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Abstract

Efficient programming of hybrid systems is usually done with the use
of new programming models. It creates a unique opportunity to increase
the performance of scientific applications and is also especially interesting
in the context of future exascale applications development where extreme
number of MPI processes tend to be a limitation. Future scientific codes
will make use of hierarchical parallel programming models with message
passing techniques used between nodes and optimized computational ker-
nels used within multicore, multithreaded or accelerator nodes. In this
article we consider the x86 and PowerXCell8i heterogeneous environment
introduced in the High Performance Computing (HPC) sites like Road-
runner [6] or Nautilus [5]. Programming techniques for this environment
are usually based on the IBM Data Communication and Synchronization
library (DaCS). We describe our effort to increase the hybrid efficiency
of the DaCS library and show how it affects the performance of scien-
tific computations based on FFT kernels. The results are very promising
especially for computational models that involve large three dimensional
Fourier transformations.

1 Introduction

Novel computer systems from desktops to world’s biggest supercomputers are
very often based on new architectures or hardware accelerators. Efficient com-
putations on such systems can be achieved with the use of new programming
models. The performance of scientific applications can be increased by the
functional decomposition of computations and offloading chosen computational
kernels on accelerators. However the final performance of those applications
depend on their feasibility to the architectures in use and on the performance of
the programming tools. Therefore developers have to examine the efficiency of
both applications and programming environments in order to produce the fastest
solutions for specific scientific problems. In this work we present a performance
benchmark of a novel heterogeneous programming model together with its spe-
cific scientific application - Fast Fourier Transform (FFT) computations. The
outcomes and measurements presented in this work are important not only for
FFT computations but for many other computational algorithms and scientific
disciplines. The work is accompanied with libraries and example codes.

In this paper we are looking at the heterogeneous programming techniques



for high performance systems based on the PowerXCell8i architecture. The Pow-
erXCell8i was released in 2008 as an enhanced Cell Broadband Engine processor
with improved double-precision floating point performance. It is a multi-core
chip composed of one Power Processor Unit (PPU) and eight Synergistic Pro-
cessing Units (SPU). The architecture itself was already extensively described
e.g. in [11], [14], [15] and [6]. The PowerXCell8i was designed to bridge the
gap between general purpose processors and specialized computer architectures
like GPUs. Applications can be compiled and executed in a standard Linux
environment on the PPU. Furthermore specific computational kernels can be
implemented and executed on the SPUs playing a role of hardware accelera-
tors. Most of the applications achieve poor performance on the PPU since it
is not designed for computations. The computations that are not optimized
for execution on the SPUs are very often 3 to 5 times slower when compared
with their performance on modern x86 compute cores. One of the techniques
used to overcome those issues is to use a heterogeneous environment. Therefore
HPC architectures like Roadrunner [6] or Nautilus [5] utilize the PowerXCell8i
chip as an accelerator for calculations running on x86 cores. Both systems are
composed of the IBM LS21 and IBM QS22 blades but they differ in a type of
interconnect. In the case of the Roadrunner system [6] the interconnect is based
on the PCle x8 and HyperTransport technology. In the case of the Nautilus
system [5] nodes are connected with the DDR Infiniband 4x network. Both
systems are important milestones in the development of future HPC systems.
Roadrunner is well known to be the world’s first TOP500 Linpack sustained
1.0 petaflops system (November 2008). On the other hand Nautilus has been
ranked on the 1’st place of the Green500 list twice (November 2008 and June
2009).

Most important programming technique available for such heterogeneous
architectures is the IBM Data Communication and Synchronization library
(DaCS) used in several scientific codes already developed for the Roadrunner
and Nautilus supercomputers ([16], [8], [12]). One of the main advantage of
DaCs is that it creates a very interesting hierarchical programming model to-
gether with the message passing techniques like the MPI library. This is very
important in the context of future exascale applications development where ex-
treme number of MPI processes tend to be a limitation.

We decided to take a closer look at DaCS performance on the Roadrunner
like systems. Especially we decided to measure the data transfer rate since it
is one of the fundamental factor for application optimization on the accelerator
based systems. We describe DaCS functionality and our benchmark results in
Chapter 2. The effort we have made to increase DaCS performance is extensively
covered in Chapter 3. Finally in Chapter 4 we discuss one of the potential usage
scenarios of our implementation, the FFT computations. We describe how to
use DaCS for offloading the FFTW library computations on the PowerXCell8i
processor.



2 Data Communication and Synchronization li-
brary

2.1 Overview

The DaCS [1] library was designed to support development of applications for
the heterogeneous systems based on the PowerXCell8i and x86 architectures. It
contains two main components: the application programming interface (API)
and the runtime environment. The DaCS API provides an architecturally neu-
tral layer for application developers. It serves as a resource and process manager
for applications that use different computing devices. With the use of specific
DaCS functions we can execute remote processes and initiate data transfers or
synchronization between them.

One of the main concepts of DaCS is a hierarchical topology which enables
application developers to choose between a variety of hybrid configurations.
First of all it can be used for programming applications for the Cell processor
by exploiting its specific hybrid design. In such a model developers use DaCS
to create and execute processes on the PPU and SPUs and to initiate data
transfers or synchronization between those processes. However developers can
choose between few other programming concepts for the Cell processor and the
DaCS model is for sure not the most productive and efficient one. The DaCS
library is much more interesting as a tool for creating hybrid applications that
use two different processor architectures. In such a model DaCS can support
the execution, data transfers, synchronization and error handling of processes
on three different architectural levels (i.e. the x86, PPU and SPU levels). Addi-
tionally programmer can decide to use DaCS with any other Cell programming
language on the PPU level. The PPU process can execute the SPU kernels
provided by optimized libraries or created originally by developers with the use
of programming tools like the Libspe2 [13], Cell SuperScalar [9] or OpenMP [7].

The DaCS library has a much wider impact on high performance computing
since it was designed to support highly parallel applications where the MPT li-
brary is used between heterogeneous nodes and the DaCS library is used within
those nodes. Such programming model was used for applications development
on the Roadrunner and Nautilus systems ([16], [8], [12]).

2.2 Performance benchmarking

A common feature of heterogeneous systems is the bottleneck introduced by the
data transfer crossing the accelerator boundary. The computational granularity
of the optimized compute kernels must be carefully measured and compared
with the data transfers performance in order to make a decision on offloading
specific calculations on the accelerator.

The performance measurements presented within this work were prepared
on two systems: the Roadrunner-like system located in IBM Laboratories in
Rochester and the Nautilus system located at ICM in Warsaw. The best data
transfers rate was achieved on the Roadrunner-like system with the use of the
PCI x8 interconnect. The measurements on the Nautilus system were performed
with the use of the Gigabit Ethernet and Infiniband interconnect. Unfortunately
the DaCS library does not support RDMA over Infiniband mechanism which
results in a very poor data transfer’s rate. In this work we will mainly concen-



trate on the results achieved on the Roadrunner-like system.

We have prepared a performance benchmark for the DaCS library and eval-
uated it on available heterogeneous systems. It is a simple ping-pong program
similar to the one used for benchmarking of MPI point-to-point communication.
The sending host process sends a message of a given data size to the accelera-
tor process and waits for a reply. The average time of such communication is
measured for different message sizes. The data transfers are initiated with the
use of dacs_put and dacs_get functions.

Developing applications on the heterogeneous systems based on the x86 and
PowerXCell8i architectures introduces an additional byte-swapping step related
to different endianness of the host and accelerator nodes. The DaCS library ad-
dresses this issue by providing a byte swapping mechanism that can be switched
on and off by setting corresponding parameters of the DaCS data transfers func-
tions.

The data transfers implemented in our benchmark program were used for
transferring of the double precision floating point numbers and were executed
with byte swapping mechanism turned on and off for comparison. In this way
the influence of the DaCS byte swapping step on the overall performance of
the data transfers was measured. We will refer to those two different setups by
using two shortcuts for simplicity: BS and NBS will stand for byte swapping
and no byte swapping version respectively.

The performance results obtained on the Gigabit Ethernet for medium and
large data transfers (between 2'8 and 230 bytes) were reaching 70 MB/s for
NBS version. The average difference between BS and NBS versions for those
data transfers is around 9 MB/s. This difference is of minor importance for
computations. The performance results obtained on the Infiniband network
were reaching the level of 100 MB/s. This weak performance is related to the
lack of support for the Infiniband over RDMA transfers in the DaCS library.
Much more interesting results were those obtained on the Roadrunner-like sys-
tem where data transfers are handled by dedicated PCI based interconnect.
Although the maximum performance for the NBS version reached more than
1090 MB/s, the BS version was much slower. The difference for large data
transfers exceeds 800 MB/s. The results of the benchmark on PCI interconnect
are depicted on Figure 2.

3 Optimized byte swapping

The benchmark results described in the previous chapter present an undesirable
dependence of the computational performance of DaCS applications on the per-
formance of byte swapping step. The byte swapping mechanism implemented
in DaCS seems to be very unoptimal. Unfortunately almost every application
implemented on the described heterogeneous system have to make use of it.
Byte swapping is a very simple operation and can be implemented with the
use of permutation of bytes which transforms the bit representation of a given
number from one endianness format to the other. Our implementation on the
PowerXCell8i processor is based on two very important observations. First of
all for large data sizes byte swapping can be easily parallelized in a data par-
allel mode. Secondly byte swapping can be performed with the use of SIMD
vector operations. For large data sizes we decided to make use of the available



Table 1: Time measurement of byte swapping optimized kernels.
920 930

Kernel version | 2'4 bytes bytes ‘ bytes
1 threaded PPU 9 usec 1672 usec | 1677745 usec
4 SPU threads 11 usec 1520 usec 99159 usec

AMD Opteron 29 usec 1696 usec | 1716653 usec

vector SPUs. For smaller data sizes we propose a SIMD-ized optimal imple-
mentation on PPU. The final PowerXCell8i byte swapping library (PXCBS) is
a mix of both described implementations based on their performance measured
for different data sizes.

3.1 Key optimization steps

Here we describe the consecutive optimization steps of byte swapping for the
PowerXCell8i architecture.

SPU implementation

For large data sizes we can parallelize byte swapping simply by dividing the
data into blocks. For double precision floating point numbers we choose a block
of size 1024 since the maximal transfer size for the DMA operations is 16kB.
We use a double buffering scheme to overlap computations and communication.
Moreover we exploit the SIMD operations by using the spu_shuffle instruc-
tion. We’ve measured the performance achieved with the use of 1,2,4,8 and 16
concurrent SPU threads. Although the final implementation presents very good
performance for large data sizes it is not optimal for smaller sizes due to the
overhead introduced by creation and maintaining parallel SPU threads during
execution.

PPU implementation

For smaller data sizes we decided to implement byte swapping on the PPU. The
main optimization technique used here is SIMD-ization. Here we use vec_perm
Altivec operation instead of spu_shuffle. Performance results are summarized
in Table 1. Since the PPU is a two-way multithreaded core we decided to
create a dual threaded version of byte swapping with the use of POSIX threads.
We’ve measured the performance achieved with the use of 1 and 2 concurrent
PPU threads.

Performance measurements

The final version of optimized byte swapping is a mix of developed kernels used
interchangeably dependent on the data size. The decision which kernel should
be executed is statically implemented in the code based on two comparisons.
First of all we compare the performance of those kernels on small, medium and
large data sizes (see Table 1). In this comparison we measure only the time
needed to perform single byte swapping step.



We have also performed measurements of the full DaCS data transfer process
that includes data movement and byte swapping. This was done with the use
of the previously described DaCS ping-pong test. The results are presented in
Figure 1 for varying data sizes and show that each of the implemented kernels
should be considered for usage in the final solution.
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Figure 1: Measurements of data transfers performance for different version of
optimized byte swapping (SPU and PPU kernels). Data size in bytes is depicted
on the z-axis. Performance measured in GB/s is depicted on the y-axis.

3.2 Result and usage details

Based on the results presented in Table 1 and Figure 1 we have prepared a final
implementation which make use of the optimized kernels in a following way:

the single threaded PPU version is used for sizes smaller than 2!° bytes,

the dual threaded PPU version is used for sizes between 2'? and 22° bytes,

220 222

and

the single SPU version is used for sizes between bytes,

the two SPUs version is used for sizes between 222 and 224 bytes,

the four SPUs version is used for sizes bigger than 224 bytes.

The overall performance of our implementation is presented in Figure 2.

Note that the shape of presented curve is similar to the original BS version
for small and medium sizes (growth, local minimas and maximas). However the
performance for large sizes achieves a stable level of ~980 MB/s.
The PowerXCell8i optimized byte swapping (PXCBS) is available for download
and licensed on the basis of GPL. It is a lightweight library that enables byte
swapping for 32- and 64-bit data. The library functions are accessible from
PowerXCell8i accelerator code. Basic usage is simple and straightforward. In
order to transfer a double precision floating point table T" of size N programmer
needs to perform the DaCS data transfers with byte swapping turned off and
call the bswap64_pxc(N,T) function. The program needs to be linked with
provided PXCBS library.
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Figure 2: DaCS data transfers performance with optimized byte swapping li-
brary compared to previous versions (ping-pong benchmark). Data size in bytes
is depicted on the x-axis. Performance measured in GB/s is depicted on the
y-axis.

4 Usage scenario: FFTW library

The usage scenario presented in this chapter addresses applications that involve
FFT computations. One of the most popular tools used for Fourier trans-
form computations in scientific codes is the FFTW library [10]. The FFTW
library was ported and optimized for execution on the PowerXCell8i architec-
ture by IBM Austin Research Laboratories [2]. The performance of the opti-
mized FFTW library on the PowerXCell8i architecture was reported for many
different benchmark settings in [3] and [4]. Applications that use FFTW can
be compiled and executed on the PowerXCell8i architecture. There are some
important caveats that need to be taken into account. First of all the data must
be stored in contiguous arrays aligned at 16-byte boundary. Secondly as noted
by the developers the FFTW_ESTIMATE mode may produce unoptimal plans and
the user is encouraged to use FFTW_MEASURE instead. However the latter is much
more time consuming on the PowerXCell8i processor and for many applications
FFTW_ESTIMATE is still a better choice. All performance measurements presented
in this article were obtained with the use of FFTW_ESTIMATE mode.

We present the results of performance analysis of the FFTW library on het-
erogeneous systems based on the PowerXCell8i architecture. The benchmark
problem was designed to evaluate the possible advantages of using such het-
erogenous approach. We compare the reference x86 performance (AMD Opteron
2216, 2.4 GHz) with corresponding hybrid implementation. Time measurements
include the data transfers, byte swapping steps and FF'T computations.

4.1 Computational model

We have developed a set of simple heterogeneous programs that serve as a
benchmark suite for the FFTW library. The main purpose was to show how



the PowerXCell8i optimized library could be used to accelerate scientific appli-
cations on heterogeneous architectures. In a very first step of the program the
decision on type, size and direction of the transform is made within application
running on AMD Opteron core. These informations are then sent to the acceler-
ator process. In the next step accelerator process allocates tables for transform
and prepares the FFT plan with the use of the FFTW library interface. At the
same time transformation datas are being prepared on the host process and are
sent to the accelerator process when ready. The FFT computations on the accel-
erator process are preceded and followed by the byte swapping steps. A reverse
data transfer is carried out and the FFT plan created for computations is de-
stroyed. The performance comparison presented here is made between reference
x86 program and two heterogeneous programs: the one that uses the PXCBS
library and the one that uses the DaCS built-in byte swapping mechanism.

4.2 Performance measurements

The performance measurements for 1D, 2D and 3D FFT transforms are pre-
sented in Table 2. All performed FFTs are double-precision complex forward
transforms. In the case of heterogeneous programs we present the communica-
tion time and walltime measured during execution. The heterogeneous programs
based on the DaCS library built-in byte swapping mechanism do not achieve
a significantly better performance than their x86 equivalents. However the use
of optimized byte swapping mechanism gives much better overall performance.
The best speedup measured was 4.3x, 4.8x and 7.4x for 1D, 2D and 3D cases
respectively.

Table 2: Performance comparison of FFT transforms on heterogeneous archi-
tecture.

DaCS PCI DaCS PCI + PXCBS
1D FFT size x86 Comm. | ‘Walltime | Speedup Comm. | ‘Walltime | Speedup
131072 0.025s 0.016s 0.018s 1.38x 0.009s 0.011s 2.27x
262144 0.076s 0.032s 0.035s 2.17x 0.014s 0.018s 4.22x
524288 0.102s 0.064s 0.067s 1.52x 0.024s 0.030s 3.4x
1048576 0.210s 0.127s 0.141s 1.48x 0.043s 0.057s 3.68x
2097152 0.446s 0.254s 0.288s 1.54x 0.079s 0.113s 3.94x
4194304 0.924s 0.503s 0.704s 1.31x 0.146s 0.347s 2.66x
8388608 1.838s 1.007s 1.153s 1.59x 0.282s 0.425s 4.32x

DaCS PCI DaCS PCI + PXCBS
2D FFT size x86 Comm. ‘Walltime Speedup Comm. | ‘Walltime | Speedup
256x256 0.009s 0.009s 0.009s 1.0x 0.006s 0.006s 1.5x
512x512 0.073s 0.033s 0.047s 1.55% 0.015s 0.029s 2.51x
1024x1024 0.345s 0.128s 0.169s 2.04x 0.044s 0.086s 4.01x
2048x2048 1.674s 0.512s 0.701s 2.38x 0.156s 0.346s 4.83x

DaCS PCI DaCS PCI + PXCBS
3D FFT size x86 Comm. ‘Walltime Speedup Comm. | ‘Walltime | Speedup
64x64x46 0.021s 0.033s 0.036s 0.58x 0.016s 0.018s 1.16x
128x128x28 0.583s 0.261s 0.279s 2.08x 0.088s 0.105s 5.55x
256x256x256 6.062s 2.083s 2.246s 2.69x 0.643s 0.812s 7.46x




5 Summary

In this work we have presented the optimized byte swapping mechanism that
replaces its unoptimal equivalent in the DaCS library and can be used for im-
plementation of heterogeneous applications that involve movement of large data
between host and accelerator. The performance rate of our solution measured
with the use of DaCS ping-pong test is up to 3.7x more efficient in terms of
MB/s. This result was achieved by exploiting parallel and SIMD processing
features of the PowerXCell8i chip. The PXCBS library can be used together
with the IBM DaCS library to support heterogeneous computations. Usually it
significantly increases the overall performance and in our opinion it should be
always considered as a tool for byte swapping on PowerXCell8i processor.

We have also described how the proposed solution can be directly and ef-

ficiently used for accelerated FFT computations based on the FFTW library.
One of the key results here is the one reported for 3D Fast Fourier transforms.
For large transform sizes like 256x256x256 we’ve achieved approximately 7.4x
speedup over reference x86 implementation. The same hybrid FFT computa-
tions based on the DaCS library built-in byte swapping mechanism achieved
only 2.6x speedup.
The presented FFT performance result based on optimized byte swapping mech-
anism can have a significant impact on the performance of many algorithms that
involve Fourier transforms: convolution and correlation computations, spectral
windowing, power spectra computations, periodicity searching algorithms, lin-
ear prediction, wavelet transforms and many more.

All the results presented in this work can be easily reproduced with the use
of freely available tools and benchmarks available at: http://www.icm.edu.
pl/"sheed/dacs_performance.
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