Skip to main content

Two-Phase Test Sample Representation with Efficient M-Nearest Neighbor Selection in Face Recognition

  • Conference paper
Book cover Advances in Neural Networks – ISNN 2012 (ISNN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7368))

Included in the following conference series:

Abstract

Sparse representation method, especially the Two-Phase Test Sample Representation (TPTSR) method is regarded as a powerful algorithm for face recognition. The TPTSR method is a two-phase process in which finds out the M nearest neighbors to the testing sample in the first phase, and classifies the testing sample into the class with the most representative linear combination in the second phase. However, this method is limited by the overwhelming computational load, especially for a large training set and big number of classes. This paper studies different nearest neighbor selection approaches for the first phase of TPTSR in order to reduce the computational expenses of face recognition. Experimental results and theoretical analysis show that computational efficiency can be significantly increased by using relatively more straightforward criterions while maintaining a comparable classification performance with the original TPTSR method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirby, M., Sirovich, L.: Application of the KL phase for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell. 12, 103–108 (1990)

    Article  Google Scholar 

  2. Xu, Y., Zhang, D., Yang, J., Yang, J.-Y.: An approach for directly extracting features from matrix data and its application in face recognition. Neurocomputing 71, 1857–1865 (2008)

    Article  Google Scholar 

  3. Yang, J., Zhang, D., Frangi, A.F., Yang, J.-Y.: Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26, 131–137 (2004)

    Article  Google Scholar 

  4. Xu, Y., Zhang, D.: Represent and fuse bimodal biometric images at the feature level: Complex-matrix-based fusion scheme. Opt. Eng. 49 (2010)

    Google Scholar 

  5. Park, S.W., Savvides, M.: A multifactor extension of linear discriminant analysis for face recognition under varying pose and illumination. EURASIP J. Adv. Signal Process. 2010, 11 (2010)

    Article  Google Scholar 

  6. Debruyne, M., Verdonck, T.: Robust kernel principal component analysis and classification. Adv. Data Anal. Classification 4, 151–167 (2010)

    Article  MathSciNet  Google Scholar 

  7. Xu, Y., Zhang, D., Song, F., Yang, J.-Y., Jing, Z., Li, M.: A method for speeding up feature extraction based on KPCA. Neurocomputing 70, 1056–1061 (2007)

    Article  Google Scholar 

  8. Tipping, M.E.: Sparse kernel principal component analysis. In: Leen, T.G.D.T.K., Tresp, V. (eds.) Neural Information Processing Systems, pp. 633–639. MIT Press, Cambridge (2000)

    Google Scholar 

  9. Schölkopf, B., Smola, A., Müller, K.-R.: Kernel Principal Component Analysis. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997)

    Google Scholar 

  10. Schölkopf, B., Smola, A.: Learning With Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  11. Muller, K.-R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12, 181–201 (2001)

    Article  Google Scholar 

  12. Tao, D., Tang, X.: Kernel full-space biased discriminant analysis. In: IEEE ICME, pp. 1287–1290 (June 2004)

    Google Scholar 

  13. Fan, Z., Xu, Y., Zhang, D.: Local Linear Discriminant Analysis Framework Using Sample Neighbors. IEEE Trans. Neu. Net. 22, 1119–1132 (2011)

    Article  Google Scholar 

  14. Xu, Y., Zhang, D., Yang, J., Yang, J.-Y.: A two-phase test sample sparse representation method for use with face recognition. IEEE Trans. Cir. Sys. Vid. Tech. 21 (2011)

    Google Scholar 

  15. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ma, X., Wu, N. (2012). Two-Phase Test Sample Representation with Efficient M-Nearest Neighbor Selection in Face Recognition. In: Wang, J., Yen, G.G., Polycarpou, M.M. (eds) Advances in Neural Networks – ISNN 2012. ISNN 2012. Lecture Notes in Computer Science, vol 7368. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31362-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31362-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31361-5

  • Online ISBN: 978-3-642-31362-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics