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Abstract

Backdoors of answer-set programs are sets of atoms that represent
“clever reasoning shortcuts” through the search space. Assignments to
backdoor atoms reduce the given program to several programs that be-
long to a tractable target class. Previous research has considered target
classes based on notions of acyclicity where various types of cycles (good
and bad cycles) are excluded from graph representations of programs. We
generalize the target classes by taking the parity of the number of neg-
ative edges on bad cycles into account and consider backdoors for such
classes. We establish new hardness results and non-uniform polynomial-
time tractability relative to directed or undirected cycles.

1 Introduction

Answer-set programming (ASP) is a popular framework to describe concisely
search and combinatorial problems [14, 16]. It has been successfully applied in
crypto-analysis, code optimization, the semantic web, and several other fields [18].
Problems are encoded by rules and constraints into disjunctive logic programs
whose solutions are answer-sets (stable models). The complexity of finding an
answer-set for a disjunctive logic program is ΣP

2 -complete [4]. However this
hardness result does not exclude quick solutions for large instances if we can
exploit structural properties that might be present in real-world instances.

Recently, Fichte and Szeider [5] have established a new approach to ASP
based on the idea of backdoors, a concept that originates from the area of
satisfiability [20]. Backdoors exploit the structure of instances by identifying
sets of atoms that are important for reasoning. A backdoor of a disjunctive
logic program is a set of variables such that any instantiation of the variables
yields a simplified logic program that lies in a class of programs where the
decision problem we are interested in is tractable. By means of a backdoor of
size k for a disjunctive logic program we can solve the program by solving all the
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2k tractable programs that correspond to the truth assignments of the atoms in
the backdoor. For each answer set of each of the 2k tractable programs we need
to check whether it gives rise to an answer set of the given program. In order
to do this efficiently we consider tractable programs that have a small number
of answer sets (e.g., stratified programs [9]).

We consider target classes based on various notions of acyclicity on the
directed/undirected dependency graph of the disjunctive logic program. A cycle
is bad if it contains an edge that represents an atom from a negative body of a
rule. Since larger target classes facilitate smaller backdoors, we are interested
in large target classes that allow small backdoors and efficient algorithms for
finding the backdoors.

Contribution

In this paper, we extend the backdoor approach of [5] using ideas from Zhao [23].
We enlarge the target classes by taking the parity of the number of negative edges
or vertices on bad cycles into account and consider backdoors with respect to
such classes. This allows us to consider larger classes that also contain non-
stratified programs. Our main results are as follows:

1. For target classes based on directed bad even cycles, the detection of
backdoors of bounded size is intractable (Theorem 1).

2. For target classes based on undirected bad even cycles, the detection of
backdoors is polynomial-time tractable (Theorem 3).

The result (2) is a non-uniform polynomial-time result since the order of the
polynomial depends on the backdoor size. An algorithm is uniform polynomial-
time tractable if it runs in timeO(f(k)·nc) where f is an arbitrary function and c
is a constant independent from k. Uniform polynomial-time tractable problems
are also known as fixed-parameter tractable problems [3]. We provide strong
theoretical evidence that result (2) cannot be extended to uniform polynomial-
time tractability. Further, we establish that result (2) generalizes a result of Lin
and Zhao [13].

2 Formal Background

We consider a universe U of propositional atoms. A literal is an atom a ∈ U or
its negation ¬a. A disjunctive logic program (or simply a program) P is a set of
rules of the following form

x1 ∨ . . . ∨ xl ← y1, . . . , yn,¬z1, . . . ,¬zm. (1)

where x1, . . . , xl, y1, . . . , yn, z1, . . . , zm are atoms and l, n,m are non-negative
integers. Let r be a rule. We write {x1, . . . , xl} = H(r) (the head of r)
and {y1, . . . , yn, z1, . . . , zm} = B(r) (the body of r). We abbreviate the posi-
tive literals of the body by B+(r) = {y1, . . . , yn} and the negative literals by
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B−(r) = {z1, . . . , zm}. We denote the sets of atoms occurring in a rule r or
in a program P by at(r) = H(r) ∪ B(r) and at(P ) =

⋃

r∈P at(r), respectively.
A rule r is normal if |H(r)| = 1. A rule is Horn if normal and |B−(r)| = 0.
We say that a program has a certain property if all its rules have the property.
Horn refers to the class of all Horn programs.

A setM of atoms satisfies a rule r if (H(r) ∪B−(r)) ∩M 6= ∅ or B+(r)\M 6=
∅. M is a model of P if it satisfies all rules of P . The Gelfond-Lifschitz (GL)
reduct of a program P under a set M of atoms is the program PM obtained
from P by first removing all rules r with B−(r) ∩M 6= ∅ and second removing
all ¬z where z ∈ B−(r) from the remaining rules r [10]. M is an answer-set (or
stable set) of a program P if M is a minimal model of PM . We denote by AS(P )
the set of all answer-sets of P . The main computational problems in ASP are:

• Consistency: given a program P , does P have an answer-set?

• Credulous/Skeptical Reasoning: given a program P and an atom
a ∈ at(P ), is a contained in some/all answer-set(s) of P?

• AS Counting: how many answer-sets does P have?

• AS Enumeration: list all answer-sets of P .

A truth assignment is a mapping τ : X → {0, 1} defined for a set X ⊆ U of
atoms. For x ∈ X we put τ(¬x) = 1− τ(x). By ta(X) we denote the set of all
truth assignments τ : X → {0, 1}. Let τ ∈ ta(X) and P be a program.

2.1 Strong Backdoors

Backdoors are small sets of atoms which can be used to simplify the consid-
ered computational problems in ASP. They have originally been introduced by
Williams, Gomes, and Selman [20, 21] as a concept to the analysis of decision
heuristics in propositional satisfiability [6]. Fichte and Szeider [5] have recently
adapted backdoors to the field of ASP. First, we define a reduct of a program
with respect to a given set of atoms. Subsequently, we give the notion of strong
backdoors. In the following we refer to C as the target class of the backdoor.

Definition 1. Let P be a program, X a set of atoms, and τ ∈ ta(X). The
truth assignment reduct of P under τ is the logic program Pτ obtained by

1. removing all rules r with H(r) ∩ τ−1(1) 6= ∅ or H(r) ⊆ X;

2. removing all rules r with B+(r) ∩ τ−1(0) 6= ∅;

3. removing all rules r with B−(r) ∩ τ−1(1) 6= ∅;

4. removing from the heads and bodies of the remaining rules all literals v,¬v
with v ∈ X.
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Find C-backdoor
X ⊆ at(P )

P

?

Apply
τi : X → {0, 1}

Pτ1 ∈ C

Pτ2 ∈ C

· · ·

Pτ|ta(X)|
∈ C

τ1
τ2

. . .

τ|ta(X)|

O(|x| · |ta(X)|)

Determine answer
sets of candidates

AS(Pτ1)

AS(Pτ2)

· · ·

AS(Pτ|ta(X)|
)

O(|x|c · |ta(X)|)

Check
candidates

AS(P,X)

∪τ−1
1 (1)

. . .

. . .

∪τ−1
|ta(X)|(1)

O(
∑|ta(X)|

i=1 AS(Pτi))

Solutions

AS(P )

Figure 1: Exploit pattern of ASP backdoors if the target class C is enumerable.

Definition 2. A set X of atoms is a strong C-backdoor of a program P if
Pτ ∈ C for all truth assignments τ ∈ ta(X). We define the problem of finding
strong backdoors as follows: k-Strong C-Backdoor Detection: given a
program P , find a strong C-backdoor X of P of size at most k, or report that
such X does not exist.

Example 1. Consider the program P = {b← a; d← a; b← ¬c; a← d,¬c; a∨
c ← d,¬b; d}. The set X = {b, c} is a strong Horn-backdoor since the truth
assignment reducts Pb=0,c=0 = P00 = {← a; d ← a; a ← d; d}, P01 = {←
a; d← a; d}, P10 = {d← a; a← d; d}, and P11 = {d← a; d} are in the target
class Horn.

Definition 3. Let P be a program and X a set of atoms. We define

AS(P,X) = {M ∪ τ−1(1) : τ ∈ ta(X ∩ at(P )),M ∈ AS(Pτ ) } .

Lemma 1 ([5]). AS(P ) ⊆ AS(P,X) holds for every program P and every set
X of atoms.

Figure 1 illustrates how we can exploit backdoors to find answer sets of a
program. Once we have found a strong C-backdoor X , we can simplify the
program P to programs which belong to the target class C. Then we consider
all |ta(X)| truth assignments to the atoms in the backdoor X . We compute the
answer sets AS(Pτ ) for all τ ∈ ta(X). Finally, we obtain the answer set AS(P )
by checking for each M ∈ AS(Pτ ) whether it gives rise to an answer-set of P .

Example 2. We consider the program of Example 1. The answer-sets of Pτ

are AS(P00) = {{a, d}}, AS(P01) = {{d}}, AS(P10) = {{a, d}}, and AS(P11) =
{{d}}. Thus AS(P,X) = {{a, d}, {c, d}, {a, b, d}, {b, c, d}}, and since {c, d} and
{a, b, d} are answer-sets of P , we obtain AS(P ) = {{a, b, d}, {c, d}}.

Definition 4. A class C of programs is enumerable if for each P ∈ C we can
compute AS(P ) in polynomial time.
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2.2 Deletion Backdoors

For a program P and a set X of atoms we define P −X as the program obtained
from P by deleting all atoms contained in X from the heads and bodies of all the
rules of P and their negations. The definition gives rise to deletion backdoors
and the problem of finding deletion backdoors, which is in some cases easier to
solve than the problem of finding strong backdoors.

Definition 5 (Deletion C-backdoor). Let C be a class of programs. A set X of
atoms is a deletion C-backdoor of a program P if P − X ∈ C. We define the
problem k-Deletion C-Backdoor Detection as follows: given a program P ,
find a deletion C-backdoor X of P of size at most k, or report that such X does
not exist.

2.3 Target Classes

As explained above, we need to consider target classes of programs that only
have a small number of answer sets. There are two causes for a program to
have a large number of answer sets: (i) disjunctions in the heads of rules, and
(ii) certain cyclic dependencies between rules. Disallowing both causes yields so-
called stratified programs [9]. In the following we require normality and consider
various types of acyclicity to describe target classes. In order to define acyclicity
we associate with each normal program P its directed dependency graph DP [1],
and its undirected dependency graph UP [11]. DP has as vertices the atoms of P
and a directed edge (x, y) between any two atoms x, y for which there is a rule
r ∈ P with x ∈ H(r) and y ∈ B(r); if there is a rule r ∈ P with x ∈ H(r) and y ∈
B−(r), then the edge (x, y) is called a negative edge. UP is obtained from Dp by
replacing each negative edge e = (x, y) with two undirected edges {x, ve}, {ve, y}
where ve is a new negative vertex, and by replacing each remaining directed edge
(u, v) with an undirected edge {u, v}. By an (un)directed cycle of P we mean
an (un)directed cycle in DP (UP ). An (un)directed cycle is bad if it contains a
negative edge (a negative vertex), otherwise it is good.

In recent research, Fichte and Szeider [5] have considered target classes that
consist of normal programs without directed bad cycles (no-DBC), without
undirected bad cycles (no-BC), without directed cycles (no-DC), and without
undirected cycles (no-C). no-DBC is exactly the class that contains all strat-
ified programs [1]. Fichte and Szeider have examined the problems k-Strong
C-Backdoor Detection and k-Deletion C-Backdoor Detection on the
target classes C ∈ {no-C,no-BC,no-DC,no-DBC}.

Example 3. The set X = {a, b} is a deletion no-DBEC-backdoor of the pro-
gram P of Example 1, since the simplification P −X = {d; ← ¬c; ← d,¬c} is
in the target class no-DBEC. We observe easily that there exists no deletion
no-DBEC-backdoor of size 1.
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3 Parity Cycles

In this section, we generalize the acyclicity based target classes by taking the
parity of the number of negative edges (vertices) into account and consider back-
doors for such classes. We say that an (un)directed cycle in a given program P
is even if the cycle has an even number of negative edges (vertices). The defini-
tion gives rise to the new target classes of all normal programs without directed
bad even cycles (no-DBEC), without undirected bad even cycles (no-BEC),
without directed even cycles (no-DEC), and without even cycles (no-EC).

Example 4. For instance in the program P of Example 1 the sequence (a, b, c, a)
is a directed bad even cycle, (a, b, v(b,c), c, v(c,a), a) is an undirected bad even cycle,
(a, d, a) is a directed even cycle, and (a, b, v(b,c), c, v(c,a), a) is an undirected even
cycle (see Figure 2). The set X = {c} is a strong no-DBEC-backdoor since the
truth assignment reducts Pc=0 = P0 = {b ← a; d ← a; b; a ← d; a ← d,¬b; d}
and P1 = {b ← a; d ← a; d} are in the target class no-DBEC. The answer-
sets of Pτ are AS(P0) = {{a, b, d}} and AS(P1) = {{d}}. Thus AS(P,X) =
{{a, b, d}, {c, d}}, and since {a, b, d} and {c, d} are answer-sets of P , we obtain
AS(P ) = {{a, b, d}, {c, d}}.

a b

cd

¬ ¬

¬

¬

a b

v(c,a) v(b,c) v(c,b)

d c

vb,a

Figure 2: Directed dependency graph DP (left) and undirected dependency
graph UP (right) of the program P of Example 1.

3.1 Computing Answer-Sets

First, we discuss the connection between the problem of finding bad even cy-
cles in signed graphs and even cycles in graphs. A signed (directed) graph is
a graph whose edges are either positive (unlabeled) or negative. We construct
the unlabeled directed graph G′ of a signed directed graph G = (V,E) as follows:
we replace in G each positive edge e = (u, v) ∈ E by two edges (u, ve), (ve, v)
where ve is a new vertex. Then we remove the labels from the negative edges.
Analogously, we construct the unlabeled undirected graph where we ignore the di-
rection of the edges. The following connection was already observed by Aracena,
Gajardo, and Montalva [15].

Lemma 2 ([15]). A signed (un)directed graph G has an even cycle if and only
if its unlabeled (un)directed graph G′ has a cycle of even length.
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Proof. Let G = (V,E) be the signed directed graph and G′ = (V ′, E′) its
unlabeled directed graph. Since every positive edge e ∈ E corresponds to two
edges e1, e2 ∈ E′ and every negative edge e ∈ E corresponds to one edge e ∈ E′,
a cycle in G with an even number of negative edges gives a cycle of even length in
G′. Conversely, let G′ = (V ′, E′) be an unlabeled directed graph that contains
a cycle of even length. Then G contains an even cycle since every two edges
e1, e2 ∈ E′ correspond either to two negative edges or no negative edge. The
proof works analogously for undirected graphs.

The well-founded reduct of a program P under an interpretation τ is the logic
program PWF

τ we obtain by removing all rules r ∈ P where some at(r) ∈ τ−1(0),
and removing from all rules r ∈ P all literals x ∈ at(r) where x ∈ τ−1(1). We
obtain the program P+ (P−) by removing all rules from P where B+(r) 6= ∅
(B−(r) 6= ∅ respectively). The well-founded model WFM(P ) of a program P is
the least fixed point of the sequence of interpretations where τ0 := ∅, τ−1

k+1(1)

consists of the least model of P+(PWF
τ ) and τ−1

k+1(0) consists of the atoms of

P+(PWF
τ ) that are not in the least model.

Lemma 3. The target classes no-DBEC,no-BEC,no-DEC,no-EC are enu-
merable.

Proof. Zhao [23] has shown that a program without a bad even cycle has either
no answer-set or the well-founded model is its answer-set. Since in the definition
of the well-founded model the sequence of τ0, τ1, . . . is monotone for a normal
program, there is a least fixed point and it can be computed in polynomial
time [7, 8]. Thus the answer sets can be computed in polynomial time. Let P
be a program and DP (UP ) its (un)directed dependency graph. Since every bad
even cycle in DP is also a bad even cycle in UP , this holds for the undirected
case. Considering the fact that every bad even cycle in DP is also an even cycle
in DP , the lemma sustains for the target class no-DEC. Since every bad even
cycle in DP is also an even cycle UP , it prevails for the remaining target class
no-EC.

Proposition 1. The problems Consistency, Credulous and Skeptical
Reasoning, AS Counting and AS Enumeration are all polynomial-time
solvable for programs with strong C-backdoor of bounded size, C ∈ {no-DBEC,
no-BEC,no-DEC,no-EC}, assuming that the backdoor is given as an input.

Proof. Let X be the given backdoor. By Lemma 3 each target class C is enu-
merable. Since we have |AS(P,X)| ≤ 2|X|, we can solve each listed problem by
making at most 2|X| polynomial checks.

If the problem of determining backdoors is also polynomial-time solvable
with respect to the fixed size of a smallest strong C-backdoor, then the ASP
problems are polynomial-time solvable.
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Lemma 4. For all target classes C ∈ {no-DBEC,no-BEC,no-DEC,no-EC}
every deletion C-backdoor is also a strong C-backdoor.

Proof. We show the statement by proving that Pτ ⊆ P −X for every τ ∈ ta(X)
and for every program P ∈ C. Let P be a program and X a set of atoms of
P . We choose arbitrarily a truth assignment τ ∈ ta(X). For a rule r ∈ P if
H(r) ∩ τ−1(1) 6= ∅ or H(r) ⊆ X or B+(r) ∩ τ−1(0) 6= ∅ or B−(r) ∩ τ−1(1) 6= ∅,
then r is removed from P by the truth assignment reduct of P under τ . However
removing all literals x,¬x with x ∈ X from the head H(r) and the body B(r)
yields a new rule r′ ∈ P − X . Thus r′ /∈ Pτ and r′ ∈ P − X where r′ ⊆ r.
If the conditions (1), (2), and (3) of Definition 1 above do not apply, then all
literals v,¬v with v ∈ X are removed from the heads H(r) and bodies B(r) by
the truth assignment reduct of P under τ . This is also done by P −X . Hence
Pτ ⊆ P −X .

3.2 Backdoor Detection for Directed Target Classes

In order to apply backdoors we need to find them first. In this section we
consider the problems k-Strong C-Backdoor Detection and k-Deletion
C-Backdoor Detection for the target classes C ∈ {no-DEC,no-DBEC}.

For an unlabeled directed graph G = (V,E) and fixed vertices s,m, t ∈ V
we define the program Ps,m,t(G) as follows: For each edge e = (v, w) ∈ E where
v, w ∈ V and w 6= m we construct a rule re: v ← w. For the edges e′ = (v′,m)
where v′ ∈ V we construct a rule re′ : v′ ← ¬m. Then we add the rule rs,t:
t← ¬s.

Lemma 5. Let G = (V,E) be a directed graph and s,m, t three distinct vertices
of G. Then G has a simple path from s to t via m if and only if Ps,m,t(G) /∈
no-DBEC.

Proof. Let G be a graph and and p = (s, s1, . . . , sk,m, t1, . . . , tl, t) a path in G
where s 6= m,m 6= t, s 6= t. The construction Ps,m,t gives rules {s ← s1; s1 ←
s2; . . . sk ← ¬m; m ← t1; t1 ← t2; . . . t ← t; t ← ¬s} ∈ Ps,m,t(G). Since
DP contains the cycle c = (s, s1, . . . , sk,m, t1, . . . , t, s) and c contains an even
number of negative edges, the program Ps,m,t(G) /∈ no-DBEC.

Conversely, let Ps,m,t(G) ∈ no-DBEC, then Ps,m,t(G) contains a bad even
cycle c. Since the construction of Ps,m,t(G) gives only negative edges (t, s) ∈
DPs,m,t(G) and (v,m) ∈ DPs,m,t(G) where v ∈ at(Ps,m,t(G)), the cycle c must
have the vertices s,m, and t. Further every rule re ∈ Ps,m,t(G) corresponds to
an edge e ∈ E. It follows that there is a simple path s, . . . ,m, . . . , t.

Theorem 1. The problems k-Strong no-DBEC-Backdoor Detection
and k-Deletion no-DBEC-Backdoor Detection are co-NP-hard for ev-
ery constant k ≥ 0.
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Proof. Let k ≥ 0. Let G be a given directed graph and t,m, s vertices of G. It
was shown by Lapaugh and Papadimitriou [12] that deciding whether G contains
a simple path from s to t via m is NP-complete. By Lemma 5, such a path exists
if and only if Ps,m,t(G) /∈ no-DBEC, hence recognizing no-DBEC is co-NP-
hard. Let Gk denote the graph obtained from G by adding k disjoint bad
even cycles. Clearly Gk has a deletion no-DBEC-Backdoor of size ≤ k if and
only if Ps,m,t(Gk) ∈ no-DBEC, hence k-Deletion no-DBEC-Backdoor
Detection is co-NP-hard. Similarly, Gk has a strong no-DBEC-Backdoor of
size ≤ k if and only if Ps,m,t(Gk) ∈ no-DBEC, and so k-Strong no-DBEC-
Backdoor Detection is co-NP-hard as well.

Theorem 2. Let k > 0 be a constant. The problems k-Deletion no-DEC-
Backdoor Detection and k-Strong no-DEC-Backdoor Detection are
polynomial-time tractable.

Proof. By Lemma 2, we can reduce to the problem of finding a cycle of even
length in the unlabeled dependency graph. Vazirani and Yannakakis [19] have
shown that finding a cycle of even length in a directed graph is equivalent
to finding a Pfaffian orientation of a graph. Since Robertson, Seymour, and
Thomas [17] have shown that a Pfaffian orientation can be found in polynomial
time. For each possible backdoor of size k we need to test

(

n

k

)

≤ nk subsets
S ⊆ V of size k whether DP − S contains a cycle of even length, respectively
DPτ

for τ ∈ ta(S). Since we can do this in polynomial time for each fixed k,
the theorem follows.

In Theorem 2 we consider k as a constant. In the following proposition we
show that if k is considered as part of the input, then the problem k-Strong
no-DEC-Backdoor Detection is polynomial-time equivalent to the problem
Hitting Set and k is preserved. An instance of this problem is a pair (S, k)
where S = {S1, . . . , Sm} is a family of sets and k is an integer. The question is
whether there exists a set H of size at most k which intersects with all the Si;
such H is a hitting set. Note that there is strong theoretical evidence that the
problem Hitting Set does not admit uniform polynomial-time tractability [3].

Proposition 2. The problem k-Strong no-DEC-Backdoor Detection is
polynomial-time equivalent to the problem Hitting Set.

Proof. The proof is very similar to the proof for target classes without respecting
the parity by Fichte and Szeider [5]. We construct a program P as follows.
As atoms we take the elements of S =

⋃m

i=1 Si and new atoms aji and bji for
1 ≤ i ≤ m, 1 ≤ j ≤ k + 1. For each 1 ≤ i ≤ m and 1 ≤ j ≤ k + 1 we take two
rules rji , s

j
i where H(rji ) = {a

j
i}, B

−(rji ) = Si∪{b
j
i}, B

+(rji ) = ∅; H(sji ) = {b
j
i},

B−(sji ) = {a
j
i}, B

+(sji ) = S.
We show that S has a hitting set of size at most k if and only if P has a

strong no-DEC-backdoor of size at most k. Let S be a family of sets and H
an hitting set of S of size at most k. Choose arbitrarily an atom si ∈ at(P ) ∩S
and a truth assignment τ ∈ ta(H). If si ∈ τ−1(0), then B+(sji ) ∩ τ−1(0) 6= ∅
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for 1 ≤ j ≤ k + 1. Thus sji /∈ Pτ . If si ∈ τ−1(1), then B−(rji ) ∩ τ−1(1) 6= ∅ for

1 ≤ j ≤ k+ 1. Thus rji /∈ Pτ . Since H contains at least one element e ∈ S from
each set S ∈ S, the truth assignment reduct Pτ ∈ no-DEC. We conclude that
H is a strong no-DEC-backdoor of P of size at most k.

Conversely, letX be a strong no-DEC-backdoor of P of size at most k. Since
the directed dependency graphDP contains k+1 directed even cycles (aji , b

j
i , a

j
i )

and aji (respectively bji ) is contained in exactly one rule rji (respectively sji ),

|
⋃

aji | > k and |
⋃

bji | > k. Hence we have to select atoms from Si. Since

Si ⊆ B−(rji ) for 1 ≤ i ≤ m and 1 ≤ j ≤ k + 1, we have to select at least one
element from each Si into the backdoor X . Thus we have established that X is
a hitting set of S, and so the theorem follows.

3.3 Backdoor Detection for Undirected Target Classes

The results of Theorem 1 suggest to consider the backdoor detection on the
weaker target classes based on undirected even acyclicity.

Lemma 6. Let P be a program, P ∈ no-EC can be decided in polynomial time.

Proof. Let P be a program and G its dependency graph UP . Lemma 2 allows
to consider the problem of finding an even cycle in the unlabeled version of
UP . Since Yuster and Zwick [22] have shown that finding an even cycle in an
undirected graph is polynomial-time solvable, the lemma holds.

Lemma 7. Let P be a program. The problem of deciding whether P ∈ no-BEC

can be solved in polynomial time.

Proof. Let P be a program and G its dependency graph UP . For a negative edge
e of G we define Ge to be the unlabeled graph of G− e. Now G contains a bad
even cycle if and only if G has an edge e = {s, t} such that Ge contains an odd
path from s to t. Since Arikati and Peled [2] have shown that finding an odd
path in an undirected graph is polynomial-time solvable, the lemma follows.

Theorem 3. Let k > 0 be a constant. For the target classes C ∈ {no-EC,
no-BEC} the problems k-Deletion C-Backdoor Detection and k-Strong
C-Backdoor Detection are non-uniform polynomial-time tractable.

Proof. Let P be a program and UP = (V,E) its undirected dependency graph.
Let n be the size of V . For each possible backdoor of size k we need to test
(

n

k

)

≤ nk subsets S ⊆ V of size k whether UP − S contains a (bad) cycle of
even length, respectively UPτ

for τ ∈ ta(S). Since we can do this in polynomial
time for each fixed k, the problems k-Deletion C-Backdoor and k-Strong
C-Backdoor Detection are non-uniform polynomial-time tractable.

In Theorem 3 we consider k as a constant. If k is considered as part of the
input we can show that for each class C ∈ {no-EC,no-BEC} the problem
k-Strong C-Backdoor Detection is polynomial-time equivalent to Hit-
ting Set [5]. As mentioned before for no-DEC there is strong theoretical
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no-DBECno-DBCno-BCno-C

no-DECDC

no-BECno-EC

non-uniform

polynomial-time

co-NP-harduniform

polynomial-time

Figure 3: Relationship between classes of programs and state of the knowledge re-
garding the complexity of the problem Deletion C-Backdoor. The new results are
colored in black.

evidence that k-Strong C-Backdoor Detection does not admit a uniform
polynomial-time tractability result.

Proposition 3. The problem k-Strong C-Backdoor Detection is poly-
nomial-time equivalent to the problem Hitting Set for each class C ∈ {no-EC,
no-BEC}.

Proof. Wemodify the above reduction fromHitting Set by redefining the rules
rji , s

j
i . We put H(rji ) = {a

j
i}, B

−(rji ) = Si ∪ {b
j
i}, B

+(rji ) = Si; H(sji ) = {b
j
i},

B−(sji ) = {a
j
i}, B

+(sji ) = ∅.

4 Relationship between Target Classes

In this section, we compare ASP parameters in terms of their generality. We
have already observed that every deletion C-backdoor is a strong C-backdoor for
a target class C ∈ {no-EC,no-DEC,no-BEC,no-DBEC}. For the considered
target classes it is easy to see that if C ⊆ C′, then every C′ backdoor of a program
P is also a C-backdoor, but there might exist smaller C′-backdoors. Thus we com-
pare the target classes among each other instead of the backdoors. By definition
we have no-DBC ( no-DBEC, no-DEC ( no-DBEC, no-EC ( no-BEC,
no-C ( no-EC, and no-DC ( no-DEC. The diagram in Fig. 3 shows the
relationship between the various classes, an arrow from C to C′ indicates that
C is a proper subset of C′. If there is no arrow between two classes (or the
arrow does not follow by transitivity of set inclusion), then the two classes are
incomparable.
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Lin and Zhao [13] have studied even cycles as a parameter to ASP. They
have proved that for fixed k the main reasoning problems are polynomial-time
solvable if the number of the shortest even cycles is bounded. The following
proposition states that size of no-DBEC-backdoors is a more general parameter
than the number of even cycles.

Proposition 4. There is a function f such that k ≤ f(l) and no function
g such that l < g(k) for all programs P where k is the size of the smallest
deletion-no-DBEC-backdoor of P and l is the number of even cycles in DP .

Proof. Let P be some program. If P has at most k bad even cycles, we can
construct a no-DBEC-backdoor X for P by taking one element from each bad
even cycle into X . Thus there is a function f such that k ≤ f(l). If a program
P has a no-DBEC-backdoor of size 1, it can have arbitrary many even cycles
that run through the atom in the backdoor. It follows that there is no function
g such that l < g(k) and the proposition holds.

5 Conclusion

We have extended the backdoor approach of [5] by taking the parity of the num-
ber of negative edges on bad cycles into account. In particular, this allowed
us to consider target classes that contain non-stratified programs. We have
established new hardness results and non-uniform polynomial-time tractability
depending on whether we consider directed or undirected even cycles. We have
shown that the backdoor approach with parity target classes generalize a re-
sult of Lin and Zhao [13]. Since Theorem 1 states that target classes based
on directed even cycles are intractable, we think these target classes are of
limited practical interest. The results of this paper give rise to research ques-
tions that are of theoretical interest. For instance, it would be stimulating to
find out whether the problem k-Strong C-Backdoor Detection is uniform
polynomial-time solvable (fixed-parameter tractable) for the classes no-BC and
no-BEC, which is related to the problems parity feedback vertex set and parity
subset feedback vertex set.
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