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Abstract. Lung cancer is the most common cause of cancer-related

death. A common treatment is radiotherapy where the lung tumors are

irradiated with ionizing radiation. The treatment is typically fraction-

ated, i.e. spread out over time, allowing healthy tissue to recover be-

tween treatments and allowing tumor cells to be hit in their most sen-

sitive phase. Changes in tumors over the course of treatment allows for

an adaptation of the radiotherapy plan based on 3D computer tomogra-

phy imaging. This paper introduces a method for segmentation of lung

tumors on consecutive computed tomography images. These images are

normally only used for correction of movements. The method uses graphs

based on electric �ow lines. The method o�ers several advantages when

trying to replicate manual segmentations. The method gave a dice coe�-

cient of 0.85 and performed better than level set methods and deformable

registration.
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1 Introduction

Treatment response is important in lung cancer treatment. Without treatment
response it is impossible to assess the progress or lack of progress of a treatment.
With the continued increase of treatment strategies that is available today the
possibility of earlier treatment response becomes more and more pertinent. If the
patient does not respond adequately to a certain treatment early prediction can
spare the patient unnecessary toxic treatment and be used to change treatment
strategy. During the last 4 decades 3-dimensional imaging modalities has become
one of the most important tools in the clinical assessment of cancer.

Positron emission tomography (PET) has shown to be correlated with treat-
ment outcome [1]. But it is not a conventional tool for early treatment response.
Helical Tomotherapy is an external beam radiation therapy system which has a
megavoltage x-ray source which makes it capable of making megavoltage com-
puted tomography (MVCT) images. These images are used to provide image



guided radiotherapy (IGRT) imaging the target volume to allow adjustment of
the patient to optimize treatment. These images potentially includes informa-
tion about treatment response [2], [3]. But the quantity (up to 30 fractions per
patient) of these images makes manual contouring of gross tumor volume (GTV)
unfeasible for clinics.

Several approaches has been developed to segment tumors throughout treat-
ment. Kuhnigk et al [4] developed a method for segmentation of lung lesions
and estimation of partial volume e�ect, Fetita et al. [5] developed a method
for lung nodule segmentation and Faggiano et al. [6] developed a registration
method to estimate anatomical modi�cation during radiation treatment. Some of
these methods are only applicable for kilovoltage computed tomography (KVCT)
which are only available for the initial planning scan of these patients. Further-
more, these methods require human interaction for each image sequence.

In this paper we propose a graph based method [7] which uses the principle of
electric �ow line (EFL) theory [8], [9] to segment lung tumors on MVCT images.
The method is novel in regard to utilizing available temporal images of the tumor
and makes graphs with unique paths which are transferable from one fraction to
another. Overlap and distance to manual contours are calculated and compared
to other automatic methods for segmentation of 3-dimensional images.

2 Methodology

We assume an initial pre-treatment scan annotated by manually contouring each
slice of the GTV. This will typically be a KVCT scan. At the following treatment
sessions a series of scans are then acquired. These will typically be a MVCT
scans. For each scan in this sequence we want to transfer the GTV outline from
the previous scan rigidly to the current scan and to non-rigidly deform this
outline to �t to the intensity patterns in the current image. In order to avoid
self-intersections we will make this deformation along a graph following EFL
derived from simulating an arti�cial charge at the outline [8], [9] and using a
graph cut method to �nd an optimal tumor outline with respect to smoothness
of the outline and correspondence to the underlying image patterns.

2.1 Rigid Registration

The rigid registration between scans is performed using correlation as a similarity
measure for the volume within 2 cm of the GTV [10]. In the practical application
of this method a manual contour was transferred from the KVCT scan to the
�rst MVCT scan. On all following MVCT scans the automatic segmentation was
transferred from one scan to the following using the same procedure.

2.2 Electric Flow Lines

The initial segmentation from the previous scan is used to generate the EFLs.
The electric �ow should stem from an electric potential on the surface of the
segmentation. The potential, E, is de�ned as:



E(x) =

∫
Q(x̃)R(x̃− x)dx̃, (1)

where x is the position at which the �ow is evaluated and Q is a function
which is 1 on the surface and 0 at all other positions. R is the potential at the
position x coming from the potential at x̃ de�ned by Coulombs law as:

R(r) =
r

4πε · ||r||3
, (2)

where r is the direction vector from one potential to the point evaluated, ε
is the electric constant which along with the 4πε constant is ignored in practical
computations. The surface potential was discretized by performing a Delauney
triangulation of the segmentation points and placing a charge in the barycenter
of each triangle. The potential of each triangle was set to its part of the total
surface area.

Hereafter an electric line was initiated at each triangle barycenter and iter-
atively computed in an inwards and outwards direction using the above equa-
tions. For the �rst iteration the potential at the position was neglected because
of in�nite in�uence on the potential at the position. Instead an initial step in
the direction of the triangle plane normal was used. The image values were ex-
tracted along each of the electric �ow lines on both the former tumor scan and
the current scan on which a segmentation is sought. The correlation between
the �ow lines from the former and current scan is calculated as a measure of
accordance for each position along the EFLs.

2.3 Graph Construction

A graph is constructed with vertices, Vi,j at each of the positions along the
EFLs. j corresponds to the individual EFLs or columns and i corresponds to
each of the positions along it. The graph consists of two types of edges, intra-
and inter-column edges. The intra-column edges account for the likelihood that
the surface is located at that location. It is formulated as

Eintra(i→ i− 1, j) =
1

1 + ec(i)
(3)

Eintra(i→ i+ 1, j) =∞ (4)

where c(i) is the correlation value of the ith position along the EFL. A
graph consisting only of the intra-column edges would have an optimal solution
giving the positions with the highest correlation values. The intercolumn edges
are implemented to ensure a smooth segmentation where the segmentation of
one EFL is consistent with the surrounding EFLs. The inter-column edges are
formulated as

Einter(i, k, j, l) = gi,k(j, l), (5)



Fig. 1. Illustration of the edges in the graph. The s and t node are respectively the

source and sink. In our implementation there are more layers in each column and there

are edges with more than two layer di�erence.

gi,k(j, l) =


0 if dist(i, k) > 1
0 if i = k
0 if j < l

w · e
−(j−l)

c else

(6)

where i and k are line indices referring to EFLs, j and l are position in-
dices on the the EFL and dist(i, k) is the triangulation length between two
vertices, which is equal to one when two triangles are interconnected. g is the
weighting parameter between EFLs, w is the weight constant between EFL and
c is a normalization constant. The edges are illustrated in Fig. 1. The speci�c
segmentation solution was found by solving the minimum cut problem on the
graph [11].

2.4 Graph Parameters

All parameters of the graph were optimised on a spherical phantom with 2
hemispheres and 2 pyramids located on the surface. The phantom had a contour
at 0.1 mm from the surface in the image to account for a manual contour not lying
exact on the gradient border. The phantom was simulated with a radius variance
of 0.2, with di�erent translations, rotations and signal-to-noise levels. A grid
search was performed for di�erent parameter settings. The parameters giving
the highest dice coe�cient were chosen for the actual tumor segmentations.

2.5 Evaluating Results

A segmentation for the MVCT scans was extracted using each of the two ini-
tial manual scans from the planning KVCT scan resulting in 6 new automatic



segmentations for each patient. To evaluate the segmentation results the new
segmentations were compared with both of the manual segmentations on the
MVCT scans using dice coe�cient, Hausdor� distance and mean distance. The
images were also segmented using a level set method [12] and deformable regis-
tration [10] for comparison. A paired t-test was performed to assess signi�cant
di�erence from the novel method on a basis of 0.05.

3 Results

3.1 Experiment Data

The study included images from ten non-small cell lung cancer (NSCLC) pa-
tients, 3 female and 7 males, chosen from a larger patient group from a dose
escalation study [13]. The patients were treated between 2004 and 2009 at Uni-
versity of Wisconsin Hospital. They were all treated with radiotherapy delivered
via helical tomotherapy. All patients were non-metastatic at stage IIIa, IIIb or
recurrent histologically con�rmed NSCLC with no prior thoracic radiation ther-
apy. The patient selection criteria were a cranio-caudal length of less than 5 cm
for the primary tumor the planning CT.

Primary planning KVCT scan images for all patients was exported along
with the images of three MVCT scans from the Tomotherapy system from �rst,
mid and last fraction (1, 13 and 25). The time span between planning KVCT
and last fraction was between 34 and 41 days. The images were imported into
Pinnacle c© treatment planning system. If the MVCT image did not include the
primary tumor, images from bordering fractions were chosen instead.

All MVCT images were manually registered to the KVCT image using Pin-
nacle c© to replicate the usual clinical procedure. Primary GTV was contoured
independently by two experienced radiation oncologists on on all patient images,
10 patients times 4 images. Provided along with the images were contours of
normal tissue from the original treatment planning on the KVCT images. This
means that in all 40 images were provided with 2 contours on each image. The
contours and images are exported from Pinnacle c© as Dicoms and imported to
Matlab c© using CERR [14] where further processing was performed.

3.2 Experiment Results

It was possible to segment the tumor for all the patients on all of their images.
Result examples for the novel segmentation can be seen in Fig. 2. The results
are seen in Table 1. The novel method had signi�cant better dice coe�cient and
mean di�erence than the two other methods using a paired t-test of 0.05 but
not for Hausdor� distance. Looking at the volume as a treatment outcome the
manual segmentations had a mean variation of 7.1 % on the KVCT images and
8.5 % on the MVCT images. The novel method had a mean variation of 4.5 %
for the volume on the MVCT images.



Fig. 2. Examples of the segmentation on a MVCT image. Green and blue points are

the two di�erent manual segmentations. The red point are the automatic segmentation

of the novel method.

Table 1. The results of the di�erent methods of segmentation. Seg. type: Segmentation

type. Haus. Dis.: Hausdor� distance. Mean Dis.: Hausdor� distance. EFL: Electric �ow

line segmentation. Deformable: Deformable registration. ? The manual segmentations

are only compared pairwise to each other whereas the automatic segmentation are

compared to both of the manual segmentations.

Seg. Type Dice Haus. Dis. Mean Dis.

Manual ? 0.78± 0.13 0.8± 0.7 0.24 ± 0.10

EFL 0.85 ± 0.11 0.7± 0.5 0.15 ± 0.05

Level set 0.67± 0.22 0.9± 0.6 0.29 ± 0.09

Deformable 0.73± 0.20 0.8± 0.7 0.22 ± 0.08

4 Discussion

The method of parameter optimization should be mentioned as a �rst point of
scrutiny. It is solely performed on a simulated phantom. The phantom is con-
structed ideally with normally distributed noise, rotations and translation of
the whole phantom. The tumor image sequences have none of these characteris-
tics. But even so it represented an acceptable method for �nding segmentation
parameters for the tumor segmentation. It would also be possible to �nd param-
eters by using manual segmentations on tumor images. But this would just �nd
parameters to replicate one manual contourer. In this approach we created the
phantom to have qualities which would suit a manual contourer generally.

It can be seen from table 1 that the novel method performs better compared
to the other automatic methods here. The novel method performs better than the
level set method and deformable registration. The level set method only includes
image values and their gradients in its cost function. This can be a problem when
attempting to repeat manual segmentations automatically because the manual
segmentations do not necessarily follow image gradients. The same thing also



applies for deformable registration. Even though the cost function was based on
normalized correlation it does still have larger problems with circumference of
its segmentation.

Segmentations of lung tumors have smaller variations than other tumor
sites [15] it is still a hard tumor site because of movement of lungs and heart.
These problems have been reduced by 4D-visualization and breath hold tech-
niques but it is still a signi�cant problem for automatic segmentation methods.
The quality of MVCTs does also increase the variation for manual contours as
it can be seen on the di�erence in volume variation between KVCT and MVCT.
One could apply better imaging techniques for these interfractional images to
acquire a better outcome for the automatic segmentation methods. But this is
not feasible in the current clinical setup. These images are taken to adjust beam
and patient position but are not analyzed. This is both due to the amount of
images and the lack of resources in the clinic.

The automatic contours are compared to manual segmentations in lack of
better segmentations. An optimal comparison would be to the actual tumor
volumes. This is feasible in some tumor sites but it is not feasible in treatments
with several fraction.

The novel method does have some shortcomings. It does expect some contin-
uation of topology which for our images is optimal, because these tumors tend to
retain most of their topology throughout treatment. If the tumors were dividing
into several volume components it would pose as a suboptimal solution.

5 Conclusion

A novel method for 3-dimensional segmentation of consecutive images have been
implemented and have been shown to perform better than level set methods and
deformable registration concerning overlap. The method is applicable on clinical
images without any modi�cation of clinical practice.
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