot be partitioned into shorter strings. Now, assume the claim is true for all strings in $\widehat{\mathcal{W}}$ of lengths smaller than $i<2 \delta$ and different from δ. Consider a word $u \in \widehat{\mathcal{W}}$ of length i. Assume that u is partitioned into strings u_{1}, \ldots, u_{t}, where $t \geq 2$. Note that the length of u_{1} is smaller than i. If the length of u_{1} is different from δ, we have a collision, as $u_{1} \in \widehat{\mathcal{W}}$ and by the induction hypothesis, it was selected without non-trivial cut points. Assume that the length of u_{1} is δ. Then u_{2} is a prefix of a codeword of length smaller than
$\min \{\delta, i\}$, and we have a collision again as in the previous case. It follows that $t=1$, i.e., u is selected without non-trivial cut points in \bar{P}. Second, we show that all strings selected in the partition of strings in $h(\mathcal{W})$ have lengths either δ or 2δ. Assume that this is not the case for some string $s \in h(\mathcal{W})$. Note that $s=c_{i_{1}} c_{i_{2}} \ldots c_{i_{p}}$, for some indices i_{1}, \ldots, i_{p}. Let $s=s_{1} \ldots s_{q}$ be the partition of s and let j be the smallest j such that the length of s_{j} is not δ or 2δ. Then $s_{1} \ldots s_{j-1}=c_{i_{1}} \ldots c_{i_{r}}$, for some $r<p$. Consequently, s_{j} is a prefix of $c_{i_{r+1}} c_{i_{r+2}}$, i.e., $s_{j} \in \widehat{\mathcal{W}}$, and we have a collision, since s_{j} was already selected in partition of $\widehat{\mathcal{W}}$. Hence, each string in $h(\mathcal{W})$ is partitioned into strings of lengths either δ or 2δ, which can be easily mapped to a valid 2 -partition of \mathcal{W}.

It follows that there is a 2 -partition of \mathcal{W} if and only if there is \bar{K}-partition of $\overline{\mathcal{W}}$ and that the reduction satisfies the property described in the claim.

Finally, let us check that the reduction is polynomial. The size of $h(\mathcal{W})$ is $|\mathcal{W}|$ and the length of $h(\mathcal{W})$ is $\delta\|\mathcal{W}\|$. The size of $\widehat{\mathcal{W}}$ - the set of all unique prefixes for codewords of length less than δ, and all unique prefixes of pairs of adjacent codewords with length greater than δ and less than 2δ-is at most $\left(n^{2}+n\right)(\delta-1)$ as there are n codewords in total. Therefore, the length of $\widehat{\mathcal{W}}$ is at most $n \cdot(1+\cdots+\delta-1)+n^{2} \cdot(\delta+1+\delta+2+\cdots+2 \delta-1)=\left(3 n^{2}+n\right)(\delta-1) \delta / 2$. Since δ can be chosen to be $\Theta(\log n)$, the size of $\overline{\mathcal{W}}$ is polynomial in the size of \mathcal{W} and the size of the original alphabet Σ.

4.4 Equality-Free String Partition with Binary Alphabet

Theorem 4. Equality-Free String Partition (EF-SP) Problem is NP-complete for binary alphabet $(L=2)$.

Proof. We will show a reduction from the EF-MSP Problem with the binary alphabet $(L=2)$ satisfying properties listed in Theorem 3. Consider an instance I of EF-MSP having a set of strings $\mathcal{W}=\left\{w_{1}, w_{2}, \ldots, w_{\ell}\right\}$ over alphabet $\Sigma=$ $\{0,1\}$, and maximum partition size $K=2 \delta$ such that all selected words in any valid K-partition are prefixes of the elements of a set C^{2}, where C contains n distinct strings of length δ each starting with $0, \ell \leq\left(n^{2}+n\right)(\delta-1)$, and $\delta \geq \max \left(9,3 \log _{2}(n+1)\right)$. By Theorem 3, this instance can be polynomially reduced to an instance of the EF-MSP with maximum partition size $K=2$. We will construct an instance \bar{I} of EF-SP over binary alphabet $\bar{\Sigma}=\{0,1\}$ with the same partition size $K=2 \delta$. We will show that the size of \bar{I} is polynomial in the size of I, and hence, it will follow by Theorems 1 and 3, that the EF-SP Problem is NP-complete.

To construct the string \bar{w} we will interleave strings w_{1}, \ldots, w_{ℓ} with delimiters $d_{1}, \ldots, d_{\ell-1}$ defined in a moment as follows:

$$
\bar{w}=w_{1} d_{1} w_{2} d_{2} w_{3} \ldots d_{\ell-1} w_{\ell}
$$

To define the delimiter strings, we will need the following functions. Let bin : $\mathbb{N} \rightarrow\{0,1\}^{*}$ be a function mapping a positive integer to its standard binary representation without the leading one. For example $\operatorname{bin}(1)=\varepsilon, \operatorname{bin}(2)=0$ and
$\operatorname{bin}(10)=010$. Next, the functions $\operatorname{pad}_{i}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ will pad a given string with $i-1$ ones and one zero on the left, i.e., $\operatorname{pad}_{i}(s)=(1)^{i-1} 0 s$. We will refer to strings returned by this functions as padded strings. The function chain : $\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ maps a string s with i trailing zeros, i.e., $s=s^{\prime}(0)^{i}$, where s^{\prime} is either the empty string or a string ending with 1 , to the following concatenation of padded strings and mirror images (reversals) of padded strings:

$$
\begin{aligned}
\operatorname{chain}(s)= & \operatorname{pad}_{K-|s|}^{\mathrm{R}}(s) \operatorname{pad}_{K-|s|}\left(s^{\prime}\right) \operatorname{pad}_{K-|s|}^{\mathrm{R}}\left(s^{\prime}\right) \operatorname{pad}_{K-|s|}\left(s^{\prime} 0\right) \operatorname{pad}_{K-|s|}^{\mathrm{R}}\left(s^{\prime} 0\right) \\
& \ldots \operatorname{pad}_{K-|s|}\left(s^{\prime}(0)^{i-1}\right) \operatorname{pad}_{K-|s|}^{\mathrm{R}}\left(s^{\prime}(0)^{i-1}\right) \operatorname{pad}_{K-|s|}(s) .
\end{aligned}
$$

Finally, we set the delimiter d_{j} to chain $(\operatorname{bin}(j))$, for every $j>1$. For $j=1$, we set d_{1} to $0(1)^{K-1}(1)^{K(K-1) / 2}(1)^{K-1} 0$. To illustrate this definition, let us list the first five delimiter strings:

$$
\begin{aligned}
d_{1} & =0(1)^{K-1}(1)^{K(K-1) / 2}(1)^{K-1} 0 \\
d_{2} & =\text { chain }(0)=00(1)^{K-2}(1)^{K-2} 00(1)^{K-2}(1)^{K-2} 00 \\
d_{3} & =\text { chain }(1)=10(1)^{K-2}(1)^{K-2} 01 \\
d_{4} & =\text { chain }(00)=000(1)^{K-3}(1)^{K-3} 00(1)^{K-3}(1)^{K-3} 0000(1)^{K-3}(1)^{K-3} 000 \\
d_{5} & =\text { chain }(01)=100(1)^{K-3}(1)^{K-3} 001
\end{aligned}
$$

Now, consider a valid K-partition P of \mathcal{W}. We construct a K-partition \bar{P} of \bar{w} as follows. Each substring w_{j} is partitioned in the same way as in P. Each delimiter d_{j}, where $j>1$, is partitioned to its padded strings and mirror images of padded strings. In addition, the delimiter d_{1} is partitioned into one mirror image of a padded string, strings $(1),(1)^{2}, \ldots,(1)^{K}$ in any order, and one padded string. Note that all strings selected in w_{j} 's are prefixes of C^{2}, and since each $c \in C$ has length $\delta=K / 2$ and starts with 0 , all these selected strings start with 0 and the longest run of 1 they contain has length at most $\delta-1$. Hence, they cannot collide with strings $(1),(1)^{2}, \ldots,(1)^{K}$ and with padded strings which all start with 1 . To show they do not collide with mirror images of padded strings, we will show that each padded string (or its mirror image) contains a run of at least δ ones. By the definition of functions pad ${ }_{i}$, each padded string or its mirror image selected in a delimiter d_{j} contains a substring $(1)^{K-\left|\operatorname{bin}\left(d_{j}\right)\right|-1}$, i.e., a run of $K-\left(\left\lceil\log _{2} j\right\rceil-1\right)-1=K-\left\lceil\log _{2} j\right\rceil$ ones. Since $j<\ell \leq\left(n^{2}+n\right)(\delta-1)$, it is enough to show that $\log _{2}\left[\left(n^{2}+n\right)(\delta-1)\right] \leq \delta$. This follows from the fact that $\delta \geq 2 \log _{2}(n+1)+\delta / 3$ and $\delta / 3 \geq \log _{2}(\delta-1)$ for $\delta \geq 9$. Finally, we need to show that all selected padded strings and their mirror images are distinct. Note that each selected padded string starts with at least δ ones and contains at least one zero, hence, it cannot be equal to a selected mirror image of padded string. Hence, it is enough to show that two delimiter d_{j} and $d_{j^{\prime}}$, where $j, j^{\prime}<\ell$ do not contain the same padded string or its mirror image. Without loss of generality, let us only consider the padded strings. If $\operatorname{bin}(j)$ and $\operatorname{bin}\left(j^{\prime}\right)$ have different lengths then the padded strings of d_{j} and $d_{j^{\prime}}$ start with $(1)^{K-|\operatorname{bin}(j)|-1} 0$ and $(1)^{K-\left|\operatorname{bin}\left(j^{\prime}\right)\right|-1} 0$, hence they cannot be equal. Therefore, assume they have the same length. Let s (respectively, s^{\prime}) be the prefix of $\operatorname{bin}(j)$ (respectively,
$\left.\operatorname{bin}\left(j^{\prime}\right)\right)$ without the trailing zeros. Clearly, $s \neq s^{\prime}$. Now, the padded strings from d_{j} and $d_{j^{\prime}}$ are same only if $s 0^{i}=s^{\prime} 0^{i^{\prime}}$ for some i and i^{\prime}. However, since both s and s^{\prime} end with one or one of them is the empty string, we must have $i=i^{\prime}$, and hence also $s=s^{\prime}$, a contradiction. Since the K-partition P of \mathcal{W} was valid, it follows that the K-partition of \bar{w} is also valid.

Conversely, consider a valid K-partition \bar{P} of \bar{w}. It is enough to show that \bar{P} super-selects each delimiter in \bar{w}. We will show by induction on j that delimiters d_{1}, \ldots, d_{j} are super-selected and furthermore, that each of these delimiters is partitioned into its padded strings and mirror images of padded strings. For the base case $j=1$, it is easy to see that \bar{P} must select string $0(1)^{K-1}$, then strings $(1)^{1}, \ldots,(1)^{K}$ in any order and string $(1)^{K-1} 0$, and thus d_{1} is superselected in \bar{P} and its padded string and its mirror image of a padded string are selected. Next, assume that the induction hypothesis is satisfied for delimiters d_{1}, \ldots, d_{j-1}. Consider delimiter string d_{j}. First, we will show that d_{j} contains cut points in \bar{P} shown by .'s below:

$$
\begin{gathered}
\operatorname{pad}_{K-|s|}^{\mathrm{R}}(s) \cdot \operatorname{pad}_{K-|s|}\left(s^{\prime}\right) \operatorname{pad}_{K-|s|}^{\mathrm{R}}\left(s^{\prime}\right) \cdot \operatorname{pad}_{K-|s|}\left(s^{\prime} 0\right) \operatorname{pad}_{K-|s|}^{\mathrm{R}}\left(s^{\prime} 0\right) . \\
\ldots \cdot \operatorname{pad}_{K-|s|}\left(s^{\prime}(0)^{i-1}\right) \operatorname{pad}_{K-|s|}^{\mathrm{R}}\left(s^{\prime}(0)^{i-1}\right) \cdot \operatorname{pad}_{K-|s|}(s),
\end{gathered}
$$

where $s=\operatorname{bin}(j)$ and s^{\prime} is the prefix of s without the trailing zeros and i is the number of trailing zeros. Note that each letter "." is preceded and followed by $K-|\operatorname{bin}(j)|-1$ ones. Since $|\operatorname{bin}(j)| \leq \delta-1$, we have a run of at least $K=2 \delta$ ones, thus this run must contain a cut point. By contradiction assume that there is a cut point before the letter "." in this run of ones. Then the selected string starting at this cut point is in the form $(1)^{K-i-1} 0 u$, where $i<|\operatorname{bin}(j)|$ and $|u| \leq i$. Note that u might be the empty string and the selected string must contain the zero preceding u since all strings consisting only of ones are already selected in d_{1}. Let $v=u(0)^{i-|u|}$. Since $|v|=i<|\operatorname{bin}(j)|$, we have $v=\operatorname{bin}\left(j^{\prime}\right)$, where $j^{\prime}<j$. The delimiter string $d_{j^{\prime}}$ contains $\operatorname{pad}_{K-i}(u)=(1)^{K-i-1} 0 u$, which by the induction hypothesis has been already selected. Analogously, we arrive into a contradiction, if there is a cut point after "." in the run of ones surrounding the letter ".". It follows that there is a cut point at each letter "." above in \bar{P}.

Next, we show that each of super-selected strings of d_{j} :

$$
\operatorname{pad}_{K-|s|}\left(s^{\prime}\right) \operatorname{pad}_{K-|s|}^{\mathrm{R}}\left(s^{\prime}\right), \ldots, \operatorname{pad}_{K-|s|}\left(s^{\prime}(0)^{i-1}\right) \operatorname{pad}_{K-|s|}^{\mathrm{R}}\left(s^{\prime}(0)^{i-1}\right),
$$

has a cut point exactly in the middle. The length of each padded string or of its mirror image is at least $K-|s|$ and since $|\operatorname{bin}(j)| \leq \delta-1$, this length is at least $\delta+1$. Hence, there has to be at least one cut point in each of the above super-selected strings in \bar{P}. We will first prove the claim for the first superselected string $\operatorname{pad}_{K-|s|}\left(s^{\prime}\right) \operatorname{pad}_{K-|s|}^{\mathrm{R}}\left(s^{\prime}\right)$. By contradiction, and without loss of generality, assume that there is a cut point inside $\operatorname{pad}_{K-|s|}\left(s^{\prime}\right)=(1)^{K-|s|-1} 0 s^{\prime}$. Thus a string in the form $(1)^{K-|s|-1} 0 u$, where u is a proper prefix of s^{\prime}, is selected in \bar{P}. Consider string $v=u(0)^{|s|-|u|}$. Obviously, $|v|=|s|$ and v is lexicographically smaller than s, and thus $\operatorname{bin}\left(j^{\prime}\right)=v$ for some $j^{\prime}<j$. By the induction hypothesis, string $\operatorname{pad}_{K-|v|}(u)=(1)^{K-|s|-1} 0 u$ has been already
selected in $d_{j^{\prime}}$, a contradiction. It follows by straightforward induction on i that the remaining super-selected strings are partitioned exactly in the middle. Finally, observe that if there is a cut point inside $\operatorname{pad}_{K-|s|}(s)$ then either one the padded strings of $d_{j^{\prime}}$ or one of the padded strings of d_{j} described above is selected again. Similarly, there cannot be any cut point inside $\operatorname{pad}_{K-|s|}^{\mathrm{R}}(s)$. Since the length of these two strings is exactly K, there has to be a cut point just after $\operatorname{pad}_{K-|s|}(s)$ and just before $\operatorname{pad}_{K-|s|}^{\mathrm{R}}(s)$, i.e., d_{j} is super-selected. This completes the induction proof, and we have that all delimiter strings in \bar{w} are super-selected by \bar{P}, and thus \bar{P} gives us also a partition of the set \mathcal{W}.

It follows that there is a K-partition of \mathcal{W} if and only if there is K-partition of \bar{w}. Finally, let us check that the reduction is polynomial. The length of each padded string or its mirror image is at most K. The length of d_{1} is $K(K+3) / 2<$ K^{2}. String $\operatorname{bin}(j)$ for $1<j<\ell$ has length at most $\delta-1$, and hence each d_{j} contains at most $2 \delta=K$ padded strings and mirror images of padded strings. Hence, $\left|d_{j}\right| \leq K^{2}$. Thus, the total length of \bar{w} is at most $\|\mathcal{W}\|+\ell K^{2}$.

5 Factor-, Prefix- and Suffix-Free String Partition Problems

Here, we summarize the results for these partition problems. Their proof can be found in the appendix of this paper.

Theorem 5. Both Factor-Free Multiple String Partition (FF-MSP) and FactorFree String Partition (FF-SP) are NP-complete in the following two cases: (a) when the maximum partition size is 3 ; and (b) when the alphabet is binary.

Theorem 6. Both Prefix(Suffix)-Free Multiple String Partition (PF-MSP) and Prefix(Suffix)-Free String Partition (PF-SP) are NP-complete in the following two cases: (a) when the maximum partition size is 2 ; and (b) when the alphabet is binary.

6 Conclusion

We have established the complexity of the following fundamental question: given a string w over an alphabet Σ and an integer K, can w be partitioned into factors no longer than K such that no two collide? We have shown this problem is NP-complete for versions requiring that no string in the partition is a copy/factor/prefix/suffix of another. Furthermore, we have shown the problems remain hard even for binary strings. This resolves a number of open questions from previous work [4] and establishes the theoretical hardness of a practical problem in contemporary synthetic biology, specifically, the oligo design for gene synthesis problem.

References

1. Chlichlia, K., Schirrmacher, V., Sandaltzopoulos, R.: Cancer immunotherapy: Battling tumors with gene vaccines. Current Medicinal Chemistry - Anti-Inflammatory \& Anti-Allergy Agents 4, 353-365 (2005)
2. Christie, D.A., Irving, R.W.: Sorting strings by reversals and by transpositions. SIAM Journal on Discrete Mathematics 14(2), 193-206 (2001)
3. Cid-Arregui, A., Juarez, V., Hausen, H.z.: A Synthetic E7 Gene of Human Papillomavirus Type 16 That Yields Enhanced Expression of the Protein in Mammalian Cells and Is Useful for DNA Immunization Studies. Journal of Virology 77(8), 4928-4937 (2003)
4. Condon, A., Maňuch, J., Thachuk, C.: Complexity of a collision-aware string partition problem and its relation to oligo design for gene synthesis. In: COCOON. pp. 265-275 (2008)
5. Cox, J.C., Lape, J., Sayed, M.A., Hellinga, H.W.: Protein fabrication automation. Protein Science 16(3), 379-390 (2007)
6. Eriksen, N.: $(1+\varepsilon)$-Approximation of sorting by reversals and transpositions. Theoretical computer science 289(1), 517-529 (2002)
7. Gibson, D., Benders, G., Andrews-Pfannkoch, C., Denisova, E., Baden-Tillson, H., Zaveri, J., Stockwell, T., Brownley, A., Thomas, D., Algire, M., et al.: Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome. Science 319(5867), 1215-1220 (2008)
8. Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partition problem: Hardness and approximations. the electronic journal of combinatorics 12 (R50), 1 (2005)
9. Hannenhalli, S.: Polynomial algorithm for computing translocation distance between genomes. Discrete Applied Mathematics 71(1), 137-151 (1996)
10. Hartman, T.: A simpler 1.5-approximation algorithm for sorting by transpositions. In: Combinatorial Pattern Matching: 14th Annual Symposium. pp. 10181018 (2003)
11. Karp, R.M.: Mapping the genome: some combinatorial problems arising in molecular biology. In: STOC '93: Proceedings of the twenty-fifth annual ACM symposium on Theory of computing. pp. 278-285. ACM, New York, NY, USA (1993)
12. Kumar, D., Gustafsson, C., Klessig, D.F.: Validation of RNAi silencing specificity using synthetic genes: salicylic acid-binding protein 2 is required for innate immunity in plants. Plant J 45(5), 863-868 (2006)
13. Lin, C.T., Tsai, Y.C., He, L., Calizo, R., Chou, H.H., Chang, T.C., Soong, Y.K., Hung, C.F., Lai, C.H.: A DNA vaccine encoding a codon-optimized human papillomavirus type 16 E6 gene enhances CTL response and anti-tumor activity. J Biomed Sci 13(4), 481-488 (2006)
14. Myers, E., Sutton, G., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Kravitz, S., Mobarry, C., Reinert, K., Remington, K., et al.: A whole-genome assembly of Drosophila. Science 287(5461), 2196 (2000)
15. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
16. Pevzner, P., Tang, H., Waterman, M.: An Eulerian path approach to DNA fragment assembly. Proceedings of the National Academy of Sciences of the United States of America 98(17), 9748 (2001)
17. Roden, R., Wu, T.: Preventative and therapeutic vaccines for cervical cancer. Expert Review of Vaccines 2(4), 495-516 (2003)
18. Stemmer, W.P., Crameri, A., Ha, K.D., Brennan, T.M., Heyneker, H.L.: Singlestep assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164(1), 49-53 (1995)
19. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 33403346 (2005)

A Factor-Free String Partition Problems

A. 1 Factor-Free Multiple String Partition with Unbounded Alphabet

Let ϕ be an instance of $3 \operatorname{SAT}(3)$, with set $C=\left\{c_{1}, \ldots, c_{m}\right\}$ of clauses, and set $X=x_{1}, \ldots, x_{n}$ of variables. We shall define an alphabet Σ and construct a set of strings \mathcal{W} over Σ^{*}, such that \mathcal{W} has a factor-free 3 -partition if and only if ϕ is satisfiable. Let $\left|c_{i}\right|$ denote the number of literals contained in the clause c_{i} and let $c_{i}^{1}, \ldots, c_{i}^{\left|c_{i}\right|}$ be the literals of clause c_{i}.

We construct \mathcal{W} to be the union of three sets of strings: clause strings (\mathcal{C}), enforcer strings (\mathcal{E}) and forbidden strings (\mathcal{F}) with the same function as in the equality-free case. We construct an alphabet Σ, formally defined below, which includes a letter for each literal occurrence in the clauses, three letters for each variable, and the letters 0 and 1.

$$
\Sigma=\left\{\hat{x}_{i}^{j} ; x_{i} \in X \wedge 1 \leq j \leq 3\right\} \cup\left\{\hat{c}_{i}^{j} ; c_{i} \in C \wedge 1 \leq j \leq\left|c_{i}\right|\right\} \cup\{0,1\}
$$

Note that $|\Sigma|$ is linear in the size of the $3 \mathrm{SAT}(3)$ problem ϕ (at most $3 m+$ $3 n+2)$.

Observation 2 Since every letter appears at least twice in \mathcal{W}, no selected string can be a single letter.

$$
\begin{array}{llll}
\hat{x}_{v}^{3} & 0 & \hat{x}_{v}^{3} & 1 \leq v \leq n \\
\hline
\end{array}
$$

Fig. 6. The set of forbidden strings, \mathcal{F}, used in the reduction from 3SAT(3) to FF-MSP.

Construction of forbidden strings: To ensure that certain strings cannot be selected in \mathcal{C} or \mathcal{E}, we construct a set of forbidden strings \mathcal{F} as shown in Figure 6. Specifically, we forbid, for every variable v, any factor of the string $\hat{x}_{v}^{3} 0 \hat{x}_{v}^{3}$. The number of strings in \mathcal{F} is n.

Lemma 3. No string or factor of a string from the forbidden set \mathcal{F} can be selected in \mathcal{C} or \mathcal{E}.

Proof. Consider any string $f \in \mathcal{F}$. If f is split into two or three selected strings, a single letter is selected, which is not possible. Regardless of the construction of \mathcal{C} and \mathcal{E}, it follows that in any valid partition, since f is selected in \mathcal{F}, a factor of f cannot be selected in \mathcal{C} nor in \mathcal{E}.

Fig. 7. The 2-literal clause string (left) and 3-literal clause string (right) used in the reduction from 3SAT(3) to FF-MSP. Shown below each string are all valid partitions. Selected literals for a partition are shown in red.

Construction of clause strings: For each clause $c_{i} \in C$, construct the i-th clause string to be $\hat{c}_{i}^{1} \hat{c}_{i}^{1} 0 \hat{c}_{i}^{2} \hat{c}_{i}^{2}$, if $\left|c_{i}\right|=2$ and $\hat{c}_{i}^{1} \hat{c}_{i}^{1} 0 \hat{c}_{i}^{2} \hat{c}_{i}^{2} 0 \hat{c}_{i}^{3} \hat{c}_{i}^{3}$, if $\left|c_{i}\right|=3$.

Lemma 4. Given that no factor of a string from the forbidden set \mathcal{F} is selected in $\mathcal{C} \cup \mathcal{E}$, at least one literal must be selected for each clause string in any factorfree 3-partition of \mathcal{W}.

Proof. A literal letter cannot be selected alone without creating a collision. Therefore, we say a literal c_{i}^{j} is selected in clause c_{i} if only if the string $\hat{c}_{i}^{j} \hat{c}_{i}^{j}$ is selected in the clause string for c_{i}. Whether c_{i} has two or three literals, a single letter 0 cannot be selected. A simple case analysis shows that in any valid partition at least one literal is selected (see Figure 7).

Construction of enforcer strings: We must now ensure that no literal of ϕ that is selected in \mathcal{C} is the negation of another selected literal. By definition of $3 \mathrm{SAT}(3)$, each variable appears exactly three times: twice positive and once negated. Let c_{i}^{p} and c_{j}^{q} be the two positive and c_{k}^{r} the negated occurrences of variable x_{v}. Then construct three enforcer strings for this variable as shown in Figure 8.
$\hat{x}_{v}^{1} \hat{x}_{v}^{2} 1 \hat{c}_{k}^{r} \hat{c}_{k}^{r} 1,1 \hat{c}_{i}^{p} \hat{c}_{i}^{p} 1 \hat{x}_{v}^{3} \hat{x}_{v}^{3} 0 \hat{x}_{v}^{3} \hat{x}_{v}^{3} 1 \hat{x}_{v}^{1} \hat{x}_{v}^{2} 0,0 \hat{x}_{v}^{1} \hat{x}_{v}^{2} 1 \hat{x}_{v}^{3} \hat{x}_{v}^{3} 0 \hat{x}_{v}^{3} \hat{x}_{v}^{3} 1 \hat{c}_{j}^{q} \hat{c}_{j}^{q} 1$

Fig. 8. The enforcer strings for the three literals of variable x_{v} used in the reduction from 3SAT(3) to FF-MSP. The two positive literals are denoted as \hat{c}_{i}^{p} and \hat{c}_{j}^{q} and the negative literal as \hat{c}_{k}^{r}. If the negative literal is selected in \mathcal{C}, then the enforcer string ensures neither positive literal can also be selected in \mathcal{C} without creating a collision (top row). Likewise, if either or both of the positive literals are selected in \mathcal{C}, then the negative literal cannot be selected without creating a collision (bottom row).

Lemma 5. Given that no factor of a string from the forbidden set \mathcal{F} is selected in $\mathcal{C} \cup \mathcal{E}$, any factor-free 3-partition of \mathcal{W} must be consistent.

Proof. Consider the three enforcer strings for some variable x_{v} with positive literals $c_{i}^{p}=c_{j}^{q}=x_{v}$, and the negated literal $c_{k}^{r}=\neg x_{v}$ shown in Figure 8. Note that the red strings in the middle of the last two enforcer strings are forbidden,
and hence, no partition can have a cut point at the beginning or the end of the red string. Note also that the factor $x_{v}^{3} x_{v}^{3}$ cannot be selected, as then $x_{v}^{3} x_{v}^{3} 0$ or $0 x_{v}^{3} x_{v}^{3}$ has to be selected, which is obviously not possible. Suppose the negative literal is selected in \mathcal{C}. Then the only partition which can be selected without creating a collision selects strings containing both $\hat{c}_{i}^{p} \hat{c}_{i}^{p}$ and $\hat{c}_{j}^{q} \hat{c}_{j}^{q}$ as factors, thus forbidding them from being selected in \mathcal{C} (see Figure 8 (top partition)). Likewise, suppose one or both of the positive literals is selected in \mathcal{C}. Then only one partition of the first enforcer string is possible and it selects one string containing $\hat{c}_{k}^{r} \hat{c}_{k}^{r}$ as a factor, thus forbidding $\hat{c}_{k}^{r} \hat{c}_{k}^{r}$ from being selected in \mathcal{C} (see Figure 8 (bottom partition)). Note that while these enforcer strings ensure literals selected in the clauses are consistent, it also ensures unwanted collisions do not occur since selected strings containing literals are prefixed or suffixed by a 1 , a letter not used in the clause strings. Also note that the selected strings containing the variable letters do not collide.

This completes the reduction. Notice that the reduction is polynomial as the combined length of the constructed set of strings $\mathcal{W}=\mathcal{C} \cup \mathcal{E} \cup \mathcal{F}$ is at most $8 m+32 n+3 n=8 m+35 n$.

Theorem 7. Factor-Free Multiple String Partition (FF-MSP) is NP-complete.
Proof. It is easy to see that FF-MSP is in NP: a nondeterministic algorithm need only guess a partition P where $\left|p_{i}\right| \leq K$ for all p_{i} in P and check in polynomial time that no string in P is a factor of another. Furthermore, it is clear that an arbitrary instance ϕ of $3 \mathrm{SAT}(3)$ can be reduced to an instance of FF-MSP, specified by a set of strings $\mathcal{W}=\mathcal{C} \cup \mathcal{E} \cup \mathcal{F}$, in polynomial time and space by the reduction detailed above.

Now suppose there is a satisfying truth assignment for ϕ. Simply select one corresponding true literal per clause in \mathcal{C}. The construction of clause strings guarantees that a 3 -partition of the rest of each clause string is possible. Also, since a satisfying truth assignment for ϕ cannot assign truth values to opposite literals, then Lemma 5 guarantees that a valid partition of the enforcer strings are possible which does not conflict with the clause strings. Therefore, there exists a factor-free multiple string partition of \mathcal{W}.

Likewise, consider a factor-free multiple string partition of \mathcal{W}. Lemma 4 ensures that at least one literal per clause is selected. Furthermore, Lemma 5 guarantees that if there is no collision, then no two selected variables in the clauses are negations of each other. Therefore, this must correspond to a satisfying truth assignment for ϕ (if none of the three literals of a variable is selected in the partition of \mathcal{C} then this variable can have arbitrary value in the truth assignment without affecting satisfiability of ϕ).

A. 2 Factor-Free String Partition with Unbounded Alphabet

Lemma 6. A valid K-partition P of a string w having $\alpha(x)^{3 K-2} \beta$ as a factor, where α and β are single letters other than x, must select the strings $\alpha(x)^{K-1}$, $(x)^{K}$, and $(x)^{K-1} \beta$.

Proof. Three strings are required to cover the factor $\delta=\alpha(x)^{3 K-2} \beta$. However, more than three strings cannot be selected to cover δ, as otherwise at least two factors are selected consisting only of the letter x and must therefore collide. There is only one partition of δ covered by three factors which must select $\alpha(x)^{K-1},(x)^{K}$, and $(x)^{K-1} \beta$.

Theorem 8. Factor-Free String Partition (FF-SP) is NP-complete.
Proof. Consider an arbitrary instance I of FF-MSP having a set of strings $\mathcal{W}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ over alphabet Σ, and maximum partition size K. We construct an instance I^{\prime} of FF-SP as follows. Let $\widehat{\Sigma}=\{\alpha\} \cup\left\{\gamma_{i}\right.$, for $\left.1 \leq i<n\right\}$, where $\widehat{\Sigma} \cap \Sigma=\emptyset$. Set the alphabet of I^{\prime} to $\Sigma^{\prime}=\Sigma \cup \widehat{\Sigma}$ and the maximum partition size to $K^{\prime}=K$. Note that $\left|\Sigma^{\prime}\right|=|\Sigma|+n$. Finally, construct the string $w^{\prime}=w_{1} \alpha\left(\gamma_{1}\right)^{3 K-2} \alpha w_{2} \alpha\left(\gamma_{2}\right)^{3 K-2} \alpha \ldots \alpha\left(\gamma_{n-1}\right)^{3 K-2} \alpha w_{n}$. The reduction is in polynomial time and space as $\left|w^{\prime}\right|=\sum_{w_{i} \in \mathcal{W}}\left|w_{i}\right|+3 K(n-1)$. By Lemma 6 , the factors $\alpha\left(\gamma_{i}\right)^{3 K-2} \alpha$ of string w^{\prime} must be partitioned as $\alpha\left(\gamma_{i}\right)^{K-1},\left(\gamma_{i}\right)^{K}$, $\left(\gamma_{i}\right)^{K-1} \alpha$, for $1 \leq i<n$. Since any string containing a letter $\gamma_{i}, 1 \leq i<n$, cannot be a factor of any string in \mathcal{W} it follows immediately that w^{\prime} has a K^{\prime} partition if and only if \mathcal{W} has a K-partition.

A. 3 Factor-Free Multiple String Partition with Binary Alphabet

In this section we are going to reduce the size of alphabet to 2 . In order to do that we will map all letters of the original unbounded alphabet Σ except 0 and 1 to distinct binary strings of length t (t has to be large enough so that we have enough of strings), called codewords. Letters 0 and 1 will remain mapped to 0 and 1, respectively. Consequently, K will be set to $2 t+1$. We will use the same clause strings and a simplified version of the enforcer strings found in the unbounded case (just mapped to the binary alphabet). We will use only two forbidden strings, 000 and 010 , to force valid K-partitions to cut the clause and enforcer strings just before or after the 0 or 1 letter. At the end, we will show that this does not introduce any new collisions in the K-partition corresponding to a truth assignment of the $3 \mathrm{SAT}(3)$ instance.

Construction of codewords: We will use the codewords of the following type $0(1)^{i} 0(1)^{t-3-i} 0$, where $i \in\{2, \ldots, t-5\}$. To make sure we have enough codewords for all literal and variable letters (at most $3 m+2 n$), we have to choose $t \geq$ $3 m+2 n+6$.

Construction of forbidden string: We will use only two forbidden strings $\mathcal{F}=$ $\{000,010\}$. Obviously, the only factor-free partition of \mathcal{F} is without any nontrivial cut points. These two forbidden strings force any string containing uav as a factor, where u and v are codewords and a is a letter, to contain exactly one cut point around the letter a between u and v as formalized in the following lemma.

Lemma 7. Any valid K-partitioning of $\alpha u a v \beta$ and \mathcal{F}, where u, v are codewords, $a \in\{0,1\}$ and α, β are arbitrary binary strings, contains either cut point $|\alpha|+|u|$ or $|\alpha|+|u|+1$, but not both.

Proof. Assume we have a valid partitioning of $\alpha u a v \beta$ without cut points at positions $|\alpha|+|u|$ and $|\alpha|+|u|+1$. Since u ends with 0 and v starts with 0 , there is a selected string containing $0 a 0$ as a factor, which is a forbidden string, a contradiction.

Construction of clause strings: We will use the same clause strings as for the unbounded alphabet:

$$
\hat{c}_{i}^{1} \hat{c}_{i}^{1} 0 \hat{c}_{i}^{2} \hat{c}_{i}^{2} \quad \text { or } \quad \hat{c}_{i}^{1} \hat{c}_{i}^{1} 0 \hat{c}_{i}^{2} \hat{c}_{i}^{2} 0 \hat{c}_{i}^{3} \hat{c}_{i}^{3}
$$

where \hat{c}_{i}^{j} are distinct codewords described above. We say that a literal c_{i}^{j} is selected if $\hat{c}_{i}^{j} \hat{c}_{i}^{j}$ is super-selected in the K-partition.

Lemma 8. In any factor-free K-partition of $\mathcal{C} \cup \mathcal{F}$, at least one of the literals in each clause is selected.

Proof. By Lemma 7, there is exactly one cut point around each of the 0 's between codewords in the clause string. This means that the K-partition of the clause string follows one of the patterns depicted in Figure 7 with the exception that any of the selected strings depicted in the figure can be further partitioned, i.e., they are super-selected. The claim follows.

Construction of enforcer strings: We will use a slightly simplified version of the enforcer strings as those used for the unbounded alphabet:

$$
\hat{x}_{v}^{1} \hat{x}_{v}^{2} 1 \hat{c}_{k}^{r} \hat{c}_{k}^{r} 1, \quad 1 \hat{c}_{i}^{p} \hat{c}_{i}^{p} 1 \hat{x}_{v}^{1} \hat{x}_{v}^{2} 0 \quad \text { and } \quad 0 \hat{x}_{v}^{1} \hat{x}_{v}^{2} 1 \hat{c}_{j}^{q} \hat{c}_{j}^{q} 1,
$$

where \hat{c}_{i}^{p} and \hat{c}_{j}^{q} are codewords for the positive literals of a variable x_{v}, \hat{c}_{k}^{r} is the codeword for the negated literal of x_{v} and $\hat{x}_{v}^{1}, \hat{x}_{v}^{2}$ are codewords for the variable letters of x_{v}. The difference from the unbounded case is that the factor $\hat{x}_{v}^{3} \hat{x}_{v}^{3} 0 \hat{x}_{v}^{3} \hat{x}_{v}^{3} 1$ can be safely removed from the second and third strings without changing the logic of the gadgets due to the property described in Lemma 7.

Observation 3 In any factor-free K-partition no super-selected string can be a prefix (suffix) of any other super-selected string.

Lemma 9. In any factor-free K-partition of $\mathcal{C} \cup \mathcal{E} \cup \mathcal{F}$, the selected literals are consistent.

Proof. By Lemma 7, either $\hat{x}_{v}^{1} \hat{x}_{v}^{2}$ or $\hat{c}_{k}^{r} \hat{c}_{k}^{r} 1$ is super-selected in the first enforcer string. Note that if $\hat{x}_{v}^{1} \hat{x}_{v}^{2}$ is super-selected then by Observation 3, $\hat{x}_{v}^{1} \hat{x}_{v}^{2} 0$ and $0 \hat{x}_{v}^{1} \hat{x}_{v}^{2}$ cannot be super-selected. Hence, if either $\hat{x}_{v}^{1} \hat{x}_{v}^{2} 0$ or $0 \hat{x}_{v}^{1} \hat{x}_{v}^{2}$ is super-selected then in the first enforcer string $\hat{c}_{k}^{r} \hat{c}_{k}^{r} 1$ is super-selected, and hence literal c_{k}^{r} cannot be selected.

By Lemma 7, either $1 \hat{c}_{i}^{p} \hat{c}_{i}^{p}$ or $\hat{x}_{v}^{1} \hat{x}_{v}^{2} 0$ is super-selected in the second enforcer string. In the first case, by Observation 3, literal c_{i}^{p} cannot be selected; in the second case, by the above argument, literal c_{k}^{r} cannot be selected. Similarly, the last enforcer string ensures that literals c_{j}^{q} and c_{k}^{r} cannot be selected at the same time.

Theorem 9. Factor-Free Multiple String Partition Problem for the binary alphabet (FF-MSP(2)) is NP-complete.

Proof. It follows by Lemmas 8 and 9 that if there is a factor-free K-partition of $\mathcal{W}=\mathcal{C} \cup \mathcal{E} \cup \mathcal{F}$, then the selected literals produce a satisfying assignment for the $3 \mathrm{SAT}(3)$ instance ϕ.

Now, assume that there is a satisfying assignment for ϕ. Select a literal in each clause which satisfies it and partition all clause and enforcer strings accordingly, ensuring literals selected in the clause strings are not selected in the enforcer strings. We will show that this K-partition P is factor-free. Obviously, the forbidden strings 000 and 010 are not factors of any selected string. In the clause strings, the K-partition P selects the following types of strings: $0 a a, a a 0$ and $a a$, where a is a codeword. In the enforcer string it selects the following types of strings: $1 a a, a a 1,0 a b, a b 0, a b 1, a b, 0 a, a 0,1 a, a 1$, where a, b are distinct codewords. It follows by the proof in the unbounded case that two strings where one is obviously a factor of the other, like $a a$ and $0 a a$, are not selected at the same time. Hence, it is enough to show that no new collisions are introduced by mapping the original letters to the binary alphabet.

Obviously, the strings of the same length are different as all codewords are different and the strings of different types (e.g., $0 a b$ and $a b 0$) would differ in the first two or last two letters. String $a b$ (where we can have $a=b$) is not a factor of some $\sigma c d(c d \sigma)$, where $a \neq c, b \neq d$ are codewords and $\sigma \in\{0,1\}$, as the 00 in the middle of $a b$ would have to exactly match 00 in the middle of $\sigma c d(c d \sigma)$, which would imply $a b=c d$.

Finally, we will show that σa (and similarly, for $a \sigma$) is not a factor of $c d$ and $\sigma^{\prime} c d$ and $c d \sigma^{\prime}$, where a, c, d are codewords and σ, σ^{\prime} are letters, unless $\sigma=\sigma^{\prime}$ and $a=c$. First, assume that $\sigma=1$. Then σa contains two 101 factors with only 1's between them. String $c d$ contains exactly two 101 factors but there is a 00 factor between their occurrences in $c d$, and the same is true for $\sigma^{\prime} c d$ and $c d \sigma^{\prime}$ if $\sigma^{\prime}=0$. Hence, assume that $\sigma^{\prime}=1=\sigma$. Now, $c d \sigma^{\prime}$ contains a factor $10(1)^{+} 01$, but only at the very end, while in σa this factor is followed by at least two letters. Hence, the only possibility is that σa is a factor of $\sigma c d$. However, pattern $10(1)^{+} 01$ appears only at the beginning of $\sigma c d$, and hence, σa would have to be a prefix of $\sigma c d$ and then $a=c$.

Second, assume that $\sigma=0$. Then σa starts with 00 . Similar case analysis would show that σa can only be a factor of $\sigma a d$, or of $c a, \sigma^{\prime} c a$ or $c a \sigma^{\prime}$. However, string $0 a$ can be only selected from the second enforcer string $0 x y 1 b b 1$ and x never appears in the second position of any selected string of the type $c d, \sigma^{\prime} c d$, $c d \sigma^{\prime}$.

A. 4 Factor-Free String Partition with Binary Alphabet

We will first design a sequence of strings which have to be selected no matter where they appear in the string we are partitioning.

Lemma 10. Let $K \geq 1$ and for any $i \leq K$, let $d_{i}=(1)^{i} 0(1)^{K-1-i}$. Then any factor-free K-partition of

$$
w=u_{1} d_{0}(1)^{K} d_{0}^{\mathrm{R}} u_{2} d_{1} d_{1}^{\mathrm{R}} \ldots d_{N-2} d_{N-2}^{\mathrm{R}} u_{N}
$$

where $N \leq K / 2$ and u_{1}, \ldots, u_{N} are arbitrary strings, selects the following strings $(1)^{K}, d_{i}, d_{i}^{\mathrm{R}}$, for every $i=0, \ldots, N-2$.

Proof. Let P be a factor-free multiple K-partition of w. We will show by induction on i that $(1)^{K}, d_{0}, \ldots, d_{i}$ and $d_{0}^{\mathrm{R}}, \ldots, d_{i}^{\mathrm{R}}$ are selected. The base case $i=0$ follows by Lemma 6. For the inductive step, assume that $(1)^{K}, d_{0}, \ldots, d_{i-1}$ and $d_{0}^{\mathrm{R}}, \ldots, d_{i-1}^{\mathrm{R}}$ are selected, where $i \leq N-2$. We will show that d_{i} and d_{i}^{R} are also selected. The factor $d_{i} d_{i}^{\mathrm{R}}$ of w has length $2 K$, hence, there is at least one cut point inside it. Let j be the first such cut point. Obviously, $j \leq K$. Assume that $j<K$. Let w_{p} be the selected string starting at cut point j. We will consider two cases:

Case 1. $j \geq i+1$. Then w_{p} is a prefix of $(1)^{K}$, a contradiction since $(1)^{K}$ is already selected.

Case 2. $j \leq i$. Then w_{p} is a prefix of d_{i-j}, a contradiction since d_{i-j} is already selected.

Hence, the first cut point inside the factor $d_{i} d_{i}^{\mathrm{R}}$ of w is at position K. By symmetrical argument, this is also the last such cut point. It follows that both d_{i} and d_{i}^{R} are selected.

Corollary 1. Let $K \geq 1$ and for any $i \leq K$, let $d_{i}=(1)^{i} 0(1)^{K-1-i}$. Consider the string

$$
w=u_{1} d_{0}(1)^{K} d_{0}^{\mathrm{R}} u_{2} d_{1} d_{1}^{\mathrm{R}} \ldots d_{N-2} d_{N-2}^{\mathrm{R}} u_{N}
$$

where $N \leq K / 2$ and u_{1}, \ldots, u_{N} are arbitrary strings. If the string w has a factor-free K-partition then the sequence of strings u_{1}, \ldots, u_{N} has a factor-free multiple K-partition. On the other hand, if the sequence u_{1}, \ldots, u_{N} has a factorfree multiple K-partition such that each selected string contains at least two 0 's then w has a factor-free K-partition.

Proof. The first implication follows immediately by Lemma 10. The second implication follows by the fact that each delimiter contains only one 0 ; hence, none of the selected strings in u_{1}, \ldots, u_{N} can be a factor of a delimiter.

As the immediate consequence of Theorem 9 and Corollary 1, we have the following.

Theorem 10. Factor-free String Partition Problem for the binary alphabet (FF$S P(2))$ is $\mathbf{N P}$-complete.

B Prefix/Suffix-Free String Partition Problems

All proofs presented in this section are for the prefix-free string partition problems. The results for the suffix-free string problems follow by symmetry.

B. 1 Prefix/Suffix-Free Multiple String Partition with Unbounded Alphabet

Similar to the equality-free and factor-free cases, we will show a polynomial reduction from an arbitrary instance of $3 \mathrm{SAT}(3)$.

Let ϕ be an instance of $3 \operatorname{SAT}(3)$, with set $C=\left\{c_{1}, \ldots, c_{m}\right\}$ of clauses, and set $X=x_{1}, \ldots, x_{n}$ of variables. We shall define an alphabet Σ and construct a set of strings \mathcal{W} over Σ^{*}, such that \mathcal{W} has a prefix-free 2 -partition if and only if ϕ is satisfiable. Let $\left|c_{i}\right|$ denote the number of literals contained in the clause c_{i} and let $c_{i}^{1}, \ldots, c_{i}^{\left|c_{i}\right|}$ be the literals of clause c_{i}.

We construct \mathcal{W} to be the union of three sets of strings: clause strings (\mathcal{C}), enforcer strings (\mathcal{E}) and forbidden strings (\mathcal{F}) with the same function as in the equality-free and factor-free cases. We construct an alphabet Σ, formally defined below, which includes four letters for each variable, a letter for each literal occurrence in the clauses and the letter $\$$.

$$
\Sigma=\left\{\hat{x}_{i}^{j} ; x_{i} \in X \wedge 1 \leq j \leq 4\right\} \cup\left\{\hat{c}_{i}^{j} ; c_{i} \in C \wedge 1 \leq j \leq\left|c_{i}\right|\right\} \cup\{\$\}
$$

Note that $|\Sigma|$ is linear in the size of the $3 \mathrm{SAT}(3)$ problem ϕ (at most $4 n+$ $3 m+1$).

Construction of forbidden strings: The forbidden set, \mathcal{F}, consists of the single string $\$ \$$. Without loss of generality, we refer to this as the forbidden string.

Lemma 11. No factor of the forbidden string can be selected in \mathcal{C} nor in \mathcal{E}.
Proof. No proper factor of the forbidden string can be selected without creating a collision. Therefore, the entire string must be selected. Regardless of the construction of \mathcal{C} and \mathcal{E}, it follows that in any valid partition, since $\$ \$$ is selected in \mathcal{F}, a factor of it cannot be selected in \mathcal{C} nor in \mathcal{E}.

Construction of clause strings: For each clause $c_{i} \in C$, construct the i-th clause string to be $\hat{c}_{i}^{1} \$ \hat{c}_{i}^{2}$, if $\left|c_{i}\right|=2$ and $\hat{c}_{i}^{1} \$ \hat{c}_{i}^{2} \$ \hat{c}_{i}^{3}$, if $\left|c_{i}\right|=3$.

Lemma 12. Given that no factor of the forbidden string is selected in $\mathcal{C} \cup \mathcal{E}$, exactly one literal must be selected for each clause string in any prefix-free 2partition of \mathcal{W}.

Proof. We say a literal c_{i}^{j} is selected in clause c_{i} if and only if the string \hat{c}_{i}^{j} is selected in the clause string for c_{i}. Whether c_{i} has two or three literals, the forbidden string $\$$ cannot be selected alone. A simple case analysis shows that in any valid partition exactly one literal is selected (see Figure 9).

Fig. 9. The 2-literal clause gadget (left) and 3-literal clause gadget (right) used in the reduction from 3SAT(3) to PF-MSP. Shown below each gadget are all valid partitions. Selected literals of a partition are shown in red.

Construction of enforcer strings: We must now ensure that no literal of ϕ that is selected in \mathcal{C} is the negation of another selected literal. By definition of $3 \operatorname{SAT}(3)$, each variable appears exactly three times: twice positive and once negated. Let c_{i}^{p} and c_{j}^{q} be the two positive and c_{k}^{r} the negated occurrences of a variable x_{v}. Then construct two enforcer strings for this variable as shown in Figure 10.

Fig. 10. The pair of enforcer strings for a variable x_{v} used in the reduction from $3 \mathrm{SAT}(3)$ to PF-MSP. The two positive literals for variable x_{v} are denoted as \hat{c}_{i}^{p} and \hat{c}_{j}^{q} and the negative literal as \hat{c}_{k}^{r}.

Lemma 13. Given that no factor of the forbidden string is selected in $\mathcal{C} \cup \mathcal{E}$, any prefix-free 2-partition of \mathcal{W} must be consistent.

Proof. Consider the two enforcer strings for variable x_{v} with positive literals $c_{i}^{p}=c_{j}^{q}=x_{v}$, and the negated literal $c_{k}^{r}=\neg x_{v}$ shown in Figure 10.

Suppose the negative literal is selected in \mathcal{C}. Then the only partition which can be selected without creating a collision selects strings containing both \hat{c}_{i}^{p} and \hat{c}_{j}^{q} as a prefix, thus forbidding them from being selected in \mathcal{C} (see Figure 10 (top row)).

Likewise, if one or both of the positive literals is selected in \mathcal{C} then in any collision-free 2-partition a string is selected containing \hat{c}_{k}^{r} as a prefix, thus forbidding the negative literal from being selected in \mathcal{C} (see Figure 10 (bottom row)).

This completes the reduction. Notice that the reduction is linear as the combined length of the constructed set of strings $\mathcal{W}=\mathcal{C} \cup \mathcal{E} \cup \mathcal{F}$ is at most $5 m+8 n+2$.

Theorem 11. Prefix(Suffix)-Free Multiple String Partition (PF-MSP) is NPcomplete.

Proof. It is easy to see that PF-MSP is in NP: a nondeterministic algorithm need only guess a partition P where $\left|p_{i}\right| \leq K$ for all p_{i} in P and check in polynomial time that no string in P is a prefix of another. Furthermore, it is
clear that an arbitrary instance ϕ of $3 \mathrm{SAT}(3)$ can be reduced to an instance of PF-MSP, specified by a set of strings $\mathcal{W}=\mathcal{C} \cup \mathcal{E} \cup \mathcal{F}$, in polynomial time and space by the reduction detailed above.

Now suppose there is a satisfying truth assignment for ϕ. Simply select one corresponding true literal per clause in \mathcal{C}. The construction of clause strings guarantees that a 2-partition of the rest of each clause string is possible. Also, since a satisfying truth assignment for ϕ cannot assign truth values to opposite literals, then Lemma 13 guarantees that a valid partition of the enforcer strings are possible. Therefore, there exists a prefix-free multiple string partition of \mathcal{W}.

Likewise, consider a prefix-free multiple string partition of \mathcal{W}. Lemma 12 ensures that exactly one literal per clause is selected. Furthermore, Lemma 13 guarantees that if there is no collision, then no two selected variables in the clauses are negations of each other. Therefore, this must correspond to a satisfying truth assignment for ϕ (if none of the three literals of a variable is selected in the partition of \mathcal{C} then this variable can have an arbitrary value in the truth assignment without affecting satisfiability of ϕ).

B. 2 Prefix/Suffix-Free String Partition with Unbounded Alphabet

To show the single string restriction of this problem is NP-complete, we design the same delimiter strings as specified in the factor-free construction. The result follows immediately by Theorem 11 and Lemma 6.

Theorem 12. Prefix(Suffix)-Free String Partition (PF-SP) is NP-complete.

B. 3 Prefix/Suffix-Free Multiple String Partition with Binary Alphabet

In this section we start with the same construction as the multiple string unbounded alphabet case to form a set of strings \mathcal{W}, but show how the letters can be encoded into binary. We map the $\$$ letter to 1 and map all others letters of the original unbounded alphabet Σ to distinct binary strings of length t, called codewords. Consequently, K will be set to $2 t$. We will establish that no codeword can properly contain a cut point. Furthermore, by design, no codeword is a prefix of another. Since the mapping to binary does not introduce new collisions, and since codewords cannot be cut in the middle, the correctness of the construction will follow from the results on the unbounded case.

Construction of codewords: We use codewords of the form $00(1)^{i} 0(1)^{t-4-i} 0$, where $i \in\{2, \ldots, t-6\}$. To ensure we have enough codewords for all literal and variable letters (at most $3 m+4 n$), we have to choose $t \geq 3 m+4 n+7$.

Construction of forbidden string: We will use the following set of forbidden strings: $\{11,01,101,0001,10001\}$. Considering only the forbidden set, a simple case analysis shows that each forbidden string must be entirely selected, otherwise a collision occurs. This set of forbidden strings ensures that no codeword can be cut in the middle.

Lemma 14. Given that no strings selected in $\mathcal{C} \cup \mathcal{E}$ have a forbidden prefix, any prefix-free K-partition of \mathcal{W} must not contain a cut point within a codeword.

Proof. Recall that codewords are of length t and that all length two binary strings are prefixes of a forbidden string and therefore cannot be selected. Let us consider any cut point beginning within an arbitrary codeword w. For any proper suffix of w longer than two, it contains a prefix in the set $\{011,111,101,110\}$. Each of these contains a forbidden string as a prefix and therefore a cut point in w cannot begin prior to positions $2,3, \ldots, t-2$. We must now show that a cut point cannot begin prior to position $t-1$ or prior to position t. Recall that by construction, w is followed by either another codeword, the letter 1 , or the empty string. If the empty string, it is not possible to a have a cut point in the position prior to $t-1$ or t since a string will be selected that has length less than 3 and will therefore be a prefix of a forbidden string. If w is followed by the letter 1 a cut point prior to $t-1$ or t will have a prefix in the set $\{101,01\}$, both of which are forbidden strings. Finally consider the case that w is followed by another codeword and recall that all codewords begin with 001. If a cut point occurs prior to position $t-1$, and the selected string beginning at that position has length at least five, then it will contain 10001 as a prefix which is a forbidden string; any shorter selection will be a prefix of the forbidden string 10001. If a cut point occurs prior to position t and the selected string has length at least four, it will contain 0001 as a prefix which is a forbidden string; any shorter selection will be a prefix of the forbidden string 0001.

The above lemma ensures no codeword is divisible. The result is that the binary encoded instance I^{\prime} of an unbounded alphabet instance I can be partitioned exactly in the same relative positions as the original instance. Since each codeword cannot be a prefix of another by design, then correctness of the binary case immediately follows.

Theorem 13. Prefix(Suffix)-Free Multiple String Partition (PF-MSP) is NPcomplete for binary alphabet $(L=2)$.

B. 4 Prefix/Suffix-Free String Partition with Binary Alphabet

Similar to the factor-free case, we will design delimiters to join the set \mathcal{W} of the multiple string case, into one string, without changing the possibilities for partitioning the original set of strings and without introducing new types of collisions. Specifically, we will create a new string instance $I=W F$ where W is a string that concatenates all strings in \mathcal{W}, expect from the forbidden set \mathcal{F}, using delimiters we describe below. The string F has a special construction to ensure the strings from the forbidden set must be selected in F for any collisionfree partition of I. Thus, the new instance I will have a collision-free partition if and only if \mathcal{W} does.

Construction of delimiters: We design delimiters similar to the codewords of section B. 3 that instead have length K. Specifically, they are of the form $00(1)^{i} 0(1)^{K-4-i} 0$, where $i \in\{2, \ldots, K-6\}$.

Lemma 15. Given that no strings selected in W have a forbidden prefix, any prefix-free K-partition of W must select all delimiters. Furthermore, the delimiters do not collide with any valid selection of the original strings from the set \mathcal{W}.

Proof. By Lemma 14 the delimiters, which are simply longer codewords, cannot contain a cut point in a middle position. Since they are of the maximum string length, K, they must be entirely selected in W. As a consequence of Lemma 14, in any valid partition of the set \mathcal{W}, the selected strings are either: (i) single codewords, (ii) a codeword prefixed by a 1 , (iii) a codeword suffixed by a 1 , or (iv) two adjacent codewords. Since each case is no longer than a delimiter, it is sufficient to show that none could be a prefix of a delimiter. In all four cases, none could be a prefix as the selected string would contain at least four 0 s in the first $K / 2+1$ positions, whereas a delimiter contains at most three.

Construction of forbidden string: We now construct the string $F=F_{4} F_{3} F_{2} F_{1}$. The string is constructed in a meticulous manner to ensure that each subpart must select forbidden strings from a different partition of the forbidden set \mathcal{F}. In particular, $F_{1}=10^{3 K-2} 111$ and it forces 11 to be selected; $F_{2}=$ $0010^{K-3} 0^{K-2} 11101001^{K-2} 01$ and it forces 101 and 01 to be selected; $F_{3}=$ $001^{K-3} 010001$ and it forces 10001 to be selected; and $F_{4}=001^{k-4} 010001$ and it forces 0001 to be selected.

Lemma 16. In any prefix-free partition of F the set of forbidden strings must be selected. Furthermore, there exists a prefix-free partition of F that does not collide with a valid partition of W assuming that W does not contain a forbidden prefix.

Proof. (Sketch). At a high level, each sub-part of F is constructed to ensure that one or more forbidden strings are selected, and the remainder of the sub-part consists of K length sub-strings that must be entirely selected. Furthermore, the construction of F ensures there is always a cut point between sub-parts and subpart F_{j} is constructed with the knowledge of strings forbidden in F_{i}, for all $i<j$. The proof requires a detailed and exhaustive case analysis. We give a sketch of the correctness. Consider sub-part F_{1}. It contains the $3 K$-length substring $\alpha=10^{3 K-2} 1$. At least three strings must be selected to cover α. However, it cannot be more than three as otherwise at least two contain only 0 letters and therefore one must be a prefix of another. The only cover for α consisting of three strings must select $10^{K-1}, 0^{K}$, and $0^{K-1} 1$, regardless of the sub-strings preceding or succeeding α. Since 1 cannot be selected alone (without being a prefix of 10^{K-1}) the string 11 must be selected. Similar arguments, and the fact that 11 must already be selected, ensures that F_{2} is partitioned as 0010^{K-3}, $0^{K-2} 11,101,001^{K-2}, 01$, thus forbidding 101 and 01 . For F_{3}, since 101 and 11
are already forbidden, there cannot be a cut point prior to any 1 within the leftmost run of 1 s . Since 01 is forbidden, there cannot be a cut point in the second position, nor immediately after the left-most run of 1 s . It follows that 001^{K-3} must be entirely selected, regardless of the string preceding F_{3}. The remaining string 10001 must be entirely selected, otherwise it would conflict with 101 or 01. Similarly, the partitioning of F_{4} ensures that $001^{k-4} 01$ and 0001 must be selected.

Note that all strings selected in F not in the forbidden set have length K. Thus, to show no new collisions have been introduced, it is sufficient to show that no string selected in a valid partition of W, that does not contain a forbidden prefix, cannot be a prefix of one of these strings. As noted earlier, every selected string in a valid partition of W contains at least one codeword as a sub-string. Each codeword contains three runs of 0s; however, each K-length selected string in F contains no more than two runs of 0s.

By our straightforward polynomial time and space reduction of a binary PFMSP instance into a binary PF-SP instance and by Lemmas 15 and 16 and Theorem 13 we have the following result.

Theorem 14. Prefix(Suffix)-Free String Partition (PF-MSP) is NP-complete for binary alphabet $(L=2)$.

