Skip to main content

Acquisition of Elastically Deformable Object Model Based on Measurement

  • Conference paper
Haptics: Perception, Devices, Mobility, and Communication (EuroHaptics 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7282))

  • 3353 Accesses

Abstract

This paper describes an approach to acquiring impulse response deformation model (IRDM) through measurement on a real deformable object. A step-wise input force is applied onto a node by an air jet; the responding deformation is recorded by measuring the node’s motion using a stereo camera. In addition, the impulse response is computed from the step response. Measurement of actual object in the shape of dome and rectangular prism was performed. Also, an experiment that evaluates stiffness and temporal deformation of the obtained model was carried out, and similarity of the model to the real object was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tagawa, K., Hirota, K., Hirose, M.: Impulse Response Deformation Model: an Approach to Haptic Interaction with Dynamically Deformable Object. In: Proc. IEEE Haptics 2006, pp. 209–215 (2006)

    Google Scholar 

  2. Burdea, G.C.: Force and Touch Feedback for Virtual Reality. Wiley-Interscience (1996)

    Google Scholar 

  3. Salisbury, K., Brock, D., Massie, T., Swarup, N., Zilles, C.: Haptic rendering: Programming touch interaction with virtual objects. In: Proc. Symp. Interactive 3D Graphics, pp. 123–130 (1995)

    Google Scholar 

  4. Delingette, H.: Biquadratic and Quadratic Springs for Modeling St Venant Kirchhoff Materials. In: Bello, F., Edwards, E. (eds.) ISBMS 2008. LNCS, vol. 5104, pp. 40–48. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Kikuuwe, R., Tabuchi, H., Yamamoto, M.: An Edge-Based Computationally Efficient Formulation of Saint Venant-Kirchhoff Tetrahedral Finite Elements. ACM Trans. Graphics 28(1), 8:1-8:13 (2009)

    Google Scholar 

  6. Hirota, K., Kaneko, T.: Haptic representation of elastic objects. Presence 10(5), 525–536 (2001)

    Article  Google Scholar 

  7. Tomokuni, S., Hirai, S.: Real-time Simulation of Rheological Deformation on FPGA. Journal of the Virtual Reality Society of Japan 10(3), 443–452 (2005)

    Google Scholar 

  8. Rasmusson, A., Mosegaard, J., S∅rensen, T.S.: Exploring Parallel Algorithms for Volumetric Mass-Spring-Damper Models in CUDA. In: Bello, F., Edwards, E. (eds.) ISBMS 2008. LNCS, vol. 5104, pp. 49–58. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Takama, Y., Tsujino, Y., Hori, T., Tanaka, H.: Online Remeshing of Tetrahedral Adaptive Mesh for Deformation of Soft Objects. Trnas. VRSJ 13(1), 69–78 (2008)

    Google Scholar 

  10. MacLean, K.E.: The ”Haptic Camera”: A Technique For Characterizing And Playing Back Haptic Properties of Real Environments. In: Proc. ASME DSC, vol. 58, pp. 459–467 (1996)

    Google Scholar 

  11. Pai, D.K., van den Doel, K., James, D.L., Lang, J., Lloyd, J.E., Richmond, J.L., Yau, S.H.: Scanning Physical Interaction Behavior of 3D Objects. In: Proc. ACM SIGGRAPH 2001, pp. 87–96 (2001)

    Google Scholar 

  12. Ueda, N., Hirai, S., Tanaka, H.T.: Extracting Rheological Properties of Deformable Objects with Haptic Vision. In: Proc. ICRA 2004, pp. 3902–3907 (2004)

    Google Scholar 

  13. Hoever, R., Kosa, G., Szekely, G., Harders, M.: Data-Driven Haptic Rendering - From Viscous Fluids to Viscoelastic Solids. Trans. Haptics 2(1), 15–27 (2009)

    Article  Google Scholar 

  14. Weir, D.W., Peshkin, M., Colgate, J.E., Buttolo, P., Rankin, J., Johnston, M.: The Haptic Profile: Capturing the Feel of Switches. In: Proc. Haptics 2004, pp. 186–193 (2004)

    Google Scholar 

  15. Bickel, B., Bacher, M., Otaduy, M.A., Matusik, W., Pfister, H., Gross, M.: Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. Graph. 28(3), Article 89 (2009)

    Google Scholar 

  16. Wellman, P., Howe, R.D.: Towards realistic vibrotactile display in virtual environments. In: Proc. ASME DSC, vol. 57(2), pp. 713–718 (1995)

    Google Scholar 

  17. Okamura, A.M., Dennerlein, J.T., Howe, R.D.: Vibration Feedback Models for Virtual Environments. In: Proc. IEEE ICRA, vol. 3, pp. 2485–2490 (1998)

    Google Scholar 

  18. Okamura, A.M., Cutkosky, M.R., Dennerlein, J.T.: Reality-Based Models for Vibration Feedback in Virtual Environments. IEEE/ASME Trans. Mechatronics 6(3), 245–252 (2001)

    Article  Google Scholar 

  19. Niemeyer, G., Kuchenbecker, K.J., Fiene, J.: Improving Contact Realism through Event-Based Haptic Feedback. Trans. Visualization and Computer Graphics 12(2), 219–230 (2006)

    Article  Google Scholar 

  20. James, D.L., Fatahalian, K.: Precomputing Interactive Dynamic Deformable Scenes. In: Proc. SIGGRAPH 2003, pp. 879–887 (2003)

    Google Scholar 

  21. Fong, P.: Sensing, Acquisition, and Interactive Playback of Data-based Models for Elastic Deformable Objects. Intl. J. Robotics Research 28, 630–655 (2009)

    Article  Google Scholar 

  22. Chial, V.B., Greenish, S., Okamura, A.M.: On the Display of Haptic Recordings for Cutting Biological Tissues. In: Proc. Haptics 2002, pp. 80–87 (2000)

    Google Scholar 

  23. Dobashi, Y., Hasegawa, S., Kato, M., Sato, M., Yamamoto, T., Nishita, T.: A Fluid Resistance Map Method for Realtime Haptic Interaction with Fluids. In: Proc. VRST 2006, pp. 91–99 (2006)

    Google Scholar 

  24. OpenCV Reference Manual, v2.2 (December 2010)

    Google Scholar 

  25. Colgate, J.E.: Issues in the haptic display of tool use. In: Proc. Intelligent Robots and Systems 1995, vol. 3, pp. 140–145 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hirota, K., Tagawa, K. (2012). Acquisition of Elastically Deformable Object Model Based on Measurement. In: Isokoski, P., Springare, J. (eds) Haptics: Perception, Devices, Mobility, and Communication. EuroHaptics 2012. Lecture Notes in Computer Science, vol 7282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31401-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31401-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31400-1

  • Online ISBN: 978-3-642-31401-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics