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1 Overview

PIDE is a general framework for document-oriented prover interaction and inte-
gration, based on a bilingual architecture that combines ML and Scala [2]. The
overall aim is to connect LCF-style provers like Isabelle [5, §6] (or Coq [5, §4]
or HOL [5, §1]) with sophisticated front-end technology on the JVM platform,
overcoming command-line interaction at last.

The present system description specifically covers Isabelle/jEdit as part of the
official release of Isabelle2011-1 (October 2011). It is a concrete Prover IDE im-
plementation based on Isabelle/PIDE library modules (implemented in Scala) on
the one hand, and the well-known text editor framework of jEdit (implemented
in Java) on the other hand.

The interaction model of our Prover IDE follows the idea of continuous proof
checking: the theory source text is annotated by semantic information by the
prover as it becomes available incrementally. This works via an asynchronous
protocol that neither blocks the editor nor stops the prover from exploiting
parallelism on multi-core hardware. The jEdit GUI provides standard metaphors
for augmented text editing (highlighting, squiggles, tooltips, hyperlinks etc.) that
we have instrumented to render the formal content from the prover context.
Further refinement of the jEdit display engine via suitable plugins and fonts
approximates mathematical rendering in the text buffer, including symbols from
the TEX repertoire, and sub-/superscripts.

Isabelle/jEdit is presented here both as a usable interface for current Isabelle,
and as a reference application to inspire further projects based on PIDE.

2 Using the System

The described system is part of the official release Isabelle2011-1 (October 2011).
The download archives from http://isabelle.in.tum.de/website-Isabelle2011-1/
download.html cover the three main platform families: Linux, Mac OS X, and
Windows (with Cygwin). Isabelle/jEdit has already a history of about 4 years; a
preliminary version is discussed in [3]. October 2011 marks the point of the first
stable release of the Prover IDE; some remaining limitations are described in
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its README panel. The website http://isabelle.in.tum.de points dynamically
to the latest official release, and further improvements of Isabelle/jEdit can be
anticipated with coming Isabelle distributions.

The Isabelle distribution bundles sources and multi-platform binaries, in-
cluding Isabelle/jEdit. Conceptually, the Prover IDE is a rich-client platform
with significant hard-disk foot-print, but it runs seamlessly for most users. The
shell command Isabelle2011-1/bin/isabelle jedit opens a text editor ses-
sion of jEdit which we have augmented by some plugins to communicate with the
prover in the background. Source files with .thy extension are treated specifi-
cally: Isabelle/jEdit adds them to the formal document-model of Isabelle/PIDE,
that maintains semantic information provided by the prover in the background,
while the user is editing the text in the foreground.

The subsequent screenshot shows the editor view after opening a certain
Example.thy file. The Isabelle distribution contains many other examples, e.g.
Isabelle2011-1/src/HOL/Unix/Unix.thy where the editor will also propose to
load further imported theory files.

The main text area is surrounded by dockable windows that are associated with
jEdit plugins. For example, we provide Output for prover messages and tradi-
tional goal states, which is internally based on existing HTML4/CSS2 rendering
on the JVM. The tree view is provided by Sidekick, which is an existing jEdit
plugin that has been instrumented to understand some Isabelle theory structure.

The general aim of Isabelle/jEdit is to expose the specific virtues of both
Isabelle and jEdit to the user, without accidental technical limitations imposed
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on either system. This is in contrast to the classic Proof General / Emacs [1],
where the locked region is essentially an intrusion of the prover command prompt
into the editor; it restricts the user to a single focus inherited from TTY mode.

Having replaced the prover Read-Eval-Print-Loop by native document edit-
ing in Isabelle/PIDE, we can connect the editor more directly. The sophisti-
cated features that qualify jEdit as “Programmer’s Text Editor”1 are retained,
and augmented by the semantic information from the prover. The underlying
JVM platform is sufficiently flexible to support our requirements for this for-
mal document-model, but instead of Java we are always using Scala [2] for our
own implementations. Higher-order functional-object-oriented programming on
multi-threaded JVM is far removed from untyped single-threaded Emacs-Lisp.

Physical rendering of document content draws from the standard repertoire
of known IDEs for programming languages, with highlighting, squiggles, tooltips,
hyperlinks etc. In the above screenshot, only the bold keywords of the Isar lan-
guage use traditional syntax-highlighting in jEdit with static tables; all other
coloring is based on dynamic information from the logical context of the prover.

Such annotated text regions can be explored further by using the CONTROL

modifier key (or COMMAND on Mac OS X), together with mouse hovering or click-
ing. It reveals tooltips and hyperlinks, e.g. see constant "Example.path" above,
and thus explains how a certain piece of source text has been interpreted.

The combination of Isabelle/jEdit and the underlying semantic document-
model should help users that are accustomed to Netbeans or Eclipse to approach
formal logic and formalized mathematics. Thus we hope to see new generations
of users continuing the tradition of the “LCF approach” from the 1970-ies.

3 Implemented concepts

Conceptually, the implementation consists of two main parts: (1) Isabelle/PIDE
infrastructure in ML and Scala that is considered an integral part of the prover
distribution, and (2) Isabelle/jEdit plugins and supporting code to assemble the
main application. PIDE provides the main concepts for document-oriented inter-
action, and is most challenging to implement. Some aspects of previous versions
are described in [3, 4], but the main issues are still unpublished. Compared to
that the jEdit application is relatively small and simple: ≈ 100 Kb of Scala code.

The implemented concepts of Isabelle/jEdit in Isabelle2011-1 that are visible
to end-users are as follows:

Continuous checking of source text while editing; no locking, no need to save
intermediate files.

Dependency management between text buffers: each theory file corresponds
to a node in the development graph of the current Isabelle session. Imports
are resolved by reloading required files; edits on some node are propagated
through the dependency graph as expected.

1 http://www.jedit.org
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Limitation: non-theory add-on files still need to be managed manually, to
ensure that the prover loads the proper version.

Status overview of single text buffers and the overall prover session, with in-
cremental update while the prover processes theories and proofs (usually in
parallel on multi-core hardware).

Annotated input of source text, which is semantically decorated and physi-
cally highlighted via standard GUI metaphors.

Annotated output of prover messages, which is produced by traditional
pretty-printing of the term language that is augmented by semantic markup.
Rendering is delegated to HTML4/CSS on the JVM.
Limitation: no hyperlinks within the browser window yet.

Integration of Isabelle/ML into the Prover IDE: ML source inside Isar is
fully annotated by the compiler, with inferred types and identifier scopes.

Integration of Isabelle/Scala into the jEdit Console plugin, which provides
command line to access the running JVM via the Scala toplevel.
Limitation: only minimal IDE integration via terminal window.

Mathematical rendering of the source text based on Unicode characters,
custom-made IsabelleText font with common glyphs from the TEX reper-
toire, and sub-/superscripts via extended jEdit text styles
Limitation: only 1-dimensional layout following traditional text editing, no
support for 2-dimensional boxes (fractions, roots, matrices).

Completion mechanism for mathematical symbols and keywords of the for-
mal Isar language.
Limitation: based on static tables, no connection to semantic context yet.

Regular jEdit functionality and generic plugin can be used as well. The physical
representation of formal sources coincides with JVM and jEdit conventions. So
copy-and-paste or hyper-search of mathematical symbols does not cause any
surprises to jEdit users.
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