
Point-and-write — Documenting Formal
Mathematics by Reference?

Carst Tankink1, Christoph Lange2,3,4, and Josef Urban1

1 Institute for Computing and Information Science, Radboud Universiteit, Nijmegen,
The Netherlands carst@cs.ru.nl, josef.urban@gmail.com

2 FB 3, Universität Bremen, Germany ch.lange@jacobs-university.de
3 Computer Science, Jacobs University Bremen, Germany

4 Computer Science, University of Birmingham, UK

Abstract This paper describes the design and implementation of mech-
anisms for light-weight inclusion of formal mathematics in informal math-
ematical writings, particularly in a Web-based setting. This is conceptu-
ally done in three stages: (i) by choosing a suitable representation layer
(based on RDF) for encoding the information about available resources
of formal mathematics, (ii) by exporting this information from formal
libraries, and (iii) by providing syntax and implementation for including
formal mathematics in informal writings.
We describe the use case of an author referring to formal text from an
informal narrative, and discuss design choices entailed by this use case.
Furthermore, we describe an implementation of the use case within the
Agora prototype: a Wiki for collaborating on formalized mathematics.

1 Introduction

Formal, computer-verified, mathematics has been informally discussed and writ-
ten about for some fifty years: on dedicated mailing lists [10,19,13], in conference
and journal articles, online manuals, tutorials and courses, and in community
Wikis [9,20] and blogs [22].

In such informal writings, it is common to include and mix formal definitions,
theorems, proofs and their outlines, and sometimes whole sections of formal
articles. Such formal “islands” in a text do not have to follow any particular
logical order, and can mix content from different articles, libraries, and even
content based on different proof assistants. In this respect, the collection of such
formal fragments in a particular text is often informal, because the fragments
do not have to share and form a unifiable, linear, and complete formal context.

In a Web setting, such pieces of formal code can however be equipped with
semantic and presentation functions that make formal mathematics attractive

? The first and third author were funded by the NWO project “MathWiki”. The
second author was supported by DFG Project I1-[OntoSpace] of SFB/TR 8 “Spatial
Cognition” and EPSRC grant EP/J007498/1”. The final publication is available at
http://www.springerlink.com.

ar
X

iv
:1

20
4.

50
94

v2
 [

cs
.M

S]
 1

0
Ju

l 2
01

2

and unique. Such functions range from “passive” markup, like (hyper)linking
symbols to their precise definitions in HTML-ized formal libraries, detailed and
layered explanations of implicit parts of reasoning (goals, types, subproofs, etc.),
to more “active”, like direct editing, re-verification, and HTML-ization of the
underlying formal fragment in its proper context, and using the formal code for
querying semantic search engines and automated reasoning tools [25].

In this paper, we describe, and support, a use case of an author writing such
an informal text: she gives references (points) to (fragments of) formalization
on the Web, and then describes (writes about) them in a natural language
narrative, documenting the formal islands. This use case is described in Section 2.

We support this use case in a light-weight manner, based on HTML present-
ations of formal mathematics. The author can write pointers to formal objects
in a special syntax (described in Section 3), which get resolved to the objects
when rendering the narrative. To follow the pointers, our tools equip HTML
pages for formalizations with annotations describing what a particular HTML
fragment represents (Section 5). The annotations are drawn from suitable RDF
vocabularies,5 described in Section 4.

We show an implementation of the mechanisms in the Agora prototype,6
described in Section 6. The actual rendering of the final page with its inclusions
give rise to several issues that we do not consider here: we discuss some issues and
how we handle them in our implementation, but these decisions were not made
systematically: we focus here on the author’s use case of writing the references,
and provide the prototype as a proof of existence.

This paper does not contain a dedicated related work section: to our know-
ledge, there is no system that provides similar functionality: there are alternatives
for including formal text, as well as alternative syntaxes, which we will compare
with our approach in the relevant sections. Additionally, the MoWGLI project
developed some techniques for rendering formal proofs with informal narratives,
which are compared to in Section 6.

2 Describing and Including Formal Text

The techniques described in this paper are mainly driven by a single use case,
that of an author writing a description (a “narrative”) of a development in formal,
computer-verified, mathematics. In this work, we assume that the author writes
this narrative for publication in a Wiki, although the use case could also be
applied for more traditional authoring, in a language like LATEX.

2.1 Use Case

While writing a natural language narrative, the author will eventually want to
include snippets of formal code: for example to illustrate a particular imple-
5 The RDF data model (Resource Description Framework) essentially allows for identi-
fying any thing (“resource”) of interest by a URI, giving it a type, attaching data to
it, and representing its relations to other resources [1].

6 http://mws.cs.ru.nl/agora/

http://mws.cs.ru.nl/agora/

mentation technique or to compare a formalization approach with a different
one, possibly in a different formal language. An advanced example is Section 5.3
of [6] rendered in Agora.7

Because we allow for including formal text from the Web, there is a wrinkle
we have to iron out when supporting this use case, but before we get to that, we
describe typical steps an author can carry out while executing the use case:

Formalization An author works on a formalization effort in some system and
puts (parts of) this formalization on the Web, preferably on the Wiki. We
will refer to the results of these efforts as source texts.

Natural language description Sometime before, during or after the formal-
ization, the author gives a natural language account of the effort on the Wiki.
As mentioned, we assume she writes this in a markup language suitable for
Wikis, extended with facilities for writing mathematical formulae.8 We refer
to the resulting description as a narrative.

Including formalizations into the narrative In the natural language de-
scription, the author includes some of the formal artifacts of her effort, and
possibly some of the formalizations by other authors. These inclusions need
to look attractive (by being marked up) and should not be changed from the
source: the source represents a verifiable piece of mathematics, and a reader
should be able to ascertain himself that nothing was lost in transition.

These steps are not necessarily carried out in order, and can be carried out
by different authors or iteratively. In particular, the formal text included in the
narrative does not have to originate from the author or her collaborators, but
could be from a development that serves as competition or inspiration.

The end results of the workflow are pages like the one shown (in part) in
Figure 1: it includes a narrative written in natural language (including hyperlinks
and markup of formulae) and displays formal definitions marked up as code.

Figure 1: Example of informal narrative with formal snippets

Because the source texts are stored on the Web, we consider their content to
be fluid : subject to change at any particular moment, but not under control of
7 http://mws.cs.ru.nl/agora/cicm_sandbox/CCL/
8 The specifics of suitable languages for writing in Wikis for formal mathematics are
not a subject of this paper; we refer to [18] for an overview.

http://mws.cs.ru.nl/agora/cicm_sandbox/CCL/

the author. This implies that the mechanism for including formal text should be
robust against as much change as possible.

To determine how we can support this workflow, we first survey the existing
methods that are suitable for including formal mathematics.

2.2 Alternatives for Inclusion

Typical options for including formal mathematics—or any other type of code—,
when working with a document authoring tool like LATEX include:

1. Referral: place the code on some Web page and refer readers to that page
from the document (by giving the URL),

2. Inclusion: include and format the source code files as listings, e.g. using the
LATEX package listings [12],

3. Literate proving: the more extreme variant of (2): write the article in a
literate style, and extract both formal code and marked up text from it,

4. Copy-paste: manually copy-paste the code into the document.

All of these options have their own problems for our use case.

1. Referral collides with the desire for juxtaposability [7]: a reader should not
have to switch between pages to look at the referred code and the text that
refers to it. Instead, he should be able to read the island within the context
of the narrative.

2. We certainly want the author to be able to include code, but most of the tools
only allow her to refer to the code by location, instead of a more semantic
means: she can give a range of lines (or character offsets) in a file, but cannot
write “include the Fundamental Theorem of Algebra, and its proof”.

3. Literate proving [8] is a way to tackle code inclusion, but it does not solve
the use case: it requires the author to shift her methods from writing code
and article separately to writing both aspects interleaved.
It also does not allow an author to include existing external code for cita-
tion (without copy-pasting) and does not allow her to write a document
including only snippets of formal code. These cases can arise where a lot
of setup and auxiliary lemmas are necessary for formalizing a theorem, but
only the theorem itself is the main focus of a paper. Typical literate program-
ming setups provide mechanisms for hiding code fragments, but we prefer
to take an inclusive instead of an exclusive view on the authoring process:
the former seems to be more in line with actual practices in the interact-
ive theorem proving community (see, for example, the proceedings of the
Interactive Theorem Proving conference [26]).

4. Copy-pasting code has the traditional problem of maintaining consistency: if
the source file is changed, the citation should change as well. On the positive
side, it does not require much effort to implement, apart from adding facilities
for marking up code, which can be reused for in-line (new) code. To make the
implementation threshold even lower, the listings LATEX package previously
mentioned also supports marking up copy-pasted code.

The shortcomings of these methods mean we need to design a system provid-
ing the following facilities:

Requirement 1. A syntax for writing, in a natural language document, ref-
erences to parts of a formal text, possibly outside of the referring text, and a
mechanism for including the referred objects verbatim in a rendered version of
the natural language text.

Requirement 2. A method for annotating parts of formal texts, so they can be
referenced by narratives.

The rest of this paper gives our approach to these two problems, demonstrat-
ing how they interact, and gives a tour of our working implementation.9

3 Syntax for Referring

We will first focus on how the author can write references to formal content.
Below, we discuss considerations that guided the design of this syntax. The
considerations are partially based on the goals for a common Wiki syntax [21].

3.1 Requirements on syntax

Simple To encourage its use, the syntax should not be too elaborate. An ex-
ample of a short enough syntax is the hyperlink syntax in most Wiki systems:
only four characters surrounding the link, [[and]].

Collision free The syntax should not easily be ‘mistyped’: it should not be
part of the syntax already used for markup, and not likely used in a natural
language narrative.

Readable It should be recognizable in the source of the narrative, to support
authors in learning a new syntax and making the source readable.

Familiar We do not intend to reinvent the wheel, but want to adapt existing
syntax to suit our needs. This also keeps the syntax readable: when the
base syntax is already known to an author, it should be clear to her how
this syntax works in the context of referring to formal text. Because keeping
things similar but not completely equal could cause confusion, it also requires
us not to deviate the behavior too much from the original syntax.

In resolving these requirements on the syntax, we need to consider the context
in which it will be used. In our proposed use case, the syntax will be used
within a Wiki, so we prefer a syntax that fits with the markup families used for
Wiki systems. It should be possible to extend a different markup language (for
example, LATEX or literate comments for a formal system) with the reference
syntax, but this requires reconsidering the decisions we make here.

Considering that we want to base the reference syntax on existing mechan-
isms (in line with the familiarity requirement), there are three basic options to
9 http://mws.cs.ru.nl/agora/cicm_sandbox

http://mws.cs.ru.nl/agora/cicm_sandbox

use as a basis: import statements like used in LATEX (or, programming and formal
languages), Wiki-style hyperlinks, and Isabelle/Isar’s antiquotation syntax.

Each of these is considered in the rest of this section, and tested against the
requirements stated before.

LATEX-style include statements. The purpose of these statements in a LATEX
document is to include the content of a file in another, before rendering the
containing file. The command does not allow inclusion of file fragments, but could
be modified to allow this. As a concrete proof of existence, the listings package
mentioned earlier has the option to include file fragments by giving a line offset,
but not a pointer to an object. The statements should be recognizable by LATEX
users or users of a formal language that uses inclusions, but the statements are
rather long: if the author wants to use them more often, it might become tedious
to write.

The MediaWiki engine has a similar syntax for including entire pages.10
To include fragments of pages, however, one either needs to factor out these
fragments of the source text and include them both in the source text and the
referring text, or mark fragments of the source page which will be included. Both
do not give the author of a narrative fine-grained control over inclusion.

An extension to these inclusions11 allows inclusion of sections. This mech-
anism is a valid option for adaption, but if we would want to support informal
inclusion at some point, it would be difficult to distinguish it, at the source level,
from an inclusion of a formal fragment.

Wiki-style hyperlinks. These cross-reference statements are not hard to learn and
short, but also using them for inclusion can overload the author’s understanding
of the markup commands: if she already knows how to use hyperlinks, she needs
to learn how to write and recognize links that include formal objects.

Antiquotations. Isabelle/Isar [28] uses antiquotations to allow the author of Isar
proof documents to write natural-language, marked-up snippets in a formal doc-
ument (the ‘quotation’ from formal to informal), while including formal content
in these snippets (the ‘antiquotation’ of informal back to formal): these antiquo-
tations are written @{type [options] syntax }, where type declares what kind
of syntax the formal system can expect, the syntax specifying the formal content,
and the options defining how the results should be rendered. The formal system
interprets these snippets and reinserts the results into the marked-up text.

For example, the antiquotation @{term [show_types] "% x y. x"} would ask
Isabelle to type-check the term λx y.x (% is Isabelle’s ASCII shorthand for λ)
in the context where it appears and reinserts the term annotated with its type:
it inserts the output λ(x::’a) y::’b. x.

Another example is @{thm foo} which inserts the statement of the theorem
labeled foo in the marked up text. The syntax also provides an option to insert
the label foo, which makes sure that it points to a correct theorem.
10 http://www.mediawiki.org/wiki/Transclusion
11 http://www.mediawiki.org/wiki/Extension:Labeled_Section_Transclusion

http://www.mediawiki.org/wiki/Transclusion
http://www.mediawiki.org/wiki/Extension:Labeled_Section_Transclusion

3.2 Resulting Syntax

From the options listed above, the antiquotation mechanism is closest to what
we want: it allows the inclusion of formal text within an informal environment,
relying on an external (formal) system to provide the final rendering. There are
some differences in the approaches that require some further consideration.

Context In Isar, the informal fragments are part of a formal document, which
gives the context in which to evaluate the formal content. In our use case,
there is no formal context: the informal and the formal documents are strictly
separated, so the formal text has to exist already, and is only referred to from
a natural-language document.
We could provide an extension that allows the author to specify the formal
context in which formal text is evaluated. This would allow her to write new
examples based on an existing formalization, or combine literate and non-
literate approaches. This is an appealing idea, but beyond the scope of this
paper.

Feedback In our use case, the natural language text only refers to the formal
text, and does not feed back any formal content into the formal document.
In Isar, it is possible to prove new lemmas in an antiquotation, but Wenzel
notes in his thesis [28, page 65] that antiquotations printing well-typed terms,
propositions and theorems are the most important ones in practice.

With these considerations in mind, we adopt the following syntax, based
on the antiquotations: @{ type reference [options] }. The main element is
reference, which is either a path in the Wiki or an external URL, pointing
to a formal entity of the given type. We will discuss possible types in the next
section.

The options element instructs the renderer of the Wiki about how to render
the included entity. Compared to Isar, it has swapped positions with reference

because it provides rendering settings, and no instructions to a formal tool. This
means that they are processed last, after the reference has been processed to an
object. Possible uses include flagging whether or not to include the proof of a
theorem, or the level of detail that should be shown when including a snippet.

The reference points at an annotated object, by giving the location of the
document it occurs in and the name given in the annotation for that object.
The type corresponds to the type in the annotation of the object: it serves as a
disambiguation mechanism, but can be enforced in a more strict manner. If the
system cannot find a reference of the given type, it should fail in a user friendly
way: in our implementation, we inline reference in the output, marked up to
show it is not found. Inspired by MediaWiki, we color it red, and put a question
mark after it. An addition to this would be to make this rendering a link, through
which the author can write the formal reference, or search for similar objects.

The antiquotation for the Coq code in Figure 1, is
@{oo:Definition CoqBinomialCoefficient#C}. It points to the Definition C, found
in the location (a Wiki page) CoqBinomialCoefficient. This reference gets re-
solved into the HTML shown in the screenshot.

4 Annotation of Types and Content

For transforming antiquotations to HTML, we could implement ad hoc refer-
ence resolution mechanisms specific to particular formal systems. Then, any new
formal system would require building another specific dereferencing implementa-
tion from scratch. We present a more scalable approach with lower requirements
for formal systems. We enrich the HTML export of the formal texts with an-
notations, which clearly mark the elements that authors can refer to. The Wiki
can resolve them in a uniform way: when an author writes an antiquotation, the
system can dereference it to the annotated HTML, without further requirements
on the structure of the underlying formal texts.

This section introduces the two main kinds of annotations that are relevant
here; the next section explains how to put them into formal texts. We are inter-
ested in annotating an item of formalized mathematics with its mathematical
type (such as definition, theorem, proof), and annotating it by pointing to re-
lated content (such as pointing from a formalized proof to the Wikipedia article
that gives an informal account of the same proof). Type annotation requires a
suitable annotation vocabulary, whereas we had to identify suitable datasets as
targets for content annotation.

4.1 The Type Vocabulary of the OMDoc Ontology

The OMDoc ontology provides a wide supply of types of mathematical know-
ledge items, as well as types of relations between them, e.g. that a proof proves a
theorem [16,17]. It is a reimplementation of the conceptual model of the OMDoc
XML markup language [15] for the purpose of providing semantic Web applic-
ations with a vocabulary of structures of mathematical knowledge.12 It is thus
one possible vocabulary (see [17] for others) applicable to the lightweight an-
notation of mathematical resources on the Web desired here, without the need
to translate them from their original representation to OMDoc XML.

The OMDoc language has originally been designed for exchanging formaliz-
ations across systems for, e.g., structured specification, automated verification,
and interactive theorem proving [15]. OMDoc covers a large subset of the con-
cepts of common languages for formalized mathematics, such as Mizar or Coq;
in fact, partial translations of the latter languages to OMDoc have been imple-
mented (see, e.g., [5]).

The OMDoc ontology covers most of the concepts that the OMDoc lan-
guage provides for mathematical statements, structured proofs, and theories.
Item types include Theory, Symbol [Declaration], Definition, Assertion (having
subtypes such as Theorem or Lemma), and Proof ; types of relations between
such items include Theory–homeTheoryOf–<any type of statement>, Symbol–
hasDefinition–Definition, and Proof–proves–Theorem. The ontology leaves the
representation of document structures without a mathematical semantics, such
as sections within a theory that have not explicitly been formalized as subthe-
ories, to dedicated document ontologies (cf. [17]).
12 We use the terms “ontology” and “vocabulary” synonymously.

4.2 Datasets for Content Annotation

Our main use case for content annotation is annotating formalizations with re-
lated informal representations, but added-value services may still benefit from
the latter having a partial formal semantics. Consider linking a formalized proof
to a Wikipedia article that explains a sketch and the historical or application
context of the proof.13 The information in the Wikipedia article (such as the
year in which the proof was published) is not immediately comprehensible to
Web services or search engines. For this purpose, DBpedia14 makes the contents
of Wikipedia available as a linked open dataset.15

Further suitable targets for content annotation of mathematical formaliz-
ations – albeit not yet available as machine-comprehensible linked open data
– include the PlanetMath encyclopedia, the similar ProofWiki, and Wolfram’s
MathWorld.16

In the interest of machine-comprehensibility, the links from the annotated
sources to the target dataset should be typed. The two most widely used link
types, which are also widely supported by linked data clients, are rdfs:seeAlso
(a generic catch-all, which linked data clients usually follow to gather more
information) and owl:sameAs (asserting that all properties asserted about the
source also hold for the target, and vice versa). The OMDoc ontology furthermore
provides the link type formalizes for linking from a formalized knowledge item
to an informal item that verbalizes the former, and the inverse type verbalizes.

5 Annotating Formal Texts

Now that we have established what to annotate formal texts with, we need to look
at the how. Considering that the formal documents are stored on the Web, we
assume that each document has an HTML representation. Indeed, the systems
we support in our prototype each have some way of generating appropriate type
annotations.

Text parts are annotated by enclosing them into HTML elements that carry
the annotations as RDFa annotations. RDFa is a set of attributes that allows for
embedding RDF graphs into XML or HTML [2]. For identifying the annotated
resources by URIs, as required by RDF, we reuse the identifiers of the original
formalization.

Desired Results. Regardless of the exact details of the formal systems involved,
and their output, the annotation process generally yields HTML+RDFa, which
uses the OMDoc ontology (cf. Section 4.1) as a vocabulary. For example, if the

13 The Wikipedia category “Article proofs” lists such articles; see http://en.wikipedia.

org/wiki/Category:Article_proofs.
14 http://dbpedia.org
15 A collection of RDF descriptions accessible by dereferencing their identifiers [11]
16 See http://www.planetmath.org, http://www.proofwiki.org, and http://mathworld.

wolfram.com, respectively.

http://en.wikipedia.org/wiki/Category:Article_proofs
http://en.wikipedia.org/wiki/Category:Article_proofs
http://dbpedia.org
http://www.planetmath.org
http://www.proofwiki.org
http://mathworld.wolfram.com
http://mathworld.wolfram.com

formal document contains an HTML rendition of the Binomial Theorem, we
expect the following result (where the prefix oo: has been bound to the URI of
the OMDoc ontology17):

...

...

The “. . . ” in this listing represent the original HTML rendition of the formal
text, possibly including the information that was used to infer the annotations
now captured by the RDFa attributes. @about assigns a URI to the annotated
resource; here, we use fragment identifiers within the HTML document.

In this example, we wrap the existing HTML in span elements, because in
most cases, this preserves the original rendering of the source text. In particular,
empty spans, as typically used when there is no other HTML element around
that could reasonably carry some RDFa annotation, are invisible in the browser.
If the HTML of the source text contains div elements, it becomes necessary to
wrap the fragment in a div instead of a span.

Mizar texts. Mizar processing consists of several passes, similar in spirit to those
used in compilation of languages like Pascal and C. The communication between
the main three passes (parsing, semantic analysis, and proof checking) is likewise
file-based. Since 2004, Mizar has been using XML as its native format for storing
the result of the semantic analysis [23]. This XML form has been since used for
producing disambiguated (linked) HTML presentation of Mizar texts, translating
Mizar texts to ATP formats, and as an input for a number of other systems. The
use of the XML as a native format guarantees that it remains up-to-date and
usable for such external uses, which has been an issue with a number of ad-hoc
ITP translations created for external use.

This encoding has been gradually enriched to contain important presenta-
tional information (e.g., the original names of variables, the original syntax of
formulas before normalization, etc.), and also to contain additional information
that is useful for understanding of the Mizar texts, and ATP and Wiki func-
tions [25,24] over them (e.g., showing the thesis computed by the system after
each natural deduction step, linking to ATP calls/explanations, and section edit-
ing in a Wiki).

We implemented the RDF annotation of Mizar articles as a part of the XSL
transformation that creates HTML from the Mizar semantic XML format. While
the OMDoc ontology defines vocabulary that seems suitable also for many Mizar
internal proof steps, the current Mizar implementation only annotates the main
top-level Mizar items, together with the top-level proofs. Even with this limit-
ation this has already resulted in about 160000 annotations exported from the
whole MML,18 which is more than enough for testing the Agora system. The ex-

17 http://omdoc.org/ontology#
18 MML version 4.178.1142 was used, see http://mizar.cs.ualberta.ca/~mptp/7.12.02_

4.178.1142/html/

http://omdoc.org/ontology#
http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html/
http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html/

isting Mizar HTML namespace was re-used for the names of the exported items,
such that, for example, the Brouwer Fixed Point Theorem:19

:: $N Brouwer Fixed Point Theorem
theorem Th14:
for r being non negative (real number), o being Point of TOP-REAL 2,

f being continuous Function of Tdisk(o,r), Tdisk(o,r)
holds f has_a_fixpoint

proof ...

gets annotated as20

<div about="#T14" typeof="oo:Theorem">
<span rel="owl:sameAs"

resource="http://dbpedia.org/resource/Brouwer_Fixed_Point_Theorem"/> ...
<div about="#PF23" typeof="oo:Proof"> ... </div>

</div>

Apart from the appropriate annotations of the theorem and its proof, an
additional owl:sameAs link is produced to the DBpedia (Wikipedia) “Brouwer_
Fixed_Point_Theorem” resource. Such links are produced for all Mizar theor-
ems and concepts for which the author defined a long (typically well-known)
name using the Mizar ::$N pragma. Such pragmas provide a way for the users
to link the formalizations to Wikipedia (DBpedia, ProofWiki, PlanetMath, etc.),
and the links allow the data consumers (like Agora) to automatically mesh to-
gether different (Mizar, Coq, etc.) formalizations using DBpedia as the common
namespace.

Coq texts. Coq has access to type information when verifying a document.
This information is written into a globalization file, which lists types and cross-
references on a line/character-offset basis. Coq’s HTML renderer, Coqdoc, pro-
cesses this information to generate hyperlinks between pages, and style parts of
the document according to the given types. Coqdoc is implemented as a single-
pass scanner and lexer, which reads a Coq proof script and outputs HTML (or
LATEX) as part of the lexing process.

The resulting HTML page contains the information we defined in Section 4,
but serves this in an unstructured way: individual elements of the text get
wrapped in span elements corresponding to their syntactical class, and there
is no further grouping of this sequence of spans in a more logical entity (e.g. a
<div id="poly_id" class="lemma">...</div>), which would be addressable from our
syntax. In particular, it puts the name anchor around a theorem’s label, instead
of around the entire group.

For example, the following Coq code:

Lemma poly_id: forall a, a→ a.

gets translated into the following HTML fragment (truncated for brevity and
whitespace added for legibility):

19 http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html/brouwer.html#T14
20 T14 is a unique internal Mizar identifier denoting the theorem. Th14 is a (possibly

non-unique) user-level identifier (e.g., Brouwer or SK300 would result in T14 too).

http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html/brouwer.html#T14

Lemma
poly_id
...

Aside from the fact that the HTML is not valid (span elements do not allow
@type attributes), it has the main ingredients we are interested in extracting
for annotation (type and name), but no indication that the keyword Lemma, the
identifier poly_id following it, and the statement forall a, a→a. are related. The
problem worsens for proofs: blocks of commands are not indicated as a proof,
and there is no explicit relation between a statement and its proof, except for the
fact that a proof always directly follows a statement. This makes the Coqdoc-
generated HTML not directly suitable for our purpose; we need three steps of
post-processing:

1. Group objects: The first step we take is grouping the ‘forest’ of markup
elements that constitutes a command for Coq in a single element. This means
parsing the text within the markup, and gathering the elements containing
a full command in a new element.

2. Export type information:We then export the type information from Coq
to the new element. We extract this information from the @type, derive the
corresponding OMDoc type from it, and put that into an RDFa @typeof

attribute.
3. Explicit subject identification: The final step is extracting @name and

putting it into @about, thus reusing it as a subject URI.

After post-processing, we obtain the desired annotated tree, containing the
HTML generated by Coqdoc.

The approach introduced here does not yet allow us to indicate the proof
blocks, for which we do need to modify Coqdoc. The adaption is fairly straight-
forward: each time the tool notices a keyword starting a proof, it outputs the
start of a new span, . Similarly, the adapted tool outputs
 when encountering a keyword signaling the end of a proof.

Isar texts. For Isar texts, the annotation process is still in development. We
make use of the Isabelle/Scala [27] library to generate HTML pages based on
the proof structure, already containing the annotation of a page. Because the
process has access to the full proof structure, it is easy to generate annotations:
the main obstacle is that the information about the identifiers at this level does
not distinguish between declaration and use, so it is difficult to know what items
to annotate with an @about.

6 System: Agora

We have implemented the mechanisms described in this paper as part of the
Agora prototype.21 A current snapshot of the source can be found in our code
21 http://mws.cs.ru.nl/agora

http://mws.cs.ru.nl/agora

repository.22 Agora provides the following functionality, grouped by the tasks
in the main use case. Writing and rendering the narrative is illustrated by the
Agora page about the binomial coefficient.23

Formalization. Agora allows the author to write her own formalizations grouped
in projects, which resemble repositories of formal and informal documents. Agora
has some support for verifying Coq formalizations, with a rudimentary editor for
changing the files. Alternatively, it allows an author to synchronize her working
directory with the system (currently, write access to the server is required for
this). Proof scripts from this directory are picked up, and provided as documents.
Agora also scrapes Mizar’s MML for HTML pages representing theories, and
includes them in a separate project. Regardless of origin and editing methods,
the proof scripts are rendered as HTML, and annotated using the vocabulary
specified in Section 4.

Narratives. To allow the author to write natural language narratives, we provide
the Creole Wiki syntax [21], which allows an author to use a lightweight markup
syntax. Next to this markup and the antiquotation described next, the author
can write formulae in LATEX syntax, supported by the MathJax24 library.

Antiquotation. The author can include formal content from any annotated page
by using the antiquotation syntax, just giving page names to refer to pages
within Agora, or referring to other projects or URLs by writing a reference
of the form: @{type location#name}. For example, the formalization of the bi-
nomial coefficient in Coq is included in the Wiki, so it can be referred to
by @{oo:Definition CoqBinomialCoefficient#C}. On the other hand, the Mizar
definition is given at an external Web page. Because the URL is rather long,
the antiquotation is @{oo:Definition mml:binom.html#D22}. In this reference,
mml is a prefix, defined using the Agora-specific command @{prefix mml=http:

//mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html}. We do not consider
prefixes a part of the “core” syntax, as another implementation could restrict the
system to only work within a single Wiki, causing the links to be (reasonably)
short.

Rendering a page written in this way, Agora transforms the Wiki syntax into
HTML using a modified Creole parser. The modification takes the antiquotations
and produces a placeholder div containing the type, reference and repository of
the antiquotation as attributes. When the page is loaded, the placeholders are
replaced asynchronously, by the referred-to entities. This step is necessary to pre-
vent very long loading times on pages referring to many external pages. When
the content is included, it is pre-processed to rewrite relative links to become
absolute (with the source page used as the base URL), a matter of a simple
library call.
22 https://bitbucket.org/Carst/agora
23 http://mws.cs.ru.nl/agora/cicm_sandbox/BinomialCoefficient
24 http://www.mathjax.org

http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html
http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html
https://bitbucket.org/Carst/agora
http://mws.cs.ru.nl/agora/cicm_sandbox/BinomialCoefficient
http://www.mathjax.org

An alternative to asynchronously fetching the referenced elements would be
to cache them when the page is written. This approach could be combined with
the asynchronous approach implemented, and would allow authors to refer to
content that would, inevitably, disappear. We currently have not implemented
it, because it requires some consideration in the scope of Agora’s storage model.

Appearance of Included Content. The appearance of included snippets depends
on several things:

– Cascading Style Sheets (CSS) are used to apply styling to objects that have
certain attributes. When including the snippets, they can either be styled
using the information in the source document (because the syntax is marked
up according to rules for a specific system), or the styling can be specified in
the including document (to make the rendered document look more uniform).
In the implementation, we statically include the CSS files from the source
text. This is manageable due to the small number of included systems, but
requires further consideration.

– The system could use the included snippets to present the data using an
alternative notation than the plain text that is typical for interactive theorem
provers. This approach would require some system-dependent analysis of
the included snippets, maybe going further than just HTML inclusion. The
gathered data could then be used to render the included format in a new
way, either specified by the author of the source text, or the author of the
including text. This approach of “re-rendering” structured data was taken
as part of the MoWGLI project [3], where the author of an informal text
writes it as a view on a formal structure, including transformations from the
formal text to (mathematical) notation.
Because our approach intends to include a wide variety of HTML-based doc-
uments, we do not consider this notational transformation viable in general:
it requires specific semantic information provided by the interactive theorem
prover, which is not preserved in the annotation process described in Sec-
tion 5, possibly not even exposed by the prover. However, where we have this
information available, it would be good to use it to make a better looking
rendered result.

7 Conclusions and Future Work

This paper describes a mechanism for documenting formal proofs in an informal
narrative. The narrative includes pointers to objects found in libraries of formal-
ized mathematics, which have been annotated with appropriate types and names.
The mechanism has been implemented as part of the Agora prototype. Our ap-
proach is Web-scalable in that the Agora system is independent from a particular
formalized library: It may be installed in a different place, it references formal
texts by URL, and it does not make any assumptions about the system under-
lying the library, except requiring an HTML+RDFa export. As future work, we
see several opportunities for making the mechanisms more user friendly:

Include more systems. By including more systems, we increase the number of
objects an author can refer to when writing a Wiki page. Because we made our
annotation framework generic, this should not be a very difficult task, and single
documents could be annotated by authors on the fly, if necessary.

Provide other methods for reference. At the moment, the reference part of our
antiquotations is straightforward: the author should give a page and the identifier
of the object in this page. It would be interesting to allow the author to use an
(existing) query language to describe what item she is looking for, and use this
to find objects in the annotated documents.

Improve editing facilities. Agora currently has a simple text box for editing its
informal documents. We could provide some feedback to the author by showing
a preview of the marked up text, including resolved antiquotations. More elab-
orately, we could provide an ‘auto-completion’ option, which shows the possible
objects an author can refer to, limited by type and the partial path: if the au-
thor writes @{oo:Theorem Foo#A}, the system provides an auto-completion box
showing all the theorems in the “Foo” namespace, starting with “A”. This lookup
could be realized in a generic way, abstracting from the different formalizations,
by harvesting the RDFa annotations into an RDF database (“triple store”) and
implementing a query in SPARQL.

Consistency. The current design of the mechanisms already provides a better
robustness than just including objects by giving a location, but can still be
improved to deal with objects changing names. A solution would be to give
objects an unchanging identifier and a human-readable name, and storing the
antiquotation as a reference to this identifier. When an author edits a document
containing an antiquotation, the name is looked up, and returned in the editable
text.

Despite these shortcomings, we believe we have made significant steps towards
a system in which authors can document formal mathematics by pointing and
writing, without having to commit prematurely to a specific workflow, such as
literate proving, or even a tool chain, because representations of (formalized)
mathematics can be annotated after they have been generated.

References

1. Resource Description Framework (RDF): Concepts and abstract syntax. Recom-
mendation, W3C, 2004. http://www.w3.org/TR/rdf-concepts.

2. RDFa in XHTML: Syntax and processing. Recommendation, W3C, October 2008.
http://www.w3.org/TR/rdfa-syntax.

3. Andrea Asperti, Herman Geuvers, Iris Loeb, Lionel Elie Mamane, and Claudio Sa-
cerdoti Coen. An interactive algebra course with formalised proofs and definitions.
In Kohlhase [14], pages 315–329.

http://www.w3.org/TR/rdf-concepts
http://www.w3.org/TR/rdfa-syntax

4. Serge Autexier, Jacques Calmet, David Delahaye, Patrick D. F. Ion, Laurence
Rideau, Renaud Rioboo, and Alan P. Sexton, editors. AISC/MKM/Calculemus,
volume 6167 of LNCS. Springer, 2010.

5. Grzegorz Bancerek and Michael Kohlhase. Towards a Mizar Mathematical Library
in OMDoc format. In R. Matuszewski and A. Zalewska, editors, From Insight to
Proof: Festschrift in Honour of Andrzej Trybulec, volume 10:23 of Studies in Logic,
Grammar and Rhetoric, pages 265–275. University of Białystok, 2007.

6. Grzegorz Bancerek and Piotr Rudnicki. A compendium of continuous lattices in
MIZAR. J. Autom. Reasoning, 29(3–4):189–224, 2002.

7. Alan F. Blackwell and Thomas R. G. Green. Cognitive dimensions of
information artefacts: a tutorial. Tutorial, http://www.cl.cam.ac.uk/~afb21/

CognitiveDimensions/CDtutorial.pdf, 1998.
8. Paul Cairns and Jeremy Gow. Literate proving: Presenting and documenting

formal proofs. In Kohlhase [14], pages 159–173.
9. The Coq wiki. Browsable online at http://coq.inria.fr/cocorico.
10. The Coq mailing list. coq-club@inria.fr.
11. Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global Data

Space. Morgan & Claypool, 2011.
12. Carsten Heinz and Brooks Moses. The listings package. Technical report, CTAN,

2007. http://www.ctan.org/tex-archive/macros/latex/contrib/listings.
13. The Isabelle mailing list. cl-isabelle-users@lists.cam.ac.uk.
14. Michael Kohlhase, editor. MKM’05, number 3863 in LNAI. Springer Verlag, 2006.
15. Michael Kohlhase. OMDoc – An open markup format for mathematical documents

[Version 1.2]. Number 4180 in LNAI. Springer Verlag, August 2006.
16. Christoph Lange. OMDoc ontology. http://kwarc.info/projects/docOnto/omdoc.

html, 2011.
17. Christoph Lange. Ontologies and languages for representing mathematical know-

ledge on the semantic web. Semantic Web Journal, 2012. In press.
18. Christoph Lange and Josef Urban, editors. Proceedings of the ITP 2011 Workshop

on Mathematical Wikis (MathWikis), number 767 in CEUR-WS, 2011.
19. The Mizar mailing list. mizar-forum@mizar.uwb.edu.pl.
20. The Mizar wiki. Browsable online at http://wiki.mizar.org.
21. Christoph Sauer, Chuck Smith, and Tomas Benz. Wikicreole: a common wiki

markup. In WikiSym ’07, WikiSym ’07, pages 131–142, New York, NY, USA,
2007. ACM.

22. The homotopy type theory blog. http://homotopytypetheory.org/.
23. Josef Urban. XML-izing Mizar: making semantic processing and presentation of

MML easy. In Kohlhase [14], pages 346–360.
24. Josef Urban, Jesse Alama, Piotr Rudnicki, and Herman Geuvers. A wiki for Mizar:

Motivation, considerations, and initial prototype. In Autexier et al. [4], pages 455–
469.

25. Josef Urban and Geoff Sutcliffe. Automated reasoning and presentation support
for formalizing mathematics in Mizar. In Autexier et al. [4], pages 132–146.

26. Marko C. J. D. van Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk,
editors. ITP 2011, volume 6898 of LNCS. Springer, 2011.

27. Makarius Wenzel. Isabelle as document-oriented proof assistant. In James H.
Davenport, William M. Farmer, Josef Urban, and Florian Rabe, editors, Cal-
culemus/MKM, volume 6824 of LNCS, pages 244–259. Springer, 2011.

28. Markus M. Wenzel. Isabelle/Isar — a versatile environment for human-readable
formal proof documents. PhD thesis, Technische Universität München, 2002.

http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
http://coq.inria.fr/cocorico
coq-club@inria.fr
http://www.ctan.org/tex-archive/macros/latex/contrib/listings
cl-isabelle-users@lists.cam.ac.uk
http://kwarc.info/projects/docOnto/omdoc.html
http://kwarc.info/projects/docOnto/omdoc.html
mizar-forum@mizar.uwb.edu.pl
http://wiki.mizar.org
http://homotopytypetheory.org/

	Point-and-write — Documenting Formal Mathematics by Reference

