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Abstract. New robots for teleoperation and autonomous manipula-
tion are increasingly being equipped with high-bandwidth accelerome-
ters for measuring the transient vibrational cues that occur during con-
tact with objects. Unfortunately, the robot’s own internal mechanisms
often generate significant high-frequency accelerations, which we term
ego-vibrations. This paper presents an approach to characterizing and
removing these signals from acceleration measurements. We adapt the
audio processing technique of spectral subtraction over short time win-
dows to remove the noise that is estimated to occur at the robot’s present
joint velocities. Implementation for the wrist roll and gripper joints on a
Willow Garage PR2 robot demonstrates that spectral subtraction signif-
icantly increases signal-to-noise ratio, which should improve vibrotactile
event detection in both teleoperation and autonomous robotics.

Key words: haptic feedback for teleoperation, vibrations, tactile accel-
erations, noise suppression

1 Introduction

Dynamic acceleration signals provide humans with discernible tactile cues up
to 1000 Hz [3], and these vibrations are known to play a significant role in
a wide range of manual tasks, including tool-mediated perception of surface
roughness [13] and dexterous object manipulation [12]. Given the recent prolif-
eration of tiny MEMS-based accelerometers and the importance of these signals
for human perception and motor control, one practical approach to improving
operator awareness in telemanipulation systems is to provide the operator with
haptic feedback of the dynamic acceleration signals experienced by the remote
robot, typically by recreating the signals via a voice coil actuator.

This feedback approach has been demonstrated via bench-top research de-
vices [14,20], and has shown promise for both industrial [7] and medical appli-
cations [25,15,18]. This approach has also been investigated for improving the
tactile sensitivity of hand-held (non-robotic) tools [26]. Additionally, researchers



2 Spectral Subtraction of Robot Motion Noise

Fig. 1. The Willow Garage PR2 is an
example of a modern robotic platform
that has high-bandwidth acceleration
sensors embedded in its grippers. Grip-
per joint and wrist roll joint motion are
indicated with green and red arrows,
respectively. Time series acceleration
plots show examples of a clean vibrotac-
tile contact event signal and robot ego-
vibrations; the two signals have similar o
magnitude and spectral content, reduc- 5o W"‘.ﬁ
ing signal to noise ratio during robot R
movement.

Vibrotactile Contact Event
(no robot motion)

Ego-vibrations
(due to wrist roll)

have developed methods for autonomous robotic manipulation systems to use
the perceptual cues provided by vibrotactile acceleration signals (e.g., [9,22]).

Unfortunately, measurement of tactile acceleration signals can easily be mask-
ed or degraded by vibrations that are generated by a robot’s own motion, as
illustrated in Fig. 1. These “ego-vibrations” often lie within the same frequency
range as the external contact signals that one wants to detect for presentation
to the human operator or for use in an autonomous robot’s controller. Thus
the noise-reduction performance of traditional filters (e.g., high-pass, low-pass,
notch) is severely limited.

Some previous research in this area has recognized that ego-vibrations mask
desired signals and degrade system performance. For example, surgeons using
our VerroTouch feedback system occasionally comment that feeling the motion
of the da Vinci surgical robot distracts from the vibration cues caused by con-
tact [18]. The primary means of addressing ego-vibrations has been through elec-
tromechanical system design. Some researchers have designed custom hardware
to mechanically isolate the acceleration sensors from robot motion vibrations [14,
9, 7]. Others have used robotic hardware that is specifically designed for smooth
motion, such as Sensable’s Phantom Omni haptic device [20,19]. Others have
used their accelerometer only in limited contexts, when they knew that robot
motion noise would be small [22].

To improve the performance of vibration feedback systems for teleopera-
tion and to enable measurement of useful high-frequency tactile accelerations
on robotic platforms that are not mechanically optimized, we propose a signal
processing approach that mirrors human neuropsychology. The human central
nervous system is believed to use the motor commands sent to the muscles to
predict the sensory consequences of movement. These predictions allow one to
distinguish self-produced sensations from those arising from external events [5].

Thus, we propose to use knowledge of robot motion to predict the contribu-
tion of ego-vibration noise to the measured acceleration signal, and to remove
this contribution through spectral subtraction, a method that was originally
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Fig.2: Block diagram of the spectral subtraction method adapted for ego-vibration
suppression in vibrotactile signals.

developed for noise suppression in speech processing [6]. The basic idea of spec-
tral subtraction is that noise in signals can be removed by transforming to the
frequency domain and subtracting out an estimate of the noise spectrum. Addi-
tionally, Ince et al. have successfully applied this technique to the similar problem
of audible robot motion noise in robot audition [10, 11].

The mathematics and signal processing pipeline of spectral subtraction are
detailed in Section 2. Section 3 describes our implementation of this approach
on a Willow Garage PR2 humanoid robot, which experiences significant ego-
vibrations from its wrist roll and gripper joints. We evaluate the performance of
this approach in Section 4, and we conclude with Section 5.

2 Spectral Subtraction

It is natural to compare vibrotactile acceleration signals to audio signals; the
primary way in which these signals differ is in bandwidth. While human skin
can perceive vibrotactile cues up to approximately 1000 Hz [3], audio signals are
detectable up to 20,000 Hz. Compared to the study of audio signals, the study
of vibrotactile acceleration signals is quite immature. Thus we are inspired to
look to the audio processing literature, as many of their methods can be directly
adapted to handling vibrotactile signals.

The problem of robot ego-vibrations seems most similar to the problem of
suppressing additive background noise from a single audio channel of speech. Re-
search into this problem is generally classified as speech enhancement or noise
reduction; many of the best methods in this area are reviewed in [23,4]. Among
these approaches, spectral subtraction seems particularly promising for dealing
with ego-vibrations because of its straightforward implementation and inexpen-
sive computational requirements that allow for implementation in real-time ap-
plications with minimal processing latency.

This section describes our proposed adaptation of spectral subtraction to
the problem of ego-vibration suppression in tactile acceleration measurements.
Fig. 2 provides a block-diagram illustration of the algorithm. The mathematical
notation used here is primarily adapted from [23].
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Block Processing. Mathematically, noisy observations from an accelerometer
can be modeled as
y[k] = x[k] + n[k], (1)
where z[k] is the vibrotactile event signal, n[k] is additive noise from ego-
vibrations, and k is the discrete time index. Following the methods of [16],
the multiple orthogonal axes of accelerometer output are combined into a single
channel by addition, a computationally simple approach that yields a good spec-
tral match and temporal match with the original signals without introducing any
time delay. A band-pass filter then removes both low-frequency cues pertaining
to robot motion and high-frequency signals that are not detectable to humans.
The one-dimensional filtered signal is then subjected to block processing [6]
as follows:

1. The incoming signal y[k] is buffered into small time buffers y;[k] of length L
that overlap by M samples.

2. Each buffered block y;[k] is multiplied by a window function w[k] to reduce
discontinuities at the end points during discrete Fourier transform (DFT).

3. Each windowed buffer is subjected to spectral subtraction as described in
the next subsection.

4. The resultant output signals &;[k] are recombined into the full Z[k] using the
overlap-add method [2].

Typical parameter choices for block processing are 50% buffer overlap (M =
L/2), and a normalized Hamming window function for w[k]. Buffer length choice
is a trade-off between frequency resolution and time delay; block processing
implementation introduces an algorithm delay of one buffer length.

Magnitude Subtraction. After the noisy input signal has been buffered and
windowed, each short segment y;[k| is transformed into the frequency domain
using the discrete Fourier transform (DFT),

vilk] ZE5 Yi(f) = Xu(f) + Ni(f). (2)

The operation of spectral subtraction can be described by the equation
1Xi(H)] = Vi) = IN:(f)], ®3)

where | X;(f)| and |N;(f)| are the estimated magnitude spectra of the restored
vibrotactile event signal and the noise spectrum respectively. Derivation of the
ego-vibration’s spectral magnitude estimate |N;(f)| will be discussed in the next
subsection. Given the random nature of N;(f), this operation will sometimes
result in negative values for a discrete frequency subband f; negative values are
consequently set to zero.

Using the phase of the original noisy signal @y, (f), which is optimal with
regard to minimum mean square error [8], the estimated vibrotactile signal X;(f)
can brought back into the time domain as Z;[k] via the inverse discrete Fourier
transform (IDFT),

X ()]’ IPET, k). (4)
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Noise Spectrum Magnitude Estimate. While traditional spectral sub-
traction research has involved developing methods to adaptively estimate the
spectrum of an unknown background noise in real-time, when dealing with ego-
vibrations we have the luxury of knowing the state of our noise source. A priori
observation of the vibrations that occur during unimpeded robot motion can
be used to model the expected ego-vibrations during subsequent actions. De-
pending on the hardware, ego-vibrations might be expected to vary with the
robot’s joint positions @, joint velocities e, and/or joint accelerations ©. Thus
the ego-vibration magnitude spectrum estimate |N;(f)| in Equation (3) could
be a function of all of the robot’s present joint states. However, the process of
gathering data that fully explores and models the noise spectra that occur in
this high-dimensional configuration space would require considerable time and
storage capacity. Thus, we seek to reduce the dimensionality of the problem.

Joint acceleration was reported to be unimportant for spectrum estimation
of audible joint noise with a Honda ASIMO [10]. Assuming a smooth robotic
motion controller, it is reasonable for us to assume that joint acceleration also
has little effect on ego-vibrations. For this initial investigation, we have also
chosen to neglect the possible influence of joint position. Given our short-time-
window implementation, we mark each recorded acceleration sample y;[k] using
the element-wise means of the buffered joint velocity vector o,.

Because we decided to focus on the effects of joint velocity, we designed our
estimate of the ego-vibration magnitude spectrum to be

|Ni(f)| = |N(f, 0,)| = un(f. ©;) + on(f,©,). (5)

Here, pun(f, ®;) and oy (f, ©;) are the mean and standard deviation of the mag-
nitude spectra recorded during a long test at joint velocity vector ©,. Other ap-
proaches to spectral subtraction sometimes use only the mean value iy (f, ©;).
However, empirical results show that some amount of over-subtraction tends
to yield better noise suppression in low signal-to-noise ratio (SNR) speech sig-
nals [23]. Adding in the standard deviation ox(f, ©;) allows the degree of over-
subtraction to be determined by the variance in a particular frequency sub-
band [23].

3 PR2 Implementation Details

We tested our full approach to ego-vibration suppression (Fig. 2) using a Willow
Garage PR2 humanoid robot.

Hardware and Algorithm Parameters. The PR2 was chosen for use in this
project because it includes high-bandwidth accelerometers in its sensor suite [1];
as marked in Fig. 1, a three-axis 10-bit digital accelerometer (Bosch BMA150)
is embedded within each gripper assembly. Unlike some custom research de-
vices, this robot does not have a wrist-mounted force/torque sensor or all-over
pressure-sensitive skin. Instead, the accelerometers are the system’s best sensors
for dynamic tactile measurements, as demonstrated in [22].
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For these initial algorithm-evaluation experiments, we focused on signals from
the accelerometer in the right hand. It is subjected to significant ego-vibrations
from the nearby wrist rotational joint (roll clockwise/counter-clockwise) and
gripper translational joint (close/open). Because the wrist and gripper joints
are heavily geared and located so close to the PR2’s accelerometer, we believe
they are the most challenging and beneficial joints to deal with for ego-vibration
suppression. Thus, we define our joint velocity vector as 6= [9 d], where 6 and
d are the wrist roll rotation and gripper translation velocities, respectively.

Experimental data was recorded from the three channels of the accelerometer
at a sampling rate of 3000 Hz and a measurement range of +80 m/s? per axis, the
maximum specifications of the accelerometer. The corresponding joint velocities,
6 and d, are derived from optical encoder readings and recorded at 1000 Hz.

As described in Section 2, the three acceleration channels were first summed
together and band-pass filtered. For the PR2, we employ a fourth-order Butter-
worth band-pass filter from 150 Hz to 750 Hz; though narrower than the range
of human vibrotactile perception, this filtering was chosen to be sure to remove
strong signal content observed at 1000 Hz, which likely results from a structural
resonance. The just-noticeable difference of human vibrotactile frequency dis-
crimination scales with frequency, resulting in the poorest discrimination at the
highest perceivable frequencies; pilot testing of our algorithms with various filter
bandwidths indicated that the best perceptual performance occurred when fil-
tering out the 1000 Hz resonance rather than trying to cancel it through spectral
subtraction.

Although we evaluated our spectral subtraction algorithm off line, the pro-
cessed accelerometer readings y[k] and the joint velocity vectors ©[k] are fed se-
quentially into the block process implementation in a manner that is consistent
with real-time processing. Block length was chosen to be 64 samples (L = 64)
with 50% overlap (M = 32). At a sampling rate of 3000 Hz, this block length
corresponds to an algorithm processing delay of about 21 ms. Studies on human
perception of vibrotactile textures [21] and force feedback [24] indicate that de-
lays less than 40 ms are imperceptible, so our processing should not adversely
affect the quality of vibrotactile feedback in teleoperated systems.

PR2 Ego-vibration Estimation. First, we gathered the data set necessary
to compute the velocity-dependent ego-vibration magnitude spectrum estimates
IN(f,®;)| defined in Equation (5). Joint velocities were obtained from the ROS
Diamondback pr2-mechanism_model class, which reports velocities using first-
order differentiation of encoder readings. The maximum speed for the wrist roll
and gripper joints are 3 rad/s and 0.04 m/s, respectively. All combinations of
wrist roll velocity and gripper velocity were sampled at intervals of 10% of the
joint’s maximum speed, ranging from -100% (wrist rolling clockwise and gripper
closing at maximum speed) to 100% (wrist rolling counter-clockwise and grip-
per opening at maximum speed). Note that these tests included 0% velocities,
when the wrist and/or gripper are stationary, to ensure measurement of back-
ground accelerometer noise. The data was gathered in semi-continuous 15-second
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Fig. 3: Plots of the estimated ego-vibration magnitude spectra caused by combinations
of gripper and wrist roll speeds. Speeds are defined as a percentage of the joint’s
maximum speed. The x-axes are frequency (Hz) and the y-axes are amplitude (m/s?).
The colored lines show small variations in noise at the four joint velocity direction
combinations noted in the legend. Note that the top-left plot shows the background
accelerometer noise that is present when the robot is stationary.

chunks; while the PR2’s wrist joint is capable of continuous rotation, the grip-
per velocity command had to be reversed when the gripper reached the limits
of its 86 mm translation workspace, so we concatenated multiple acceleration
recordings together for most wrist-gripper velocity combinations.

We calculate the magnitude spectrum for the many overlapping short time
windows of each recording using the same input buffering and windowing ap-
proach described in Section 2, These data points are then used to calculate the
mean py (f, ®;) and standard deviation oy (f, ®;) of the magnitude spectrum,
which are combined to find |N (f, @Z)| This procedure provides equal spacing
of ego-vibration magnitude spectrum estimates throughout the entire wrist roll
and gripper joint velocity space.

Fig. 3 shows the estimated ego-vibration magnitude spectra for a subset of
the sampled joint velocities, calculated from equation (5). The mean and the
standard deviation of the noise both increase as joint speeds increase. Visual
inspection of the recorded time series data and the noise residuals seems to
indicate that it is reasonable to assume that vibrations depend only on joint
velocities at lower speeds. However as speeds increase, we observed changes in the
vibration signal that appear to depend on joint position; we plan to investigate
this extension in future work.

Reducing Dimensionality. It is important to understand that the size of the
velocity configuration space increases exponentially with every new joint that is
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Percent Error Of Superposed Noise Estimates
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Fig. 4: Percent error between
the superposed and observed
estimates at different joint ve- 100 50 o 50 0
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included in the modeling process. To reduce the testing, calculation, and storage
burden of generating spectral magnitude ego-vibration models, we propose that
vibration spectra may be superposed (added) across joints. This assumption
mirrors the superposition of audio noise assumption made in [11].

Thus for the two-joint case presented in this paper, the noise spectrum is

IN(£.0,)] = [N(f. [0 d)]
= i ([0 0)) + v (£, [0 d)) — v (f, [0 0)) (6)
+\Jon(£.060.0)? + ox(£.[0 d))? + on (£ [0 0)).

This expression represents the noise spectrum at joint velocities 6 and d as the
sum of the noise spectra measured when each joint was moving alone at these
velocities, minus the noise spectrum measured when both joints were stationary
(since this background noise is presumably present in both of the added signals).

We examined the validity of this assumption by calculating the mean error
between the magnitude estimate calculated from equation (6) and the observed
magnitude estimate summed over the frequency subbands. Fig. 4 graphically
shows the percent error for all 441 joint velocity combinations. The additive
models have low error for wrist roll velocities up to about 50% of maximum, but
the assumption starts to break down at high wrist roll velocities, reaching errors
of 15%. The remainder of this paper employs the superposed noise assumption
to test its reasonableness.

4 Performance Experiments

This section presents the two experiments we conducted to evaluate the perfor-
mance of our spectral subtraction noise suppression algorithm during dynamic
joint motions. The wrist roll and gripper joints were given random velocity com-
mands that had been low-pass filtered to meet our smooth controller assumption.



Spectral Subtraction of Robot Motion Noise 9

Gripper and Wrist Roll Joint Velocities Gripper and Wrist Roll Joint Velocities
T T T T T T T T

T T
Gripper Wrist |

% of Max Speed
o

-201 -20F

Gripper Wrist

0 1 2 3 4 0 1 2 3 4

Noisy and Denoised Acceleration Signals with Solenoid Command
T T T T T T T

15

~

| L L

Acceleration (m/s?)
S o
& o
e —p——
4
9
—————
3

—— Original Denoised Solenoid

L L L 15 L L L L L
0 1 2 3 4 0 1 2 3 4

Magnitude Spectrogram of Noisy Signal Noisy and Denoised Acceleration Signals
T T T T

Frequency (Hz)
Acceleration (m/s?)

DA T I o TV . {
1 2 4

Magnitude Spectrogram of Denoised Signal Segmental SNR
T

ok i e

oF J
2
l ‘!‘. -rl\ a0 : ; ] i
. I e R
s

Fig. 5: Results from the solenoid tapper experiment (left) and from adding recorded
tap signals to recorded ego-vibration signals (right).
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First, a small solenoid (Ledex 174534-035) was used to consistently tap on the
PR2’s lower arm, near the wrist joint. This setup provides the robot with a con-
sistent vibrotactile event stimulus that simulates the signal it would experience
when making contact with its environment.

Results from a trial of this experiment are shown in Fig. 5 (Left). The solenoid
taps are visually apparent in the time domain signal and magnitude spectrogram
of both the noisy and denoised acceleration signals. However, the denoised signal
shows a significant reduction in the noise ceiling of the signals, from a mean signal
magnitude of 0.27 m/s? to 0.02 m/s?. Albeit, this improvement comes at some
expense to the magnitude of the tap signal, which features a smaller percentage
fall from an average peak magnitude of 3.41 m/s? to 1.27 m/s%. Using these

values, we estimate an improvement in peak signal-to-noise ratio (SNR) from
22 dB to 36 dB.

However, accurately quantifying signal-to-noise ratio improvements requires
ground truth knowledge of the desired signal. Unfortunately, the nature of the
ego-vibration problem makes it impossible to accurately determine ground truth.
For this reason, we generated a data set that replicates the previous experiment
using a denoised solenoid event signal that was pre-recorded while the robot was
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stationary. We then recorded ego-vibrations from random robot joint motions
and added this noise signal to the pre-recorded solenoid tap signals.

The results of processing one of these summed signals are shown in Fig. 5
(Right). In this case, the magnitude of the original taps is similar to the max-
imum noise magnitude. This test simulates the contact signals that the robot
experiences when making very light contact with its environment. Note that
using a simple noise threshold here would also destroy the tap signal.

Segmental SNRs were calculated for the noisy and denoised signal for 64 sam-
ple segments with 50% overlap. During contact events, the two signals show
similar SNRs. However, the denoised signal shows a ~20 dB improvement in
SNR when no contact event signal is present. Trials with larger joint velocities
showed similar results, but fast joint motion was prone to generating noise spikes
that may be falsely perceived by human operators and autonomous magnitude
thresholding as tactile event signals.

5 Conclusion

This paper developed a spectral subtraction approach to suppressing ego-vibra-
tion noise in robotic high-frequency acceleration signals; we used pre-recorded
data to estimate the magnitude spectrum of the noise during a range of robot
joint velocities and a block processing procedure to remove the estimated noise
spectrum from the measured signal. To our knowledge, this is the first work
to address the robot motion noise problem in tactile acceleration signals via
advanced signal processing rather than mechanical optimization.

This approach was implemented and tested using the gripper translational
and wrist roll rotation joints of a Willow Garage PR2. Our results demonstrate
that spectral subtraction can significantly improve signal-to-noise ratio (SNR)
in high-frequency vibrotactile acceleration signals. This increase in SNR should
lead to improved detection of vibrotactile events for both human operators re-
ceiving vibrotactile feedback and autonomous robots using a quantitative event-
detection criterion, such as signal magnitude or power. Anecdotally, we feel that
this algorithm improves the quality of the vibrotactile feedback.

From our experience with telerobotic systems that provide haptic feedback of
measured vibrotactile signals [20, 18], we believe that a low noise ceiling can be
especially important for usability. We have anecdotally observed that users tend
to choose vibrotactile amplification levels that limit the perceptibility of vibra-
tion signals during free motion. We attribute this trend to the human sensitivity
to haptic noise. As often stated in haptic device design, “free space should feel
free” [17]. With a reduced noise floor, users will be more willing to use higher
feedback gains, further improving the perceptibility of the signals they feel.

Secondarily, we found that an estimate of the ego-vibration magnitude spec-
trum that relied only on joint velocities could provide good noise suppression
performance, at least at lower joint velocities. A further simplifying step of su-
perposing (adding) noise estimate models across joints also yielded good per-
formance. At larger joint speeds, a higher dimensional model is needed to more
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fully capture the behavior of the ego-vibration noise. In future work, we will fur-
ther seek to improve the noise suppression capabilities of this method through
improved modeling of the ego-vibration noise. We will also seek to formally
quantify the effects of this approach through task performance experiments by
human subjects with and without spectral subtraction of robotic ego-vibrations.
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