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Abstract. This paper presents an approach to fast image registration
through probabilistic pixel sampling. We propose a practical scheme to
leverage the benefits of two state-of-the-art pixel sampling approaches:
gradient magnitude based pixel sampling and uniformly random sam-
pling. Our framework involves learning the optimal balance between the
two sampling schemes off-line during training, based on a small training
dataset, using particle swarm optimization. We then test the proposed
sampling approach on 3D rigid registration against two state-of-the-art
approaches based on the popular, publicly available, Vanderbilt RIRE
dataset. Our results indicate that the proposed sampling approach yields
much faster, accurate and robust registration results when compared
against the state-of-the-art.

Keywords: image registration, pixel selection, sampling

1 Introduction

Image registration is one of the critical problems in the field of medical imag-
ing. It transcends wide range of applications from image-guided interventions
to building anatomical atlases from patient data. Typically, the evaluation of
the similarity measure and its derivatives are required to perform the optimiza-
tion over transformation parameters. However, performing these computations
based on all the available image pixels can be prohibitively costly. The expense
is mainly due to the large number of pixel intensity values involved in the cal-
culations. Time-sensitive applications, like image guided intervention, generally
benefit from techniques to speed up direct image registration by utilizing only a
subset of available pixels during registration. In these contexts, several percent
of accuracy decrease could be tolerated and traded for preservation of robust-
ness and significant decrease in registration time. However, significant speedups
attained via aggressive reduction in the number of selected pixels (less than 1%
of the total number of pixels) often result in deterioration of robustness (increase
in failure rate) and relatively rapid increase of registration error.

Many pixel sampling schemes have been suggested in the literature. Uni-
formly random pixel selection (URS), in which a random subset of all pixels



sampled with uniform probabilities is used to drive the optimization, gained
popularity due to its simplicity and robustness [9,(13]. Other techniques strived
to improve registration accuracy by optimizing the pixel selection process. The
deterministic pixel selection strategy [10] consists in calculating a selection cri-
terion for each pixel (e.g. based on Jacobian of the cost function [4]) and com-
paring it to the threshold. The subset of pixels whose selection criterion values
transcend a predefined threshold are used for registration. This led to a cluster-
ing phenomenon, as pointed out by Dallaert and Collins |4], who attempted to
overcome this effect and proposed a probabilistic pixel selection strategy that
uniformly samples from subset of pixels having top twenty percent values of se-
lection criterion pixels. Brooks and Arbel [2] extend the approach of Dellaert
and Collins [4] by proposing an information theoretic selection criterion and by
addressing the issue of Jacobian scale inherent to the gradient descent type op-
timization algorithms. Benhimane et al. |1] proposed a criterion to speed up the
convergence of the optimization by selecting only the pixels that closely ver-
ify the approximation made by the optimization. Sabuncu and Ramadge used
information theoretical approach to demonstrate the fact that the pixel sam-
pling scheme should emphasize pixels with high spatial gradient magnitude [11].
Here the moving image is probabilistically subsampled using non-uniform grid
generated based on the probabilities proportional to the gradient magnitude.
This approach allows to diversify and spread subsampled pixels while still giv-
ing attention to image details. This approach alleviates the effects of selected
pixel clustering inherent to deterministic pixel selection strategy discussed e.g.
by Reeves and Hezar [10] while still allowing to focus on the more useful pixels.
Finally, curvlet based sampling, recently proposed by Freiman et al. [6] tested on
Vanderbilt RIRE dataset [5] revealed approximately the same level of accuracy
as the gradient subsampling approach [11].

Exploring the method of Sabuncu and Ramadge, one notices that the strategy
works well for relatively large pixel sampling rates (1 to 10%). However, as the
number of selected pixels decreases, it tends to concentrate exclusively on pixels
with the highest gradient magnitude, which limits its exploratory capability
and leads to deterioration of robustness and accuracy. The uniformly random
sampling strategy, on the other hand, has very good exploratory behaviour as any
pixel has equal probability to be used in the similarity metric calculations. At the
same time, the uniformly random sampling lacks attention to image structural
details that often aid in achieving easier and more accurate registration results.
Thus the URS often provides better robustness, but fails to produce the same
accuracy levels as the gradient magnitude based approach.

In this paper, we propose to combine the virtues of the two techniques to ob-
tain faster and more robust image registration. We introduce a new multi-scale
sampling scheme, whereby the sampling probabilities are based on the convex
combination of the uniformly random sampling probabilities [9,|13] and the gra-
dient based sampling probabilities [11]. We further propose to learn the value
of the convex combination parameter off-line by optimizing the empirical target
registration error obtained from a small training dataset via particle swarm opti-



mization [7]. Our approach effectively serves to improve the performance of one
of the best existing state-of-the-art sampling methods and achieve the greatest
reduction in the number of pixels used for the evaluation of the similarity metric
under the constraint of preserving the accuracy and robustness at reasonable
levels. We test the proposed approach on the Vanderbilt RIRE dataset [5]. Our
results indicate that the proposed approach allows to significantly reduce the
number of pixels used in the evaluation of the similarity metric and hence ac-
celerate the registration procedure while improving robustness and preserving
accuracy of the gradient based sampling technique.

2 Problem Statement

The direct image registration problem can be formulated for the reference I(x)
and the moving J(Ty(x)) images defined by their pixel intensity values I;, J; :
X — Z,i=1...N seen as mappings from the coordinate space X C R? to the
intensity space Z C R, where d is the dimensionality of coordinate space and
N is the number of pixels (here we assume, without loss of generality, that the
number of pixels in the images is equal). The problem is solved by finding the
parameters 6§ € © of the warp Ty : X — X that maximize the similarity metric
Dy : IN*2 5 R that maps N intensity values of the reference and N intensity
values of the moving images into a number characterizing the degree of similarity
between these images for a given value of the warp parameters:

G = axg max Dy [(x),J(To(x))]. (1)

Widely used similarity metrics are mutual information [13] and normalized mu-
tual information (NMI) [12]. The pixel selection process can be viewed as the
approximate solution using the calculation of the similarity metric based on only
M pixels of each of the images:

fope = axg max Dy [T(x), J(Ty(x))] (2)

Since this solution is based on M < N pixels it is less computationally expensive.
As was indicated in Section[I] the deterioration of robustness and accuracy of the
existing pixel subsampling methods, and gradient based sampling in particular,
is a major problem when the number of pixels used to calculate the similarity
metric is small, M < N. At the same time, the small sampling rate condition
M/N < 1 ensures that significant computational gain results from the pixel
selection. In this paper we strive to solve the problem of robustness and accuracy
deterioration for small M. To this end, we propose the approach to combine the
uniformly random sampling with the gradient based sampling within the multi-
scale framework that we discuss in detail in the next section.

3 Proposed Algorithm

Sabuncu and Ramadge used information theoretical approach to demonstrate the
fact that the pixel sampling scheme should emphasize pixels with high spatial



gradient magnitude [11]. Based on this observation they proposed the sampling
strategy where pixel ¢ is sampled with the probability ¢; = «||VJ;||2, where
IV J;i||2 is the magnitude of spatial intensity gradient of pixel ¢ and « is the nor-
malization factor that determines the average number of subsampled pixels. The
URS sampling approach attaches equal sampling probability to each pixel. The
gradient magnitude based sampling puts more emphasis on the image gradient
details that provide for more accurate registration. However, this often reduces
registration robustness by reducing image exploration. URS explores images well
via extensive uniform sampling, but lack of attention to image details reduces
its accuracy.

We propose to combine the positive properties of the two techniques just
described and to obtain a better multi-scale sampling scheme designed for fast
image registration. In our algorithm we combine the probabilities of the gradi-
ent magnitude based sampling approach and the URS approach such that the
sampling probability of the proposed algorithm is the convex combination of
the probabilities defined by the two corresponding component approaches. The
optimal value of the convex combination parameter is learned off-line by opti-
mizing the empirical target registration error (ETRE) obtained from a training
dataset. In the remainder of this section we describe the details of the proposed
algorithm.

Assume that there are R resolution levels in the registration scheme, r is the
resolution level number and N, is the number of pixels at level r. Assume that
r = 1 corresponds to the highest resolution level (original images) and hence
N; = N. Denote q" = [¢], ... ,qJTVT] the vector of sampling probabilities for the
gradient magnitude sampling method at level r and assume that the normal-
ization factor «” at this level is chosen so that the average number of pixels
equals M,.. Similarly, for the URS method the vector of sampling probabilities is
u” = [M,/N,,..., M, /N,] resulting in the average number of pixels sampled be-
ing equal to M,.. The vector of sampling probabilities for the proposed approach,
r", is the convex combination of the two previously defined vectors:

rT — (1 _ 57‘)(17’ + /87‘1‘17’7 (3)
where 8" € [0,1] is the mixing parameter. Greater values of 5" emphasize the
exploration brought about by the URS and lower values of this parameter empha-
size prominent image features that could facilitate more accurate registration. In
a general situation we expect that at every level r and for every pixel sampling
rate M,./N, there is an optimal value of 5" that compromises image exploration
and exploitation of prominent image features.

It is hard (if at all possible) to analytically formulate and solve the prob-
lem of optimizing 5" based on statistical models of the images. At the same
time, if a small, but representative training dataset is available for the registra-
tion problem at hand, the value of this parameter could be learned empirically
off-line. The learned value of this parameter could then be used upon each sub-
sequent application of the proposed algorithm. The proposed algorithm could be
retrained whenever there is a need to solve a new registration problem with sig-
nificantly different image specifics. This is not an unreasonable assumption since



in the application domain the specifics of particular registration problem often
affect e.g. the choice of similarity metric, optimization strategy and interpola-
tion scheme. This implies that at least some training information in the form
of the small set of exemplar image pairs from the problem-specific modalities
using certain acquisition and post-processing protocols must always be available
to the registration algorithm designer to guide the algorithm development.

Based on the assumption that we have a training data set and the gold
standard registration parameters for the image pairs in this dataset we formulate
the empirical learning criterion Q" (5"). We define the ETRE as the average over
V' image pairs in the training dataset and U Monte-Carlo trials:

v U
@B = 5 DI I @

Here X, is the set of transformed coordinates obtained using gold standard reg-
istration parameters for image pair v and X »(B7) is the set of transformed
coordinates for image pair v and Monte-Carlo trial u found using the empirical
estimate of the registration parameters obtained via the optimization of the sim-
ilarity metric at resolution scale r using the proposed pixel sampling algorithm
with a given value of mixing parameter 5. As the pixel sampling algorithm is
randomized, some degree of Monte-Carlo averaging could be beneficial if V is
relatively small (3...5 images). Thus we repeat the registration procedure for
the same candidate value 3", level r and image pair v U times and calculate
X4.0(8") based on the new registration parameter estimate each time.

We propose to learn the value of 5" by minimizing the ETRE Q" (5"):

B\T =arg min Q"(5"). (5)

Brel0;1]

The function Q"(+) is generally extremely irregular and non-smooth, because
of the possible registration failures and because of complex dependence of the
ETRE on the value of 8". At the same time, the domain of this function is well
defined and restricted. Thus any optimizer capable of performing global or quasi-
global search on a restricted interval using only the objective function values will
suffice to solve this problem. We propose to use the particle swarm optimization
(PSO) [7] in order to find B". Our algorithm proceeds by finding 5%, the value
of the mixing parameter for the scale with the lowest resolution using PSO.
The multi-scale registration algorithm proceeds from the lowest resolution level
to the highest resolution level sequentially utilizing the registration parameters
obtained at the lower resolution level as an initialization for the current resolution
level. Our learning algorithm thus uses the identified value of 3% to find the
estimate of the registration parameters at resolution level R. Then the optimal
value BF~1 for the next higher-resolution level is found using the registration
parameters identified at level R as initialization. This procedure iterates until the
values of mixing parameter for all resolution levels R, R—1,...,1 are identified.



4 Experiments with the RIRE Vanderbilt Dataset

4.1 Dataset Description

To test the proposed algorithm we made use of the real clinical data available
in RIRE Vanderbilt dataset [5]. The performance of algorithms was evaluated
by registering 3D volumes corresponding to CT images to geometrically cor-
rected MR images. MR image set included images acquired using T1, T2 and
PD acquisition protocols. The total number of different image pairs used was
19. Those pairs were taken from patients 001, 002, 003, 004, 005, 006, 007 for
which geometrically corrected images are available. Patients 003 and 006 did
not have geometrically corrected PD and MR-T1 images respectively. Accord-
ing to the data exchange protocol established by the RIRE Vanderbilt project,
registration results obtained via algorithms under the test were uploaded to the
RIRE Vanderbilt web-site. Algorithm evaluation results were calculated by the
RIRE Vanderbilt remote computer using the gold standard transformation not
available to us and published on their web-site in the form of tables containing
registration errors calculated over 6 to 10 volumes of interest (VOIs) for each
image pair. For patient 000 geometrically corrected MR-T1, MR-T2, MR-PD
images and corresponding CT image are available along with the set of trans-
formed coordinates obtained using gold standard registration parameters. Three
image pairs from patient 000 were used to learn the values of mixing parameters
according to the algorithm described in Section

4.2 Experimental Setup

All images were first resampled to a common Imm grid using bicubic interpola-
tion. We used 4-scale registration based on the low-pass filtered and downsam-
pled image pyramid. Resolution level number four had grid spacing 4 mm along
each axis and resolution level number one had grid spacing 1mm along each axis.
The estimate of the registration parameters obtained at a lower resolution level
was used as a starting point for the registration at the next higher resolution
level; level 4 had all its parameters initialized to zero values. We concentrated
on recovering 6 rigid registration parameters (3 translations and 3 rotations)
using the NMI similarity metric [12]. Histogram for the evaluation of the sim-
ilarity metric was calculated using the partial volume approach with Hanning
windowed sinc kernel function [§]. Similarity metric was optimized using the
trust region Gauss-Newton approach [3]. We implemented the most calculation
intensive part of the code (calculation of the cost function and its derivatives)
in C and benchmarked the algorithms within the MATLAB environment.

We evaluated the performance of following pixel sampling approaches. The
uniformly random sampling (URS) technique consists of randomly selecting
pixels with equal probabilities at every iteration [13]. At a given resolution
level r all pixels have equal probability of being selected, M/N, if M < N,
and 1 if M > N,; the average number of selected pixels is thus equal to M
at each resolution level. Note that we used equal number of selected pixels



Fig. 1. Pixel selection masks generated using different approaches at the highest
resolution level for sampling rate 0.5%. (FIRST ROW) URS; (SECOND ROW)
GMS; (THIRD ROW) proposed approach with learned value of the mixing parameter
B\l = 0.2. First column axial slice, second column sagittal slice, third column coronal
slice. All images are obtained using ITK-SNAP [14].

for all resolution scales. Gradient magnitude sampling (GMS), a slight mod-
ification of gradient based subsampling originally proposed by Subuncu and
Ramadge [11], consists in calculating spatial gradient magnitude |[|[VJ;|l2 =
V/(8;/02;)2 + (0.J;/0y:)? + (0.J;/0z;)? and sampling pixels at every optimiza-
tion iteration according to the probabilities proportional to it, where the pro-
portionality coefficient is chosen so that the average number of pixels selected
at every resolution scale is equal to M. Proposed method described in Sec-
tion [3| (Proposed) consists of mixing the probabilities obtained from URS
and GMS methods and learning the value of the mixing parameter using the
training dataset constructed from image pairs of patient 000. We evaluate these
three algorithms for the following values of pixel sampling rates (given in %):
M/N € {0.02,0.04,0.065,0.1,0.5, 1} (sampling rate is calculated with respect to
the image size at the highest resolution level, N).

4.3 Results

Figure [1] shows the examples of pixel selection masks generated using tested
approaches at the highest resolution level for pixel sampling rate 0.5%. It is
obvious that the samples generated with the URS approach are extremely spread,
whereas the samples generated with the GMS approach are overly concentrated
along the gradient magnitude structures present in the image. The proposed
approach produces samples that balance those two extremities.
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Fig. 2. Failure rate for different pixel sampling mechanisms: gradient magnitude sam-
pling (GMS), uniformly random sampling (URS), Proposed. Note that the proposed
approach consistently outperforms in terms of robustness.

Figure 2] shows registration failure rate for the following set of pixel sampling
rates (in %): {0.02,0.04,0.065,0.1,0.5,1}. We define a failure as any case with
error exceeding 10mm in any of the VOIs. We can see that the proposed approach
consistently outperforms other approaches in terms of robustness.

Figure [3| shows the trimmed mean target registration error (mTRE). We
compute the trimmed mTRE as the mTRE of the successful (non-failed) cases.
The mTRE is minimal for the proposed approach compared to other methods.
The proposed approach retains high level of accuracy and robustness even with
low pixel sampling rates. This allows to significantly reduce computational time
in a practical system without exploding the failure rate or reducing accuracy.

Such results support our conjecture that balancing image exploration induced
by URS and the exploitation of the prominent image features induced by GMS
using a small problem specific training dataset can significantly improve and
accelerate the performance of the registration algorithm. Overall, the proposed
technique at 0.1% pixel sampling rate is better than other techniques at 1%
pixel sampling rate, simultaneously maintaining zero failure rate and 1.15 mm
accuracy. Thus on average our approach can use 10 times less pixels for registra-
tion, achieve 0 failure rate and improve accuracy over the other two techniques.
This is significant improvement over both alternative methods and it allows to
reduce the time from 210 seconds per registration for 1% pixel sampling rate to
32 seconds per registration for 0.1% pixel sampling rate in our implementation.
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Fig. 3. Trimmed average registration error for different pixel sampling mechanisms:
gradient magnitude sampling (GMS), uniformly random sampling (URS), Proposed.
Note that the proposed approach consistently outperforms in terms of accuracy.

5 Conclusions and discussion

In this paper we presented a novel approach to pixel sampling for faster and
more accurate registration. Our approach mixes the uniformly random sampling
probabilities with those obtained using the gradient magnitude based sampling
approach. The mixing parameter that balances image exploration induced by
uniform probabilities and the exploitation of image features via gradient mag-
nitude based sampling is learned off-line from a small training dataset. Our
experiments with the Vanderbilt RIRE dataset demonstrate that the proposed
approach works much faster and produces much more accurate and robust reg-
istration results. We conjecture that the concept of mixing the sampling prob-
abilities can be further generalized to obtain even better results. In this case
rather than mixing only two sampling methods we could mix three, four or more
methods and learn the optimal problem specific mixing coefficients using a small
training dataset and a suitable mixing parameter optimization scheme. Explor-
ing this venue based on the experiments with Vanderbilt RIRE dataset and other
available datasets as well as testing it on non-rigid registration problems to study
the generalizability of the proposed approach seems to be an attractive venue
for future research.
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