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Abstract. This work proposes a dominance detection framework op-
erating in reverberated environments. The framework is composed of
a speech enhancement front-end, which automatically reduces the dis-
tortions introduced by room reverberation in the speech signals, and a
dominance detector, which processes the enhanced signals and estimates
the most and least dominant person in a segment. The front-end is com-
posed by three cooperating blocks: speaker diarization, room impulse
responses identification and speech dereverberation. The dominance es-
timation algorithm is based on bidirectional Long Short-Term Memory
networks which allow for context-sensitive activity classification from
audio feature functionals extracted via the real-time speech feature ex-
traction toolkit openSMILE. Experiments have been performed suitably
reverberating the DOME dataset: the absolute accuracy improvement
averaged over the addressed reverberated conditions is 32.68% in the
most dominant person estimation task and 36.56% in the least dominant
person estimation one, both with full agreement among annotators.

1 Introduction

Recently, a certain attention has been paid by the scientific community to the
development of automatic systems for dominance detection in small-groups [1].
Information coming from speech, but also from gesture, posture and face move-
ments, can be extracted from the meeting activity and then be processed by
expert algorithms in order to automatically detect the participants’ level of
dominance.

Dominance can be defined in multiple ways: it is often related to the notion
of power, i.e. “the capacity to produce intended effects, and in particular, the
ability to influence the behaviour of another person” [1]. This leads to defining
dominance as a set of “expressive, relationally based communicative acts by
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which power is exerted and influence achieved”, “on behavioural manifestation
of the relational construct of power”, and “necessarily manifest” [1]. Dominance
is directly related to the participant activity level [1]: persons with higher vocal
and visual activity (e.g. body movement and gestures correlated with speaking
activity) are often perceived as more dominant [2].

Several approaches have been proposed in the literature to address the dom-
inance detection task. In [3], dominance is estimated calculating the speaking
length of each speaker in a segment by means of the ICSI speaker diarization
system. The system is able to work in real-time, but not online since the speaker
diarization stage operates on the entire signals. The authors performed experi-
ments on a subset of the AMI corpus using single distant microphone and headset
signals. Reverberation and additive noise have not been taken into account. The
methods proposed in [2,4] combine high level audio and visual features. They
detect dominance levels either with a rule-based estimator, or with a Support
Vector Machine classifier. Experiments are performed on the DOME dataset
as considered herein [5] using individual headset microphones. In [6], two so-
lutions for audio-visual activity and dominance detection are proposed: in the
first, detection is performed using low level features and classification through
Hidden Markov Models (HMM). In the second, a higher level feature contain-
ing the information about the current status of the group is added, and a two
layer HMM system is employed for classification. Similarly to [3], experiments
are conducted on a subset of the AMI corpus, this time employing individual
headset microphones only, and annotated with participants’ activity levels.

This paper addresses dominance detection in reverberated environments. Mul-
tiple distant microphones are used to acquire voices of meeting participants and
the presence of the reverberation effect is dealt with by means of a recently pro-
posed speech enhancement front-end [7]. Here, other sources of degradation, such
as additive noise, are not considered. The enhanced signals are processed by the
dominance detector stage which estimates the most and least dominant person
in a segment using nonverbal vocalic cues. The full system block-scheme is shown
in Fig. 1. The performance of the proposed framework are evaluated suitably re-
verberating the DOME dataset [5] with three different reverberation times: the
obtained results show that both in estimating the most and least dominant per-
son, the proposed framework achieves accuracies close to the non-reverberated
condition ones.

The paper outline is the following. Sec. 2 briefly describes the speech enhance-
ment front-end. Sec. 3 details the algorithm developed for dominance estimation.
Sec. 4 discusses the experimental setup and the performed experiments. Finally,
in Sec. 5 conclusions are drawn and future developments are proposed.

2 Speech Enhancement Front-End

The objective of the speech enhancement front-end is recovering the original
clean speech sources. This is performed by means of a “context-aware” speech
dereverberation approach, which includes the automatic identification of who
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Fig. 1. Block diagram of the dominance detection framework

is speaking, the estimation of the unknown room IRs and the application of a
knowledgeable dereverberation process to restore the original speech quality. To
achieve such a goal, the framework proposed in [7] by some of the authors has
been used. The framework consists of three stages: speaker diarization, blind
channel identification and speech dereverberation.

Assuming M independent speech sources and N microphones, the relationship
between them is described by an M x N MIMO FIR (Finite Impulse Response)
system. According to such a model and denoting with (-)7 the transpose opera-
tor, the following equations (in the time and z domain) for the n-th microphone
signal hold:

M M
wn(k) =Y hl sm(k,Ly),  Xn(2) =Y Hum(2)Sm(2), (1)
m=1 m=1
where hym = [Rum.o Prma -+ Bumop,—1]7 is the Ly-taps IR between the n-th

microphone and m-th source s,,(k, Ly) = [$m (k) sm(k—1) ... sm(k—Ly+1)]7,
with (m=1,2,...,.M,n=1,2,...,N).

The speaker diarization stage drives the BCI and dereverberation blocks so
that they can operate into speaker-homogeneous regions. The algorithm consists
of two phases, training and recognition. In the first, 19 Mel-Frequency Cepstral
Coeflicients (MFCC) plus their first and second derivatives are obtained from
the input signals. Cepstral mean normalization is applied to deal with station-
ary channel effects. Speaker models are represented by mixture of Gaussians
trained by means of the expectation maximization algorithm. The end accuracy
at convergence and the number of Gaussians have been empirically determined
on meetings IS1004a-d of the AMI corpus and set respectively to 10~% and 100.
In the recognition phase, the input signal is divided into non overlapping chunks,
and feature vectors are extracted as in the training phase. Participants’ identities
are then determined using majority vote on the likelihoods.

The blind channel identification stage is based on the so-called Unconstrained
Normalized Multi-Channel Frequency domain Least Mean Square algorithm
(UNMCFLMS) [8], a technique that represents an appropriate choice in terms
of estimation quality and computational cost. Though UNMCFLMS allows the
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estimation of long IRs, it requires a high input signal-to-noise ratio. Here, the
noise free case has been assumed and future developments will consider improve-
ments to make the algorithm more robust to the presence of noise.

The dereverberation stage is based on the Multi-channel Inverse Theorem
(MINT) method. Given the SIMO system corresponding to source s,,, let us
consider the polynomials Gs,, »(z),n =1,2,..., N as the dereverberation filters
to be applied to the SIMO outputs to provide the final estimation of the clean
speech source s,,, according to the following:

N
Sm(2) = Gapin(2)Xn(2). (2)

The dereverberation filters can be obtained using the well known Bezout’s The-
orem. However, such a technique requires a matrix inversion that requires a
high computational cost, especially in the case of long IRs. Therefore, in [7] the
efficiency of the algorithm has been improved employing an adaptive approach.

3 Dominance Detector

Dominance detection is performed in three steps: in the first, feature vectors
are extracted from the input signals every ten seconds. In the second, meeting
participants’ activity level is estimated by means of a Long Short-Term Memory
network. In the third, the most and least dominant persons are estimated through
a majority vote on the activities.

3.1 Speech Feature Extraction

For speech feature extraction, the online audio analysis toolkit openSMILE [9]
is employed. We use the same set of 1941 audio features as applied in [10]. It
is composed of 25 energy and spectral related low-level descriptors (LLD) x 42
functionals, 6 voicing related LLD x 32 functionals, 25 delta coefficients of the
energy /spectral LLD x 23 functionals, 6 delta coefficients of the voicing related
LLD x 19 functionals, and 10 voiced /unvoiced durational features. The set of LLD
covers a standard range of commonly used features in audio signal analysis and
emotion recognition. The functional set has been based on similar sets, such as
the one used for the Interspeech 2011 Speaker State Challenge, but has been care-
fully reduced to avoid LLD/functional combinations that produce values which
are constant, contain very little information and/or a high amount of noise.

3.2 Most and Least Dominant Person Estimation Based on LSTM

Building on recent studies in the field of context-sensitive affective computing
and human behaviour analysis [11], an activity classification framework that is
based on bidirectional Long Short-Term Memory has been designed. The basic
concept of Long Short-Term Memory (LSTM) networks was introduced in [12]
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Table 1. Agreement statistics. “Full” indicates that three annotators agree, “Majority”
indicates that two annotators agree, “None” indicates no agreement.

Full |Majority| None
Most Dominant Person [58.62%| 37.93% |3.45%
Least Dominant Person|53.45%| 39.66% |6.89%

and can be seen as an extension of conventional recurrent neural networks that
enables the modeling of long-range temporal context for improved sequence la-
beling. LSTM networks are able to store information in linear memory cells over
a longer period of time and can learn the optimal amount of contextual informa-
tion relevant for the classification task. An LSTM hidden layer is composed of
multiple recurrently connected subnets (so-called memory blocks). Every mem-
ory block consists of self-connected memory cells and three multiplicative gate
units (input, output, and forget gates). Since these gates allow for write, read,
and reset operations within a memory block, an LLSTM block can be interpreted
as (differentiable) memory chip in a digital computer. Further details on the
LSTM principle can be found in [13]. The most and least dominant persons in a
meeting are estimated through a majority vote approach: the most (respectively,
least) dominant person is the one that is classified as the most (respectively,
least) active for the majority of segments.

4 Experiments

4.1 Corpus Description

Experiments have been conducted on the DOminance in MEetings dataset (DO-
ME) [5], a subset of the AMI corpus [14] annotated with dominance levels. “Meet-
ing Set 1”7 has been chosen in order to compare the obtained results with previous
works on dominance estimation [2,3]. This set consists of 58 five minutes long seg-
ments extracted from 11 AMI scenario meetings. The total number of speakers is
20 and the female/male ratio is 42.86%. For each segment, dominance annotations
have been performed by three annotators according to their level of perceived dom-
inance. The distribution of agreement types is shown in Table 1.

Two main dominance tasks are defined in DOME: estimating the most domi-
nant person and estimating the least dominant person. Based on the annotators’
level of agreement, DOME defines four tasks:

— FMD: Full agreement set, Most Dominant person estimation task (34 seg-
ments).

— FLD: Full agreement set, Least Dominant person estimation task (31 seg-
ments).

— MMD: Majority agreement set, Most Dominant person estimation task
(56 segments).

— MLD: Majority agreement set, Least Dominant person estimation task (54
segments).
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Fig. 2. Room setup: x, y and z coordinates are shown in brackets

4.2 Acoustic Scenario

The scenario under study is shown in Fig. 2: an array of five microphones is
placed at the centre of the meeting table and four speakers are sitting around it.
The number of microphones has been chosen taking into account that it must be
greater than the number of speakers [8]. The inter-microphone distance is 10 cm
and represents a good comprise between impulse response diversification, which
increases with the inter-microphone distance, and the need for a reasonably sized
array. It is worth highlighting that the UNMCFLMS and MINT algorithms do
not suffer from the spatial aliasing problem as delay and sum beamformer [15].
Microphone signals have been created by manually removing cross-talk from the
headset sources and convolving them with impulse responses 1024 taps long.
RIRs have been generated using Habets” RIR Generator tool!, and represent
three different reverberation times (T4p): 120ms, 240ms and 360 ms. Cross-
talk free individual headset sources will be denoted as “Clean” in the following
sections.

4.3 Dominance Detector Training and Evaluation Procedure

The networks used for the experiments consist of 1941 input nodes (one for each
speech feature extracted from 10s of speech), 128 memory blocks containing one
memory cell each, and four output nodes that represent the likelihoods of the
four activity classes.

We trained a BLSTM network on the transcribed meeting segments used in
6], excluding segments that also occur in the DOME corpus. This results in
a training database consisting of 26 meeting segments of five minutes each. As
test set, we used the whole DOME corpus. All features were mean and variance
normalized prior to processing via BLSTM networks. Means and variances were
calculated from the training set only. During training a learning rate of 107°

! http://home.tiscali.nl/ehabets/rirgenerator.html



400

S1 @ ;_& S3 S1 & & S3

’ ; > Dominance > Speech 2 Domi
: 2 : 2 4 ©0 000 > Enhancement < Dominance
; : | Detector > Frontend > Detector
s2 & & s4 $2 @ &\ ”
(a) No front-end configuration (b) Full-system configuration

Fig. 3. System configurations. In (a), the central microphone is not used and the dashed
arrows denote a logical link between speakers and microphones.

and a momentum of 0.9 are used. Zero mean Gaussian noise with standard
deviation 0.6 was added to the inputs in the training phase in order to improve
generalization. Prior to training, all weights were randomly initialised in the
range from -0.1 to 0.1. Input and output gates used tanh activation functions,
while the forget gates had logistic activation functions. Due to the observed fast
convergence, training was aborted after 10 epochs.

4.4 Results

The system evaluation has been conducted considering two configurations, “No
front-end” and “Full-system”. In the first, the speech enhancement front-end is
not present and the dominance detector operates on four microphone signals
(Fig. 3a). Each microphone is logically associated to a single speaker, meaning
that the dominance detector expects each signal to contain only one voice. The
purpose of this experiment is to highlight the need for a front-end able to divide
and dereverberate the inputs. The “Full-system” configuration represents the
proposed framework as shown in Fig. 3b and described in Sec. 2.

The dominance detection accuracies obtained on “Clean” signals are 85.29%
(FMD), 80.65% (FLD), 76.79% (MMD) and 62.96% (MLD). Similar results have
been obtained in [3], where the DOME dataset has been used as well. In the most
dominant person estimation tasks accuracies are very similar: 85% in FMD and
77% in MMD. In the least dominant person estimation tasks, they report a higher
value in FLD (84%) and a lower value in MLD (59%). It is worth pointing out
that differently from [3], the system described here operates entirely online.

Table 2 shows the dominance detection results on the three reverberated con-
ditions. The “no front-end” configuration accuracies are very similar across the
three Tgos, and significantly lower than the “Clean” condition ones. In the FMD
task, the accuracy decreases by 31.37% on average while in the FLD task by
34.41%. A similar performance drop can be observed in the majority agreement
tasks. This behaviour is due to both the reverberation effect, and to the presence
of all the participants’ voices in each input signal, which makes it impossible for
the dominance detector to discriminates the four voices. The introduction of
the speech enhancement front-end significantly improves the detection results,
giving an accuracy improvement of 32.68% in the FMD task and of 36.56% in
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Table 2. Dominance detection results. See Sec. 4.1 for the task labels description.

Accuracy (%)|Task |120 ms 240 ms 360 ms|Average
FMD | 50.00 55.88 55.88 | 53.92
FLD |48.39 45.16 45.16 | 46.24
MMD| 53.57 55.36 51.79 | 53.57
MLD | 42.59 37.04 35.19 | 38.27
FMD | 82.35 85.29 91.18 | 86.61
FLD | 83.87 80.65 83.87 | 82.80
MMD| 76.79 76.79 82.14 | 78.57
MLD | 64.81 62.96 66.67 | 64.81

No front-end

Full-system

the FLD one. In the majority agreement results, the behaviour is similar: in the
MMD task the improvement is 25.00%, while in the MLD task is 26.54%.

Note, finally, that both in the “Clean” and reverberated conditions, the ma-
jority agreement results are lower on average than the full agreement ones. This
is due to the higher variability in the annotations and is consistent with [3].

5 Conclusion

This work presented a dominance detection framework able to operate in multi-
talker reverberated acoustic scenarios. The overall framework is composed of
two main blocks, a speech enhancement front-end and a dominance detector.
The task of the first is to reduce the reverberation effect induced by the con-
volution between the meeting participant voice signals and the room impulse
responses. This is performed using a recently proposed solution [7] composed
of three stages: speaker diarization, room impulse response identification and
speech dereverberation. The dominance detection algorithm is based on the
speech feature extraction toolkit openSMILE. To exploit contextual informa-
tion, a bidirectional Long Short-Term Memory network which produces the final
estimate of the activity level for each speaker is employed. Experiments have
been performed on the DOME dataset: results obtained on reverberated versions
of the corpus have shown the effectiveness of the developed system, making it
appealing for applications in real-life human-computer interaction scenarios.

Future developments will involve both the dominance estimator and the speech
enhancement front-end. The first will be augmented with video features, which
have been already successfully exploited in the literature [2,4]. The feature set
could be also augmented with the speaking lengths of each participant coming
from the speaker diarizer. In addition, the evaluation of the so-called bottleneck
network architectures for enhanced BLSTM modelling of a participant’s activity
in meetings is planned. With regard to the front-end, the presence of additive noise
will be considered and suitable procedures will be taken into account to reduce its
impact. Moreover, the speaker diarization stage will be featured with an overlap-
detector, which also allows to include a source separation stage within the front-
end and exploit also the overlapped speech segments.
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