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Abstract. Given a string w over a finite alphabet Σ and an integer K,
can w be partitioned into strings of length at most K, such that there are
no collisions? We refer to this question as the string partition problem
and show it is NP-complete for various definitions of collision and for a
number of interesting restrictions including |Σ| = 2. This establishes the
hardness of an important problem in contemporary synthetic biology,
namely, oligo design for gene synthesis.

1 Introduction

Many problems in genomics have been solved by the application of elegant
polynomial-time string algorithms, while others amount to solving known NP-
complete problems; for instance, sequence assembly amounts to solving shortest
common superstring [11], and genome rearrangement to sorting strings by rever-
sals and transpositions [2]. The hardness of these problems has motivated ex-
tensive research into heuristic algorithms as well as polynomial-time algorithms
for useful restrictions [6, 10, 19, 9, 8, 14, 16]. In a similar vein, we establish the
hardness of the following fundamental question: can a string be partitioned into
factors (i.e. substrings), of bounded length, such that no two collide? We refer
to this as the string partition problem and study it under various restrictions
and definitions of what it means for two factors to collide.

The study of string partitioning is motivated by an increasingly important
problem arising in contemporary synthetic biology, namely gene synthesis. This
technology is emerging as an important tool for a number of purposes including
the determination of RNAi targeting specificity of a particular gene [12], design of
novel proteins [5] and the construction of complete bacterial genomes [7]. There
have been numerous studies utilizing synthetic genes to determine the potential
of gene vaccines [13, 3, 17, 1]. Despite the tremendous need for synthetic genes
for both interrogative studies and for therapeutics, construction of genes, or any
long DNA or RNA sequence, is not a trivial matter. Current technology can only
produce short oligonucleotides (oligos) accurately. As such, a common approach
is to design a set of oligos that could assemble into the desired sequence [18].

To understand the connection between string partitioning and gene synthesis,
consider the following. A DNA oligo, or strand is a string over the four letter
alphabet {A, C, G, T}. The reverse complement F ′ of an oligo F is determined
from F by replacing each A with a T and vice versa, each C with a G and
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vice versa, and reversing the resulting string. Two DNA oligos F and F ′ are
said to hybridize if a sufficiently long factor of F is the reverse complement of
a factor of F ′ (see Figure 1). A DNA duplex consists of a positive strand and
its reverse complement, the negative strand. The collision-aware oligo design for
gene synthesis (CA-ODGS) problem is to determine cut points in the positive
and negative strands, which demarcate the oligos to be synthesized, such that
the resulting design will successfully self-assemble. For the oligos to self-assemble
correctly, they should 1) alternate between the positive and negative strands,
with some overlap between successive oligos, and 2) only hybridize to the oligos
they overlap with by design. Since there is variability in the length of the selected
oligos, there are exponentially many designs.
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Fig. 1. An intended self-assembly (top) of a set of oligos for a desired DNA duplex. A
foiled self-assembly (bottom) of the same oligos due to d and h being identical.

In previous work [4], the authors provided some evidence that the CA-ODGS
problem may be hard by showing that partitioning a string into factors, of
bounded length, such that no two are equal is NP-complete, even for strings
over a quaternary alphabet. See Figure 1 for an example design that assembles
incorrectly into two fragments, with the wrong ordering of oligos and therefore
primary sequence, due to identical oligos. In this work, we study the underly-
ing string partition problem in much greater detail. We show that partitioning
strings such that no selected string is a copy/factor/prefix/suffix of another is
NP-complete. We begin by showing that the more general problem of partition-
ing a set of strings is hard and then we show how those instances can be reduced
to single string instances, for each respective definition of collision. See Figure 2
for an example of a single string instance (left) and set of strings instance (right).
In all cases, we demonstrate the problems remain hard even when restricted to
binary strings.
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Fig. 2. (Left) Two partitions are shown for the string mississippi. The selected strings
in both partitions have maximum length 2. The partition shown above the string is
factor-free: no selected string is a factor of another; however, the partition shown below
the string is not factor-free. (Right) A valid factor-free multiple string partition of a
set of three strings into selected strings of maximum length 3.

2 Preliminaries

A string w is a sequence of letters over an alphabet Σ. Let |w| denote the length
of w, wR a mirror image (reversal) of w, and let (w)i denote the string w repeated
i times. The empty string is denoted as ε. String x is a factor of w if w = αxβ,
for some (possibly empty) strings α and β. Similarly, x is a prefix (suffix ) of w if
w = xβ (w = αx) for some (possibly empty) strings α and β. The prefix (suffix)
of length k of w will be denoted as prefixk(w) (suffixk(w)).

A K-partition of w is a sequence P = p1, p2, . . . , pl, for some l, where each pi
is a string over Σ of length at most K and w = p1p2 . . . pl. We say that strings
p1, . . . , pl are selected in the K-partition and that strings pi . . . pj , 1 ≤ i ≤ j ≤ l,
are super-selected, with respect to the selected strings. We say P is equality-
free, prefix-free, suffix-free, or factor-free if for all i, j, 1 ≤ i 6= j ≤ l, neither
pi nor pj is a copy, prefix, suffix, or factor, respectively, of the other. We say
such partitions are valid (for the problem in question); otherwise, we say the
partition contains a collision. We generalize the notion of a K-partition to a
set of strings W to mean a K-partition for each string in W. The length of W
is the combined length of the strings in the set and will be denoted by ||W||.
A K-partition for a set of strings is valid if no two elements in any, possibly
different, partition collide. Finally, we will refer to the boundaries of a partition
of string w as cut points, where the first cut point 0 and the last cut point |w|
are called trivial. For instance, the first partition of mississippi in Figure 2 has
the following non-trivial cut points 1, 3, 5, 7 and 9.

In what follows we will prove NP-completeness of various string partition-
ing problems by showing a polynomial reduction from an arbitrary instance of
3SAT(3), a problem shown to be NP-complete by Papadimitriou [15].

Problem 1 (3SAT(3)).
Instance: A formula φ with a set C of clauses over a set X of variables in
conjunctive normal form such that:

1. every clause contains two or three literals,

2. each variable occurs in exactly three clauses, once negated and twice positive.

Question: Is φ satisfiable?



3 The String Partition Problems

3SAT(3)

EF-MSP(K=2)
EF-MSP(L=2) EF-SP(L=2)

EF-SP(K=2)

FF-MSP(K=3)
FF-MSP(L=2) FF-SP(L=2)

FF-SP(K=3)

PF-MSP(K=2)
PF-SP(K=2)

PF-MSP(L=2) PF-SP(L=2)

Fig. 3. Chain of reductions for different string partition variations from original
3SAT(3) problem. K is maximum selected string size and L is maximum alphabet size.
Parameters are unbounded if not shown. EF , FF and PF are equality-free, factor-free,
and prefix(suffix)-free, respectively.

For each X in {equality,prefix, suffix, factor}, we will consider two string
partition problems.

Problem 2 (X -Free Multiple String Partition (X -MSP) Problem).
Instance: Finite alphabet Σ of size L, a positive integer K, and a set of strings
W over Σ∗.
Question: Is there an X -free, K-partition P of W?

Problem 3 (X -Free String Partition (X -SP) Problem).
Instance: Finite alphabet Σ of size L, a positive integer K, and a string w over
Σ∗.
Question: Is there an X -free, K-partition P of w?

We will show NP-completeness of all these problems even when restricted to
the constant size of the partition (K = 2, 3), or to the binary alphabet (L = 2).
See Figure 3 showing the chain of reductions used to prove the complexity of
the three variations and related restrictions of the problem.

4 Equality-Free String Partition Problems

4.1 Equality-Free Multiple String Partition with Unbounded
Alphabet

We now describe a polynomial reduction from 3SAT(3) to EF-MSP with K =
2 and unbounded alphabet. Let φ be an instance of 3SAT(3), with set C =
{c1, . . . , cm} of clauses, and set X = x1, . . . , xn of variables. We shall define
an alphabet Σ and construct a set of strings W over Σ∗, such that W has a



collision-free 2-partition if and only if φ is satisfiable. Let |ci| denote the number

of literals contained in the clause ci and let c1i , . . . , c
|ci|
i be the literals of clause

ci.
We construct W to be a union of three types of strings: clause strings (C),

enforcer strings (E) and forbidden strings (F). First, for each clause of φ, we
create a clause string C such that an equality-free 2-partition of C unambiguously
selects exactly one literal from C. We refer to the selected strings corresponding
to literals as selected literals. Intuitively, the selected literals of the clause strings
are intended to be a satisfying truth assignment for the variables of φ. Second,
for each variable we create an enforcer string to ensure that selected literals are
consistent. Specifically, the enforcer strings ensure that a positive and a negative
literal for the same variable cannot be simultaneously selected. Finally, we find
it helpful to create so called forbidden strings that ensure certain strings cannot
be selected in the clause and enforcer strings.

We construct an alphabet Σ, formally defined below, which includes a letter
for each literal occurrence in the clauses, one letter for each variable, and the
letters � and � used as delimiters.

Σ = {x̂i; xi ∈ X} ∪ {ĉji ; ci ∈ C ∧ 1 ≤ j ≤ |ci|} ∪ {�,�}

Note that |Σ| is linear in the size of the 3SAT(3) problem φ (at most n +
3m+ 2).

Construction of forbidden strings: To ensure that certain strings cannot be se-
lected in C or E , we will use the following set of forbidden strings F = {�,�}.

Observation 1 No string from the forbidden set F can be selected in C or E.

Construction of clause strings: For each clause ci ∈ C, construct the i-th clause
string to be ĉ1i � ĉ2i if |ci| = 2, and ĉ1i � ĉ2i � ĉ3i if |ci| = 3.

ĉ1i � ĉ2i ĉ1i � ĉ2i � ĉ3i

Fig. 4. The 2-literal clause string (left) and 3-literal clause string (right) used in the
reduction from 3SAT(3) to EF-MSP. Shown below each string are all valid 2-partitions.
Selected literals of a partition are shown in red.

Lemma 1. Given that no string from the forbidden set F is selected in C, exactly
one literal letter must be selected for each clause string in any equality-free 2-
partition of C.

Proof. Consider the clause string for clause ci. Whether ci has two or three
literals, the forbidden substring � cannot be selected alone. Therefore, each �
must be selected with an adjacent literal letter. This leaves exactly one other
literal letter which must be selected (see Figure 4). ut



Construction of enforcer strings: We must now ensure that no literal of φ that is
selected in C is the negation of another selected literal. By definition of 3SAT(3),
each variable appears exactly three times: twice positive and once negated. Let cpi
and cqj be the two positive and crk the negated occurrences of a variable xv. Then
construct the enforcer string for this variable as follows ĉpi � ĉrkx̂v ĉ

r
kx̂v ĉ

r
k � ĉqj .

ĉpi � ĉrk x̂v ĉrk x̂v ĉrk � ĉqj

Fig. 5. All possible 2-partitions are shown for the enforcer string of a variable xv having
two positive literals cpi and cqj , and one negative literal crk. In each partition, either ĉrk
is selected or both ĉpi and ĉqj are which guarantees that letters for positive and negated
literals of xv cannot be simultaneously selected in C.

Lemma 2. Given that no string from the forbidden set F is selected in C ∪ E,
any equality-free 2-partition of C ∪ E must be consistent. In addition, for any
consistent choice of selecting letters for literals in C, there is an equality-free
2-partition of C ∪ E ∪ F .

Proof. Consider the enforcer string for variable xv with positive literals cpi =
cqj = xv, and the negated literal crk = ¬xv. Figure 5 shows all 9 possible 2-
partitions of the enforcer string (since � is a forbidden string, each � must be
selected with an adjacent letter). It follows that in each of them either ĉrk is
selected or both ĉpi and ĉqj are. In the first case, ĉrk cannot be selected in C and
thus satisfied literals are chosen consistently for xv. In the second case, letters
for neither of the positive occurrences of xv can be selected in C.

To show the second part of the claim, observe that there is a 2-partition of
the enforcer string compatible with any of four valid combinations of selecting
letters for the corresponding literals in C (for example, by choosing the fifth or
the last 2-partitions in Figure 5). Since enforcer strings share only one letter in
common, namely, �, which is never selected in the enforcer strings, there are no
collisions between 2-partitions of all enforcer strings. Furthermore, there are no
collisions between strings selected in C and in E : strings of length two selected
in C contain the letter �, which does not appear in the enforcer strings; strings
of length one are literals and the partitioning of enforcer strings was chosen in
a way that literals (in C) cannot be selected again in E . ut

This completes the reduction. Notice that the reduction is polynomial as the
combined length of the constructed set of strings W = C ∪ E ∪ F is at most
5m+ 9n+ 2.



Theorem 1. Equality-Free Multiple String Partition (EF-MSP) is NP-complete
for K = 2.

Proof. It is easy to see that EF-MSP Problem is in NP: a nondeterministic
algorithm need only guess a partition P where |pi| ≤ K for all pi in P and
check in polynomial time that no two strings in P are equal. Furthermore, it is
clear that an arbitrary instance φ of 3SAT(3) can be reduced to an instance of
EF-MSP, specified by a set of strings W = C ∪ E ∪ F , in polynomial time and
space by the reduction detailed above.

Now suppose there is a satisfying truth assignment for φ. Simply select one
corresponding true literal per clause in C. The construction of clause strings
guarantees that a 2-partition of the rest of each clause string is possible. Also,
since a satisfying truth assignment for φ cannot assign truth values to opposite
literals, then Lemma 2 guarantees that a valid partition of the enforcer strings is
possible which does not conflict with the clause strings. Therefore, there exists
an equality-free multiple string partition of W.

Likewise, consider an equality-free multiple string partition of W. Lemma
1 ensures that at least one literal per clause is selected. Furthermore, Lemma
2 guarantees that if there is no collision, then no two selected variables in the
clauses are negations of each other. Therefore, this must correspond to a satis-
fying truth assignment for φ (if none of the three literals of a variable is selected
in the partition of C then this variable can have arbitrary value in the truth
assignment without affecting satisfiability of φ). ut

4.2 Equality-Free String Partition with Unbounded Alphabet

Theorem 2. Equality-Free String Partition (EF-SP) is NP-complete for K =
2.

Proof. To show that EF-SP Problem for K = 2 is NP-complete, we will reduce
EF-MSP Problem for K = 2 to it. Consider an arbitrary instance I of EF-MSP
having a set of strings W = {w1, w2, . . . , w`} over alphabet Σ, and maximum
partition size K = 2. We construct an instance Ī of EF-SP as follows. Let
Σ̂ = {�} ∪ {di, for 1 ≤ i < `}, where Σ̂ ∩ Σ = ∅. Set the alphabet of Ī to

Σ̄ = Σ ∪ Σ̂ and the maximum partition size to K̄ = 2. Note that |Σ̄| = |Σ|+ `.
Finally, construct the string

w̄ = �����w1d1 ��d1w2d2 ��d2 . . . d`−1 ��d`−1w` .

The prefix of w̄ of length five can be partitioned in two different ways each
selecting �. Consequently, in any 2-partition of w̄, remaining occurrences of
� must be selected together with an adjacent letter different from �, i.e., all
strings di� and �di must be selected. Therefore, any 2-partition of w̄ contains a
2-partition ofW and the strings D = {�,��,��, d1�,�d1, . . . , d`−1�,�d`−1}.
On the other hand, since all strings in D contain � /∈ Σ, any 2-partition of w̄
together with D forms a 2-partition of W. It follows that there is a 2-partition
of W if and only if there is a 2-partition of w̄. The reduction is in polynomial
time and space as |w̄| = ||W||+ 4`+ 1. ut



4.3 Equality-Free Multiple String Partition with Binary Alphabet

Theorem 3. The EF-MSP with maximum partition size K = 2 can be poly-
nomially reduced to the EF-MSP Problem with the alphabet size L = 2. Con-
sequently, the EF-MSP is NP-complete for binary alphabet. In addition, this
reduction satisfies the following property: for any set C containing n distinct
strings of length δ, where n is the size of the alphabet of the EF-MSP with maxi-
mum partition size K = 2 and δ ≥ log2 n, every selected word in a valid partition
(if it exists) of the EF-MSP with the binary alphabet is a prefix of a string in
C2, and its maximum partition size is K̄ = 2δ.

Proof. We will show a reduction from the EF-MSP with maximum partition
size K = 2. Consider an arbitrary instance I of EF-MSP having a set of strings
W = {w1, w2, . . . , w`} over alphabet Σ = {a1, . . . , an}, and maximum partition
size K = 2. We will construct an instance Ī of EF-MSP over binary alphabet
Σ̄ = {0, 1}. Let δ be any number greater or equal to log2 n. Let C = {c1, . . . , cn}
be a set of any distinct binary codewords of length δ. We set K̄ to 2δ. Let h be
a homomorphism from Σ to C such that h(ai) = ci, for every i = 1, . . . , n. The
set of strings of Ī will contain h(W), i.e., the original strings in W mapped by
h to the binary alphabet Σ̄. However, we need to guarantee that the partition
of strings in h(W) does not contain fragments of codewords. For this reason, we
also add to W̄ the following strings:

Ŵ = {prefixi(c); c ∈ C, i = 1, . . . , δ − 1} ∪
{prefixi(cd); c, d ∈ C, i = δ + 1, . . . , 2δ − 1}

We set W̄ = h(W) ∪ Ŵ.
First, consider a valid 2-partition P of W. We construct a K̄-partition P̄ of

W̄ as follows. For each string s selected in P , we select the corresponding h(s)

in P̄ . For each string t ∈ Ŵ, we select t entirely. Note that strings selected from
h(W) have length either δ or 2δ, while strings selected from Ŵ have lengths
different from δ and 2δ. Therefore, there cannot be any collisions between these
two groups of selected strings. Furthermore, there are no collisions in the first
group, since there were no collisions in P . Obviously, there are no collisions in
the second group of selected strings. It follows that P̄ is a valid K̄-partition of
W̄.

Conversely, consider a valid K̄-partition P̄ of W̄. First, we will show that all
strings in Ŵ are selected without non-trivial cut points. We will prove that by
induction on the length i of strings. The base case, i = 1, is trivially true, as
one-letter strings cannot be partitioned into shorter strings. Now, assume the
claim is true for all strings in Ŵ of lengths smaller than i < 2δ and different
from δ. Consider a word u ∈ Ŵ of length i. Assume that u is partitioned into
strings u1, . . . , ut, where t ≥ 2. Note that the length of u1 is smaller than i. If
the length of u1 is different from δ, we have a collision, as u1 ∈ Ŵ and by the
induction hypothesis, it was selected without non-trivial cut points. Assume that
the length of u1 is δ. Then u2 is a prefix of a codeword of length smaller than



min{δ, i}, and we have a collision again as in the previous case. It follows that
t = 1, i.e., u is selected without non-trivial cut points in P̄ . Second, we show
that all strings selected in the partition of strings in h(W) have lengths either
δ or 2δ. Assume that this is not the case for some string s ∈ h(W). Note that
s = ci1ci2 . . . cip , for some indices i1, . . . , ip. Let s = s1 . . . sq be the partition
of s and let j be the smallest j such that the length of sj is not δ or 2δ. Then
s1 . . . sj−1 = ci1 . . . cir , for some r < p. Consequently, sj is a prefix of cir+1

cir+2
,

i.e., sj ∈ Ŵ, and we have a collision, since sj was already selected in partition

of Ŵ. Hence, each string in h(W) is partitioned into strings of lengths either δ
or 2δ, which can be easily mapped to a valid 2-partition of W.

It follows that there is a 2-partition of W if and only if there is K̄-partition
of W̄ and that the reduction satisfies the property described in the claim.

Finally, let us check that the reduction is polynomial. The size of h(W) is

|W| and the length of h(W) is δ||W||. The size of Ŵ—the set of all unique
prefixes for codewords of length less than δ, and all unique prefixes of pairs of
adjacent codewords with length greater than δ and less than 2δ—is at most
(n2 + n)(δ − 1) as there are n codewords in total. Therefore, the length of Ŵ is
at most n ·(1+ · · ·+δ−1)+n2 ·(δ+1+δ+2+ · · ·+2δ−1) = (3n2 +n)(δ−1)δ/2.
Since δ can be chosen to be Θ(log n), the size of W̄ is polynomial in the size of
W and the size of the original alphabet Σ. ut

4.4 Equality-Free String Partition with Binary Alphabet

Theorem 4. Equality-Free String Partition (EF-SP) Problem is NP-complete
for binary alphabet (L = 2).

Proof. We will show a reduction from the EF-MSP Problem with the binary
alphabet (L = 2) satisfying properties listed in Theorem 3. Consider an instance
I of EF-MSP having a set of strings W = {w1, w2, . . . , w`} over alphabet Σ =
{0, 1}, and maximum partition size K = 2δ such that all selected words in any
valid K-partition are prefixes of the elements of a set C2, where C contains
n distinct strings of length δ each starting with 0, ` ≤ (n2 + n)(δ − 1), and
δ ≥ max(9, 3 log2(n + 1)). By Theorem 3, this instance can be polynomially
reduced to an instance of the EF-MSP with maximum partition size K = 2. We
will construct an instance Ī of EF-SP over binary alphabet Σ̄ = {0, 1} with the
same partition size K = 2δ. We will show that the size of Ī is polynomial in the
size of I, and hence, it will follow by Theorems 1 and 3, that the EF-SP Problem
is NP-complete.

To construct the string w̄ we will interleave strings w1, . . . , w` with delimiters
d1, . . . , d`−1 defined in a moment as follows:

w̄ = w1d1w2d2w3 . . . d`−1w` .

To define the delimiter strings, we will need the following functions. Let bin :
N → {0, 1}∗ be a function mapping a positive integer to its standard binary
representation without the leading one. For example bin(1) = ε, bin(2) = 0 and



bin(10) = 010. Next, the functions padi : {0, 1}∗ → {0, 1}∗ will pad a given
string with i − 1 ones and one zero on the left, i.e., padi(s) = (1)i−10s. We
will refer to strings returned by this functions as padded strings. The function
chain : {0, 1}∗ → {0, 1}∗ maps a string s with i trailing zeros, i.e., s = s′(0)i,
where s′ is either the empty string or a string ending with 1, to the following
concatenation of padded strings and mirror images (reversals) of padded strings:

chain(s) = padR
K−|s|(s) padK−|s|(s

′) padR
K−|s|(s

′) padK−|s|(s
′0) padR

K−|s|(s
′0)

. . . padK−|s|(s
′(0)i−1) padR

K−|s|(s
′(0)i−1) padK−|s|(s) .

Finally, we set the delimiter dj to chain(bin(j)), for every j > 1. For j = 1, we
set d1 to 0(1)K−1(1)K(K−1)/2(1)K−10. To illustrate this definition, let us list the
first five delimiter strings:

d1 = 0(1)K−1(1)K(K−1)/2(1)K−10

d2 = chain(0) = 00(1)K−2(1)K−200(1)K−2(1)K−200

d3 = chain(1) = 10(1)K−2(1)K−201

d4 = chain(00) = 000(1)K−3(1)K−300(1)K−3(1)K−30000(1)K−3(1)K−3000

d5 = chain(01) = 100(1)K−3(1)K−3001

Now, consider a valid K-partition P of W. We construct a K-partition P̄
of w̄ as follows. Each substring wj is partitioned in the same way as in P .
Each delimiter dj , where j > 1, is partitioned to its padded strings and mirror
images of padded strings. In addition, the delimiter d1 is partitioned into one
mirror image of a padded string, strings (1), (1)2, . . . , (1)K in any order, and one
padded string. Note that all strings selected in wj ’s are prefixes of C2, and since
each c ∈ C has length δ = K/2 and starts with 0, all these selected strings start
with 0 and the longest run of 1 they contain has length at most δ−1. Hence, they
cannot collide with strings (1), (1)2, . . . , (1)K and with padded strings which all
start with 1. To show they do not collide with mirror images of padded strings,
we will show that each padded string (or its mirror image) contains a run of at
least δ ones. By the definition of functions padi, each padded string or its mirror
image selected in a delimiter dj contains a substring (1)K−| bin(dj)|−1, i.e., a run
of K − (dlog2 je − 1) − 1 = K − dlog2 je ones. Since j < ` ≤ (n2 + n)(δ − 1),
it is enough to show that log2[(n2 + n)(δ − 1)] ≤ δ. This follows from the fact
that δ ≥ 2 log2(n + 1) + δ/3 and δ/3 ≥ log2(δ − 1) for δ ≥ 9. Finally, we need
to show that all selected padded strings and their mirror images are distinct.
Note that each selected padded string starts with at least δ ones and contains
at least one zero, hence, it cannot be equal to a selected mirror image of padded
string. Hence, it is enough to show that two delimiter dj and dj′ , where j, j′ < `
do not contain the same padded string or its mirror image. Without loss of
generality, let us only consider the padded strings. If bin(j) and bin(j′) have
different lengths then the padded strings of dj and dj′ start with (1)K−| bin(j)|−10

and (1)K−| bin(j
′)|−10, hence they cannot be equal. Therefore, assume they have

the same length. Let s (respectively, s′) be the prefix of bin(j) (respectively,



bin(j′)) without the trailing zeros. Clearly, s 6= s′. Now, the padded strings from
dj and dj′ are same only if s0i = s′0i

′
for some i and i′. However, since both s

and s′ end with one or one of them is the empty string, we must have i = i′,
and hence also s = s′, a contradiction. Since the K-partition P of W was valid,
it follows that the K-partition of w̄ is also valid.

Conversely, consider a valid K-partition P̄ of w̄. It is enough to show that P̄
super-selects each delimiter in w̄. We will show by induction on j that delimiters
d1, . . . , dj are super-selected and furthermore, that each of these delimiters is
partitioned into its padded strings and mirror images of padded strings. For
the base case j = 1, it is easy to see that P̄ must select string 0(1)K−1, then
strings (1)1, . . . , (1)K in any order and string (1)K−10, and thus d1 is super-
selected in P̄ and its padded string and its mirror image of a padded string are
selected. Next, assume that the induction hypothesis is satisfied for delimiters
d1, . . . , dj−1. Consider delimiter string dj . First, we will show that dj contains
cut points in P̄ shown by ·’s below:

padR
K−|s|(s) · padK−|s|(s

′) padR
K−|s|(s

′) · padK−|s|(s
′0) padR

K−|s|(s
′0)·

. . . · padK−|s|(s
′(0)i−1) padR

K−|s|(s
′(0)i−1) · padK−|s|(s) ,

where s = bin(j) and s′ is the prefix of s without the trailing zeros and i is the
number of trailing zeros. Note that each letter “·” is preceded and followed by
K − |bin(j)| − 1 ones. Since |bin(j)| ≤ δ − 1, we have a run of at least K = 2δ
ones, thus this run must contain a cut point. By contradiction assume that there
is a cut point before the letter “·” in this run of ones. Then the selected string
starting at this cut point is in the form (1)K−i−10u, where i < |bin(j)| and
|u| ≤ i. Note that u might be the empty string and the selected string must
contain the zero preceding u since all strings consisting only of ones are already
selected in d1. Let v = u(0)i−|u|. Since |v| = i < |bin(j)|, we have v = bin(j′),
where j′ < j. The delimiter string dj′ contains padK−i(u) = (1)K−i−10u, which
by the induction hypothesis has been already selected. Analogously, we arrive
into a contradiction, if there is a cut point after “·” in the run of ones surrounding
the letter “·”. It follows that there is a cut point at each letter “·” above in P̄ .

Next, we show that each of super-selected strings of dj :

padK−|s|(s
′) padR

K−|s|(s
′), . . . ,padK−|s|(s

′(0)i−1) padR
K−|s|(s

′(0)i−1) ,

has a cut point exactly in the middle. The length of each padded string or of
its mirror image is at least K − |s| and since |bin(j)| ≤ δ − 1, this length is at
least δ + 1. Hence, there has to be at least one cut point in each of the above
super-selected strings in P̄ . We will first prove the claim for the first super-
selected string padK−|s|(s

′) padR
K−|s|(s

′). By contradiction, and without loss of

generality, assume that there is a cut point inside padK−|s|(s
′) = (1)K−|s|−10s′.

Thus a string in the form (1)K−|s|−10u, where u is a proper prefix of s′, is
selected in P̄ . Consider string v = u(0)|s|−|u|. Obviously, |v| = |s| and v is
lexicographically smaller than s, and thus bin(j′) = v for some j′ < j. By
the induction hypothesis, string padK−|v|(u) = (1)K−|s|−10u has been already



selected in dj′ , a contradiction. It follows by straightforward induction on i
that the remaining super-selected strings are partitioned exactly in the middle.
Finally, observe that if there is a cut point inside padK−|s|(s) then either one
the padded strings of dj′ or one of the padded strings of dj described above

is selected again . Similarly, there cannot be any cut point inside padR
K−|s|(s).

Since the length of these two strings is exactly K, there has to be a cut point
just after padK−|s|(s) and just before padR

K−|s|(s), i.e., dj is super-selected. This
completes the induction proof, and we have that all delimiter strings in w̄ are
super-selected by P̄ , and thus P̄ gives us also a partition of the set W.

It follows that there is a K-partition of W if and only if there is K-partition
of w̄. Finally, let us check that the reduction is polynomial. The length of each
padded string or its mirror image is at most K. The length of d1 is K(K+3)/2 <
K2. String bin(j) for 1 < j < ` has length at most δ − 1, and hence each dj
contains at most 2δ = K padded strings and mirror images of padded strings.
Hence, |dj | ≤ K2. Thus, the total length of w̄ is at most ||W||+ `K2. ut

5 Factor-, Prefix- and Suffix-Free String Partition
Problems

Here, we summarize the results for these partition problems. Their proof can be
found in the appendix of this paper.

Theorem 5. Both Factor-Free Multiple String Partition (FF-MSP) and Factor-
Free String Partition (FF-SP) are NP-complete in the following two cases: (a)
when the maximum partition size is 3; and (b) when the alphabet is binary.

Theorem 6. Both Prefix(Suffix)-Free Multiple String Partition (PF-MSP) and
Prefix(Suffix)-Free String Partition (PF-SP) are NP-complete in the following
two cases: (a) when the maximum partition size is 2; and (b) when the alphabet
is binary.

6 Conclusion

We have established the complexity of the following fundamental question: given
a string w over an alphabet Σ and an integer K, can w be partitioned into
factors no longer than K such that no two collide? We have shown this prob-
lem is NP-complete for versions requiring that no string in the partition is a
copy/factor/prefix/suffix of another. Furthermore, we have shown the problems
remain hard even for binary strings. This resolves a number of open questions
from previous work [4] and establishes the theoretical hardness of a practical
problem in contemporary synthetic biology, specifically, the oligo design for gene
synthesis problem.
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A Factor-Free String Partition Problems

A.1 Factor-Free Multiple String Partition with Unbounded
Alphabet

Let φ be an instance of 3SAT(3), with set C = {c1, . . . , cm} of clauses, and set
X = x1, . . . , xn of variables. We shall define an alphabet Σ and construct a set
of strings W over Σ∗, such that W has a factor-free 3-partition if and only if
φ is satisfiable. Let |ci| denote the number of literals contained in the clause ci
and let c1i , . . . , c

|ci|
i be the literals of clause ci.

We construct W to be the union of three sets of strings: clause strings (C),
enforcer strings (E) and forbidden strings (F) with the same function as in the
equality-free case. We construct an alphabet Σ, formally defined below, which
includes a letter for each literal occurrence in the clauses, three letters for each
variable, and the letters 0 and 1.

Σ = {x̂ji ; xi ∈ X ∧ 1 ≤ j ≤ 3} ∪ {ĉji ; ci ∈ C ∧ 1 ≤ j ≤ |ci|} ∪ {0, 1}

Note that |Σ| is linear in the size of the 3SAT(3) problem φ (at most 3m+
3n+ 2).

Observation 2 Since every letter appears at least twice inW, no selected string
can be a single letter.

x̂3v 0 x̂3v 1 ≤ v ≤ n

Fig. 6. The set of forbidden strings, F , used in the reduction from 3SAT(3) to FF-MSP.

Construction of forbidden strings: To ensure that certain strings cannot be se-
lected in C or E , we construct a set of forbidden strings F as shown in Figure 6.
Specifically, we forbid, for every variable v, any factor of the string x̂3v0x̂3v. The
number of strings in F is n.

Lemma 3. No string or factor of a string from the forbidden set F can be
selected in C or E.

Proof. Consider any string f ∈ F . If f is split into two or three selected strings,
a single letter is selected, which is not possible. Regardless of the construction of
C and E , it follows that in any valid partition, since f is selected in F , a factor
of f cannot be selected in C nor in E . ut



ĉ1i ĉ1i 0 ĉ2i ĉ2i ĉ1i ĉ1i 0 ĉ2i ĉ2i 0 ĉ3i ĉ3i

Fig. 7. The 2-literal clause string (left) and 3-literal clause string (right) used in the
reduction from 3SAT(3) to FF-MSP. Shown below each string are all valid partitions.
Selected literals for a partition are shown in red.

Construction of clause strings: For each clause ci ∈ C, construct the i-th clause
string to be ĉ1i ĉ

1
i 0ĉ2i ĉ

2
i , if |ci| = 2 and ĉ1i ĉ

1
i 0ĉ2i ĉ

2
i 0ĉ3i ĉ

3
i , if |ci| = 3.

Lemma 4. Given that no factor of a string from the forbidden set F is selected
in C ∪E, at least one literal must be selected for each clause string in any factor-
free 3-partition of W.

Proof. A literal letter cannot be selected alone without creating a collision.
Therefore, we say a literal cji is selected in clause ci if only if the string ĉji ĉ

j
i

is selected in the clause string for ci. Whether ci has two or three literals, a
single letter 0 cannot be selected. A simple case analysis shows that in any valid
partition at least one literal is selected (see Figure 7). ut

Construction of enforcer strings: We must now ensure that no literal of φ that is
selected in C is the negation of another selected literal. By definition of 3SAT(3),
each variable appears exactly three times: twice positive and once negated. Let
cpi and cqj be the two positive and crk the negated occurrences of variable xv.
Then construct three enforcer strings for this variable as shown in Figure 8.

x̂1v x̂
2
v 1 ĉrk ĉ

r
k 1 1 ĉpi ĉ

p
i 1 x̂3v x̂

3
v 0 x̂3v x̂

3
v 1 x̂1v x̂

2
v 0 0 x̂1v x̂

2
v 1 x̂3v x̂

3
v 0 x̂3v x̂

3
v 1 ĉqj ĉ

q
j 1

Fig. 8. The enforcer strings for the three literals of variable xv used in the reduction
from 3SAT(3) to FF-MSP. The two positive literals are denoted as ĉpi and ĉqj and the
negative literal as ĉrk. If the negative literal is selected in C, then the enforcer string
ensures neither positive literal can also be selected in C without creating a collision
(top row). Likewise, if either or both of the positive literals are selected in C, then the
negative literal cannot be selected without creating a collision (bottom row).

Lemma 5. Given that no factor of a string from the forbidden set F is selected
in C ∪ E, any factor-free 3-partition of W must be consistent.

Proof. Consider the three enforcer strings for some variable xv with positive
literals cpi = cqj = xv, and the negated literal crk = ¬xv shown in Figure 8. Note
that the red strings in the middle of the last two enforcer strings are forbidden,



and hence, no partition can have a cut point at the beginning or the end of the red
string. Note also that the factor x3vx

3
v cannot be selected, as then x3vx

3
v0 or 0x3vx

3
v

has to be selected, which is obviously not possible. Suppose the negative literal
is selected in C. Then the only partition which can be selected without creating a
collision selects strings containing both ĉpi ĉ

p
i and ĉqj ĉ

q
j as factors, thus forbidding

them from being selected in C (see Figure 8 (top partition)). Likewise, suppose
one or both of the positive literals is selected in C. Then only one partition of
the first enforcer string is possible and it selects one string containing ĉrk ĉ

r
k as

a factor, thus forbidding ĉrk ĉ
r
k from being selected in C (see Figure 8 (bottom

partition)). Note that while these enforcer strings ensure literals selected in the
clauses are consistent, it also ensures unwanted collisions do not occur since
selected strings containing literals are prefixed or suffixed by a 1, a letter not
used in the clause strings. Also note that the selected strings containing the
variable letters do not collide. ut

This completes the reduction. Notice that the reduction is polynomial as the
combined length of the constructed set of strings W = C ∪ E ∪ F is at most
8m+ 32n+ 3n = 8m+ 35n.

Theorem 7. Factor-Free Multiple String Partition (FF-MSP) is NP-complete.

Proof. It is easy to see that FF-MSP is in NP: a nondeterministic algorithm
need only guess a partition P where |pi| ≤ K for all pi in P and check in
polynomial time that no string in P is a factor of another. Furthermore, it is
clear that an arbitrary instance φ of 3SAT(3) can be reduced to an instance of
FF-MSP, specified by a set of strings W = C ∪ E ∪ F , in polynomial time and
space by the reduction detailed above.

Now suppose there is a satisfying truth assignment for φ. Simply select one
corresponding true literal per clause in C. The construction of clause strings
guarantees that a 3-partition of the rest of each clause string is possible. Also,
since a satisfying truth assignment for φ cannot assign truth values to opposite
literals, then Lemma 5 guarantees that a valid partition of the enforcer strings
are possible which does not conflict with the clause strings. Therefore, there
exists a factor-free multiple string partition of W.

Likewise, consider a factor-free multiple string partition of W. Lemma 4
ensures that at least one literal per clause is selected. Furthermore, Lemma 5
guarantees that if there is no collision, then no two selected variables in the
clauses are negations of each other. Therefore, this must correspond to a satis-
fying truth assignment for φ (if none of the three literals of a variable is selected
in the partition of C then this variable can have arbitrary value in the truth
assignment without affecting satisfiability of φ). ut

A.2 Factor-Free String Partition with Unbounded Alphabet

Lemma 6. A valid K-partition P of a string w having α(x)3K−2β as a factor,
where α and β are single letters other than x, must select the strings α(x)K−1,
(x)K , and (x)K−1β.



Proof. Three strings are required to cover the factor δ = α(x)3K−2β. However,
more than three strings cannot be selected to cover δ, as otherwise at least two
factors are selected consisting only of the letter x and must therefore collide.
There is only one partition of δ covered by three factors which must select
α(x)K−1, (x)K , and (x)K−1β.

Theorem 8. Factor-Free String Partition (FF-SP) is NP-complete.

Proof. Consider an arbitrary instance I of FF-MSP having a set of strings
W = {w1, w2, . . . , wn} over alphabet Σ, and maximum partition size K. We

construct an instance I ′ of FF-SP as follows. Let Σ̂ = {α}∪ {γi, for 1 ≤ i < n},
where Σ̂ ∩ Σ = ∅. Set the alphabet of I ′ to Σ′ = Σ ∪ Σ̂ and the maximum
partition size to K ′ = K. Note that |Σ′| = |Σ| + n. Finally, construct the
string w′ = w1α(γ1)3K−2αw2α(γ2)3K−2α . . . α(γn−1)3K−2αwn. The reduction is
in polynomial time and space as |w′| =

∑
wi∈W |wi| + 3K(n − 1). By Lemma

6, the factors α(γi)
3K−2α of string w′ must be partitioned as α(γi)

K−1, (γi)
K ,

(γi)
K−1α, for 1 ≤ i < n. Since any string containing a letter γi, 1 ≤ i < n,

cannot be a factor of any string in W it follows immediately that w′ has a K ′-
partition if and only if W has a K-partition. ut

A.3 Factor-Free Multiple String Partition with Binary Alphabet

In this section we are going to reduce the size of alphabet to 2. In order to do
that we will map all letters of the original unbounded alphabet Σ except 0 and
1 to distinct binary strings of length t (t has to be large enough so that we
have enough of strings), called codewords. Letters 0 and 1 will remain mapped
to 0 and 1, respectively. Consequently, K will be set to 2t + 1. We will use the
same clause strings and a simplified version of the enforcer strings found in the
unbounded case (just mapped to the binary alphabet). We will use only two
forbidden strings, 000 and 010, to force valid K-partitions to cut the clause and
enforcer strings just before or after the 0 or 1 letter. At the end, we will show
that this does not introduce any new collisions in the K-partition corresponding
to a truth assignment of the 3SAT(3) instance.

Construction of codewords: We will use the codewords of the following type
0(1)i0(1)t−3−i0, where i ∈ {2, . . . , t−5}. To make sure we have enough codewords
for all literal and variable letters (at most 3m + 2n), we have to choose t ≥
3m+ 2n+ 6.

Construction of forbidden string: We will use only two forbidden strings F =
{000, 010}. Obviously, the only factor-free partition of F is without any non-
trivial cut points. These two forbidden strings force any string containing uav
as a factor, where u and v are codewords and a is a letter, to contain exactly
one cut point around the letter a between u and v as formalized in the following
lemma.



Lemma 7. Any valid K-partitioning of αuavβ and F , where u, v are codewords,
a ∈ {0, 1} and α, β are arbitrary binary strings, contains either cut point |α|+ |u|
or |α|+ |u|+ 1, but not both.

Proof. Assume we have a valid partitioning of αuavβ without cut points at
positions |α| + |u| and |α| + |u| + 1. Since u ends with 0 and v starts with 0,
there is a selected string containing 0a0 as a factor, which is a forbidden string,
a contradiction. ut

Construction of clause strings: We will use the same clause strings as for the
unbounded alphabet:

ĉ1i ĉ
1
i 0ĉ2i ĉ

2
i or ĉ1i ĉ

1
i 0ĉ2i ĉ

2
i 0ĉ3i ĉ

3
i ,

where ĉji are distinct codewords described above. We say that a literal cji is

selected if ĉji ĉ
j
i is super-selected in the K-partition.

Lemma 8. In any factor-free K-partition of C ∪ F , at least one of the literals
in each clause is selected.

Proof. By Lemma 7, there is exactly one cut point around each of the 0’s between
codewords in the clause string. This means that the K-partition of the clause
string follows one of the patterns depicted in Figure 7 with the exception that
any of the selected strings depicted in the figure can be further partitioned, i.e.,
they are super-selected. The claim follows. ut

Construction of enforcer strings: We will use a slightly simplified version of the
enforcer strings as those used for the unbounded alphabet:

x̂1vx̂
2
v1ĉrk ĉ

r
k1, 1ĉpi ĉ

p
i 1x̂1vx̂

2
v0 and 0x̂1vx̂

2
v1ĉqj ĉ

q
j1 ,

where ĉpi and ĉqj are codewords for the positive literals of a variable xv, ĉrk is

the codeword for the negated literal of xv and x̂1v, x̂
2
v are codewords for the

variable letters of xv. The difference from the unbounded case is that the factor
x̂3vx̂

3
v0x̂3vx̂

3
v1 can be safely removed from the second and third strings without

changing the logic of the gadgets due to the property described in Lemma 7.

Observation 3 In any factor-free K-partition no super-selected string can be a
prefix (suffix) of any other super-selected string.

Lemma 9. In any factor-free K-partition of C ∪ E ∪ F , the selected literals are
consistent.

Proof. By Lemma 7, either x̂1vx̂
2
v or ĉrk ĉ

r
k1 is super-selected in the first enforcer

string. Note that if x̂1vx̂
2
v is super-selected then by Observation 3, x̂1vx̂

2
v0 and

0x̂1vx̂
2
v cannot be super-selected. Hence, if either x̂1vx̂

2
v0 or 0x̂1vx̂

2
v is super-selected

then in the first enforcer string ĉrk ĉ
r
k1 is super-selected, and hence literal crk cannot

be selected.



By Lemma 7, either 1ĉpi ĉ
p
i or x̂1vx̂

2
v0 is super-selected in the second enforcer

string. In the first case, by Observation 3, literal cpi cannot be selected; in the
second case, by the above argument, literal crk cannot be selected. Similarly, the
last enforcer string ensures that literals cqj and crk cannot be selected at the same
time. ut

Theorem 9. Factor-Free Multiple String Partition Problem for the binary al-
phabet (FF-MSP(2)) is NP-complete.

Proof. It follows by Lemmas 8 and 9 that if there is a factor-free K-partition of
W = C ∪E ∪F , then the selected literals produce a satisfying assignment for the
3SAT(3) instance φ.

Now, assume that there is a satisfying assignment for φ. Select a literal in
each clause which satisfies it and partition all clause and enforcer strings ac-
cordingly, ensuring literals selected in the clause strings are not selected in the
enforcer strings. We will show that this K-partition P is factor-free. Obviously,
the forbidden strings 000 and 010 are not factors of any selected string. In the
clause strings, the K-partition P selects the following types of strings: 0aa, aa0
and aa, where a is a codeword. In the enforcer string it selects the following
types of strings: 1aa, aa1, 0ab, ab0, ab1, ab, 0a, a0, 1a, a1, where a, b are distinct
codewords. It follows by the proof in the unbounded case that two strings where
one is obviously a factor of the other, like aa and 0aa, are not selected at the
same time. Hence, it is enough to show that no new collisions are introduced by
mapping the original letters to the binary alphabet.

Obviously, the strings of the same length are different as all codewords are
different and the strings of different types (e.g., 0ab and ab0) would differ in the
first two or last two letters. String ab (where we can have a = b) is not a factor
of some σcd (cdσ), where a 6= c, b 6= d are codewords and σ ∈ {0, 1}, as the 00
in the middle of ab would have to exactly match 00 in the middle of σcd (cdσ),
which would imply ab = cd.

Finally, we will show that σa (and similarly, for aσ) is not a factor of cd and
σ′cd and cdσ′, where a, c, d are codewords and σ, σ′ are letters, unless σ = σ′

and a = c. First, assume that σ = 1. Then σa contains two 101 factors with
only 1’s between them. String cd contains exactly two 101 factors but there is
a 00 factor between their occurrences in cd, and the same is true for σ′cd and
cdσ′ if σ′ = 0. Hence, assume that σ′ = 1 = σ. Now, cdσ′ contains a factor
10(1)+01, but only at the very end, while in σa this factor is followed by at least
two letters. Hence, the only possibility is that σa is a factor of σcd. However,
pattern 10(1)+01 appears only at the beginning of σcd, and hence, σa would
have to be a prefix of σcd and then a = c.

Second, assume that σ = 0. Then σa starts with 00. Similar case analysis
would show that σa can only be a factor of σad, or of ca, σ′ca or caσ′. However,
string 0a can be only selected from the second enforcer string 0xy1bb1 and x
never appears in the second position of any selected string of the type cd, σ′cd,
cdσ′. ut



A.4 Factor-Free String Partition with Binary Alphabet

We will first design a sequence of strings which have to be selected no matter
where they appear in the string we are partitioning.

Lemma 10. Let K ≥ 1 and for any i ≤ K, let di = (1)i0(1)K−1−i. Then any
factor-free K-partition of

w = u1d0(1)KdR0 u2d1d
R
1 . . . dN−2d

R
N−2uN ,

where N ≤ K/2 and u1, . . . , uN are arbitrary strings, selects the following strings
(1)K , di, d

R
i , for every i = 0, . . . , N − 2.

Proof. Let P be a factor-free multiple K-partition of w. We will show by induc-
tion on i that (1)K , d0, . . . , di and dR0 , . . . , d

R
i are selected. The base case i = 0

follows by Lemma 6. For the inductive step, assume that (1)K , d0, . . . , di−1 and
dR0 , . . . , d

R
i−1 are selected, where i ≤ N − 2. We will show that di and dRi are also

selected. The factor did
R
i of w has length 2K, hence, there is at least one cut

point inside it. Let j be the first such cut point. Obviously, j ≤ K. Assume that
j < K. Let wp be the selected string starting at cut point j. We will consider
two cases:

Case 1. j ≥ i+ 1. Then wp is a prefix of (1)K , a contradiction since (1)K is
already selected.

Case 2. j ≤ i. Then wp is a prefix of di−j , a contradiction since di−j is already
selected.

Hence, the first cut point inside the factor did
R
i of w is at position K. By

symmetrical argument, this is also the last such cut point. It follows that both
di and dRi are selected. ut

Corollary 1. Let K ≥ 1 and for any i ≤ K, let di = (1)i0(1)K−1−i. Consider
the string

w = u1d0(1)KdR0 u2d1d
R
1 . . . dN−2d

R
N−2uN ,

where N ≤ K/2 and u1, . . . , uN are arbitrary strings. If the string w has a
factor-free K-partition then the sequence of strings u1, . . . , uN has a factor-free
multiple K-partition. On the other hand, if the sequence u1, . . . , uN has a factor-
free multiple K-partition such that each selected string contains at least two 0’s
then w has a factor-free K-partition.

Proof. The first implication follows immediately by Lemma 10. The second im-
plication follows by the fact that each delimiter contains only one 0; hence, none
of the selected strings in u1, . . . , uN can be a factor of a delimiter. ut

As the immediate consequence of Theorem 9 and Corollary 1, we have the
following.

Theorem 10. Factor-free String Partition Problem for the binary alphabet (FF-
SP(2)) is NP-complete.



B Prefix/Suffix-Free String Partition Problems

All proofs presented in this section are for the prefix-free string partition prob-
lems. The results for the suffix-free string problems follow by symmetry.

B.1 Prefix/Suffix-Free Multiple String Partition with Unbounded
Alphabet

Similar to the equality-free and factor-free cases, we will show a polynomial
reduction from an arbitrary instance of 3SAT(3).

Let φ be an instance of 3SAT(3), with set C = {c1, . . . , cm} of clauses, and
set X = x1, . . . , xn of variables. We shall define an alphabet Σ and construct a
set of strings W over Σ∗, such that W has a prefix-free 2-partition if and only
if φ is satisfiable. Let |ci| denote the number of literals contained in the clause

ci and let c1i , . . . , c
|ci|
i be the literals of clause ci.

We construct W to be the union of three sets of strings: clause strings (C),
enforcer strings (E) and forbidden strings (F) with the same function as in
the equality-free and factor-free cases. We construct an alphabet Σ, formally
defined below, which includes four letters for each variable, a letter for each
literal occurrence in the clauses and the letter $.

Σ = {x̂ji ; xi ∈ X ∧ 1 ≤ j ≤ 4} ∪ {ĉji ; ci ∈ C ∧ 1 ≤ j ≤ |ci|} ∪ {$}

Note that |Σ| is linear in the size of the 3SAT(3) problem φ (at most 4n +
3m+ 1).

Construction of forbidden strings: The forbidden set, F , consists of the single
string $$. Without loss of generality, we refer to this as the forbidden string.

Lemma 11. No factor of the forbidden string can be selected in C nor in E.

Proof. No proper factor of the forbidden string can be selected without creating
a collision. Therefore, the entire string must be selected. Regardless of the con-
struction of C and E , it follows that in any valid partition, since $$ is selected in
F , a factor of it cannot be selected in C nor in E . ut

Construction of clause strings: For each clause ci ∈ C, construct the i-th clause
string to be ĉ1i $ĉ2i , if |ci| = 2 and ĉ1i $ĉ2i $ĉ3i , if |ci| = 3.

Lemma 12. Given that no factor of the forbidden string is selected in C ∪ E,
exactly one literal must be selected for each clause string in any prefix-free 2-
partition of W.

Proof. We say a literal cji is selected in clause ci if and only if the string ĉji
is selected in the clause string for ci. Whether ci has two or three literals, the
forbidden string $ cannot be selected alone. A simple case analysis shows that
in any valid partition exactly one literal is selected (see Figure 9). ut



ĉ1i $ ĉ2i ĉ1i $ ĉ2i $ ĉ3i

Fig. 9. The 2-literal clause gadget (left) and 3-literal clause gadget (right) used in the
reduction from 3SAT(3) to PF-MSP. Shown below each gadget are all valid partitions.
Selected literals of a partition are shown in red.

Construction of enforcer strings: We must now ensure that no literal of φ that is
selected in C is the negation of another selected literal. By definition of 3SAT(3),
each variable appears exactly three times: twice positive and once negated. Let
cpi and cqj be the two positive and crk the negated occurrences of a variable xv.
Then construct two enforcer strings for this variable as shown in Figure 10.

x̂1v ĉpi ĉrk x̂2v x̂3v ĉqj ĉrk x̂4v

Fig. 10. The pair of enforcer strings for a variable xv used in the reduction from
3SAT(3) to PF-MSP. The two positive literals for variable xv are denoted as ĉpi and ĉqj
and the negative literal as ĉrk.

Lemma 13. Given that no factor of the forbidden string is selected in C ∪ E,
any prefix-free 2-partition of W must be consistent.

Proof. Consider the two enforcer strings for variable xv with positive literals
cpi = cqj = xv, and the negated literal crk = ¬xv shown in Figure 10.

Suppose the negative literal is selected in C. Then the only partition which
can be selected without creating a collision selects strings containing both ĉpi
and ĉqj as a prefix, thus forbidding them from being selected in C (see Figure 10
(top row)).

Likewise, if one or both of the positive literals is selected in C then in any
collision-free 2-partition a string is selected containing ĉrk as a prefix, thus for-
bidding the negative literal from being selected in C (see Figure 10 (bottom
row)). ut

This completes the reduction. Notice that the reduction is linear as the com-
bined length of the constructed set of stringsW = C∪E∪F is at most 5m+8n+2.

Theorem 11. Prefix(Suffix)-Free Multiple String Partition (PF-MSP) is NP-
complete.

Proof. It is easy to see that PF-MSP is in NP: a nondeterministic algorithm
need only guess a partition P where |pi| ≤ K for all pi in P and check in
polynomial time that no string in P is a prefix of another. Furthermore, it is



clear that an arbitrary instance φ of 3SAT(3) can be reduced to an instance of
PF-MSP, specified by a set of strings W = C ∪ E ∪ F , in polynomial time and
space by the reduction detailed above.

Now suppose there is a satisfying truth assignment for φ. Simply select one
corresponding true literal per clause in C. The construction of clause strings
guarantees that a 2-partition of the rest of each clause string is possible. Also,
since a satisfying truth assignment for φ cannot assign truth values to opposite
literals, then Lemma 13 guarantees that a valid partition of the enforcer strings
are possible. Therefore, there exists a prefix-free multiple string partition of W.

Likewise, consider a prefix-free multiple string partition of W. Lemma 12
ensures that exactly one literal per clause is selected. Furthermore, Lemma 13
guarantees that if there is no collision, then no two selected variables in the
clauses are negations of each other. Therefore, this must correspond to a satis-
fying truth assignment for φ (if none of the three literals of a variable is selected
in the partition of C then this variable can have an arbitrary value in the truth
assignment without affecting satisfiability of φ). ut

B.2 Prefix/Suffix-Free String Partition with Unbounded Alphabet

To show the single string restriction of this problem is NP-complete, we design
the same delimiter strings as specified in the factor-free construction. The result
follows immediately by Theorem 11 and Lemma 6.

Theorem 12. Prefix(Suffix)-Free String Partition (PF-SP) is NP-complete.

B.3 Prefix/Suffix-Free Multiple String Partition with Binary
Alphabet

In this section we start with the same construction as the multiple string un-
bounded alphabet case to form a set of strings W, but show how the letters can
be encoded into binary. We map the $ letter to 1 and map all others letters of
the original unbounded alphabet Σ to distinct binary strings of length t, called
codewords. Consequently, K will be set to 2t. We will establish that no codeword
can properly contain a cut point. Furthermore, by design, no codeword is a prefix
of another. Since the mapping to binary does not introduce new collisions, and
since codewords cannot be cut in the middle, the correctness of the construction
will follow from the results on the unbounded case.

Construction of codewords: We use codewords of the form 00(1)i0(1)t−4−i0,
where i ∈ {2, . . . , t− 6}. To ensure we have enough codewords for all literal and
variable letters (at most 3m+ 4n), we have to choose t ≥ 3m+ 4n+ 7.

Construction of forbidden string: We will use the following set of forbidden
strings: {11, 01, 101, 0001, 10001}. Considering only the forbidden set, a simple
case analysis shows that each forbidden string must be entirely selected, other-
wise a collision occurs. This set of forbidden strings ensures that no codeword
can be cut in the middle.



Lemma 14. Given that no strings selected in C ∪E have a forbidden prefix, any
prefix-free K-partition of W must not contain a cut point within a codeword.

Proof. Recall that codewords are of length t and that all length two binary
strings are prefixes of a forbidden string and therefore cannot be selected. Let us
consider any cut point beginning within an arbitrary codeword w. For any proper
suffix of w longer than two, it contains a prefix in the set {011, 111, 101, 110}.
Each of these contains a forbidden string as a prefix and therefore a cut point
in w cannot begin prior to positions 2, 3, . . . , t − 2. We must now show that a
cut point cannot begin prior to position t− 1 or prior to position t. Recall that
by construction, w is followed by either another codeword, the letter 1, or the
empty string. If the empty string, it is not possible to a have a cut point in the
position prior to t − 1 or t since a string will be selected that has length less
than 3 and will therefore be a prefix of a forbidden string. If w is followed by
the letter 1 a cut point prior to t− 1 or t will have a prefix in the set {101, 01},
both of which are forbidden strings. Finally consider the case that w is followed
by another codeword and recall that all codewords begin with 001. If a cut point
occurs prior to position t− 1, and the selected string beginning at that position
has length at least five, then it will contain 10001 as a prefix which is a forbidden
string; any shorter selection will be a prefix of the forbidden string 10001. If a
cut point occurs prior to position t and the selected string has length at least
four, it will contain 0001 as a prefix which is a forbidden string; any shorter
selection will be a prefix of the forbidden string 0001. ut

The above lemma ensures no codeword is divisible. The result is that the
binary encoded instance I ′ of an unbounded alphabet instance I can be parti-
tioned exactly in the same relative positions as the original instance. Since each
codeword cannot be a prefix of another by design, then correctness of the binary
case immediately follows.

Theorem 13. Prefix(Suffix)-Free Multiple String Partition (PF-MSP) is NP-
complete for binary alphabet (L = 2).

B.4 Prefix/Suffix-Free String Partition with Binary Alphabet

Similar to the factor-free case, we will design delimiters to join the set W of
the multiple string case, into one string, without changing the possibilities for
partitioning the original set of strings and without introducing new types of
collisions. Specifically, we will create a new string instance I = WF where W
is a string that concatenates all strings in W, expect from the forbidden set F ,
using delimiters we describe below. The string F has a special construction to
ensure the strings from the forbidden set must be selected in F for any collision-
free partition of I. Thus, the new instance I will have a collision-free partition
if and only if W does.



Construction of delimiters: We design delimiters similar to the codewords of sec-
tion B.3 that instead have lengthK. Specifically, they are of the form 00(1)i0(1)K−4−i0,
where i ∈ {2, . . . ,K − 6}.

Lemma 15. Given that no strings selected in W have a forbidden prefix, any
prefix-free K-partition of W must select all delimiters. Furthermore, the delim-
iters do not collide with any valid selection of the original strings from the set
W.

Proof. By Lemma 14 the delimiters, which are simply longer codewords, cannot
contain a cut point in a middle position. Since they are of the maximum string
length, K, they must be entirely selected in W . As a consequence of Lemma 14,
in any valid partition of the set W, the selected strings are either: (i) single
codewords, (ii) a codeword prefixed by a 1, (iii) a codeword suffixed by a 1, or
(iv) two adjacent codewords. Since each case is no longer than a delimiter, it is
sufficient to show that none could be a prefix of a delimiter. In all four cases,
none could be a prefix as the selected string would contain at least four 0s in
the first K/2 + 1 positions, whereas a delimiter contains at most three. ut

Construction of forbidden string: We now construct the string F = F4F3F2F1.
The string is constructed in a meticulous manner to ensure that each sub-
part must select forbidden strings from a different partition of the forbidden
set F . In particular, F1 = 103K−2111 and it forces 11 to be selected; F2 =
0010K−30K−211101001K−201 and it forces 101 and 01 to be selected; F3 =
001K−3010001 and it forces 10001 to be selected; and F4 = 001k−4010001 and
it forces 0001 to be selected.

Lemma 16. In any prefix-free partition of F the set of forbidden strings must
be selected. Furthermore, there exists a prefix-free partition of F that does not
collide with a valid partition of W assuming that W does not contain a forbidden
prefix.

Proof. (Sketch). At a high level, each sub-part of F is constructed to ensure that
one or more forbidden strings are selected, and the remainder of the sub-part
consists of K length sub-strings that must be entirely selected. Furthermore, the
construction of F ensures there is always a cut point between sub-parts and sub-
part Fj is constructed with the knowledge of strings forbidden in Fi, for all i < j.
The proof requires a detailed and exhaustive case analysis. We give a sketch
of the correctness. Consider sub-part F1. It contains the 3K-length substring
α = 103K−21. At least three strings must be selected to cover α. However, it
cannot be more than three as otherwise at least two contain only 0 letters and
therefore one must be a prefix of another. The only cover for α consisting of
three strings must select 10K−1, 0K , and 0K−11, regardless of the sub-strings
preceding or succeeding α. Since 1 cannot be selected alone (without being a
prefix of 10K−1) the string 11 must be selected. Similar arguments, and the fact
that 11 must already be selected, ensures that F2 is partitioned as 0010K−3,
0K−211, 101, 001K−2, 01, thus forbidding 101 and 01. For F3, since 101 and 11



are already forbidden, there cannot be a cut point prior to any 1 within the left-
most run of 1s. Since 01 is forbidden, there cannot be a cut point in the second
position, nor immediately after the left-most run of 1s. It follows that 001K−3

must be entirely selected, regardless of the string preceding F3. The remaining
string 10001 must be entirely selected, otherwise it would conflict with 101 or
01. Similarly, the partitioning of F4 ensures that 001k−401 and 0001 must be
selected.

Note that all strings selected in F not in the forbidden set have length K.
Thus, to show no new collisions have been introduced, it is sufficient to show that
no string selected in a valid partition of W , that does not contain a forbidden
prefix, cannot be a prefix of one of these strings. As noted earlier, every selected
string in a valid partition of W contains at least one codeword as a sub-string.
Each codeword contains three runs of 0s; however, each K-length selected string
in F contains no more than two runs of 0s. ut

By our straightforward polynomial time and space reduction of a binary PF-
MSP instance into a binary PF-SP instance and by Lemmas 15 and 16 and
Theorem 13 we have the following result.

Theorem 14. Prefix(Suffix)-Free String Partition (PF-MSP) is NP-complete
for binary alphabet (L = 2).


