Skip to main content

Parallel Approach to the Functional Decomposition of Logical Functions Using Developmental Genetic Programming

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7203))

Abstract

Functional decomposition is the main step in the FPGA-oriented logic synthesis, where a function is decomposed into a set of functions, each of which must be simple enough to be implementable in one logic cell. This paper presents a method of searching for the best decomposition strategy for logical functions specified by cubes. The strategy is represented by a decision tree, where each node corresponds to a single decomposition step. In that way the multistage decomposition of complex logical functions may be specified. The tree evolves using the parallel developmental genetic programming. The goal of the evolution is to find a decomposition strategy for which the cost of FPGA implementation of a given function is minimal. Experimental results show that our approach gives significantly better results than other existing methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

    MATH  Google Scholar 

  2. Keller, R.E., Banzhaf, W.: The evolution of genetic code in genetic programming. In: Proc. of the Genetic and Evolutionary Computation Conf., pp. 1077–1082 (1999)

    Google Scholar 

  3. Ashenhurst, R.L.: The Decomposition of Switching Functions. In: Proc. of International Symposium on Theory of Switching Functions, pp. 74–116 (1957)

    Google Scholar 

  4. Ashar, P., Devadas, S., Newton, A.R.: Sequential Logic Synthesis. Kluwer Academic Publisher, Norwell (1992)

    Book  Google Scholar 

  5. Scholl, C.: Functional Decomposition with Application to FPGA Synthesis. Kluwer Academic Publishers (2001)

    Google Scholar 

  6. Brzozowski, J., Luba, T.: Decomposition of Boolean Functions Specified by Cubes. Journal of Mult.-Valued Logic & Soft Computing 9, 377–417 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Nowicka, M., Luba, T., Rawski, M.: FPGA-Based Decomposition of Boolean Functions. Algorithms and Implementation. In: Proc. of the 6th International Conference on Advanced Computer Systems, Szczecin (1999)

    Google Scholar 

  8. Muthukumar, V., Bignall, R.J., Selvaraj, H.: An efficient variable partitioning approach for functional decomposition of circuits. Journal of Systems Architecture 53, 53–67 (2007)

    Article  Google Scholar 

  9. Rawski, M., Jóźwiak, L., Łuba, T.: Functional decomposition with an efficient input support selection for sub-functions based on information relationship measures. Journal of Systems Architecture 47/2, 137–155 (2001)

    Article  Google Scholar 

  10. Rawski, M.: Efficient Variable Partitioning Method for Functional Decomposition. Electronics and Telecommunications Quarterly 53(1), 63–81 (2007)

    Google Scholar 

  11. Morawiecki, P., Rawski, M., Selvaraj, H.: Input variable partitioning method for functional decomposition of functions specified by large truth tables. In: Proceedings of Int. Conf. on Comp. Intelligence and Multimedia Applications, pp. 164–168 (2007)

    Google Scholar 

  12. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  13. Koza, J.R.: Human-competitive results produced by genetic programming. In: Genetic Programming and Evolvable Machines, pp. 251–284 (2010)

    Google Scholar 

  14. Tomassini, M.: Parallel and distributed evolutionary algorithms: A review. In: Neittaanmki, P., Miettinen, K., Mkel, M., Periaux, J. (eds.) Evolutionary Algorithms in Engineering and Computer Science. J. Wiley and Sons, Chichester (1999)

    Google Scholar 

  15. Folino, G., Pizzuti, C., Spezzano, G.: A scalable cellular implementation of parallel genetic programming. IEEE Transactions on Evolutionary Computation 7(1), 37–53 (2003)

    Article  Google Scholar 

  16. Yang, S.: Logic synthesis and optimization benchmarks. version 3.0. Microelectronics Center of North Carolina, Tech. Rep. (1991)

    Google Scholar 

  17. http://rawski.zpt.tele.pw.edu.pl/pl/node/161

  18. http://www.eecs.berkeley.edu/~alanmi/abc

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deniziak, S., Wieczorek, K. (2012). Parallel Approach to the Functional Decomposition of Logical Functions Using Developmental Genetic Programming. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31464-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31464-3_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31463-6

  • Online ISBN: 978-3-642-31464-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics