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Abstract

In this paper, we propose a graph pattern matching framework that produces both a
standalone compiled and an interpreter-based engine as a result of a uniform develop-
ment process. This process uses the same pattern specification and shares all internal
data structures, and nearly all internal modules. Additionally, runtime performance
measurements have been carried out on both engines with exactly the same parameter
settings to assess and reveal the overhead of our interpreter-based solution.
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1 Introduction

As model transformation undoubtedly plays an immense and key role in the overall
process of model-driven development, efficiency and scalability are, therefore, impor-
tant issues. In many state-of-the-art tools [GSR05, JK05], model transformations are
governed by imperative control flow statements, which apply declarative rules as basic
transformation units. Such tools offer the usual advantages of declarativity like an eas-
ily understandable specification language, and readily available solutions provided by
the underlying execution engine for several performance-critical tasks, whose optimal
implementation requires years of specialized expertise. One such task is the efficient
checking of the application conditions of rules, which requires identifying those parts in
the system model on which the rule is executable.

This application condition checking process (as well as several other subtasks in bidi-
rectional model synchronization and on-the-fly consistency checking scenarios) can be
described as a general pattern matching problem. In this context, a pattern consists
of constraints, and the matching process determines those parts of the underlying
model that fulfill all these constraints. Structural constraints express restrictions that
can be checked by using the services of the modelling layer (e.g., type checks, navi-
gation along links), while non-structural constraints are handled by some other means
(like integer or textual comparison). The rest of the paper will focus on handling struc-
tural constraints, which corresponds to the graph pattern matching problem [Roz97].
Nonetheless, our approach is left open w.r.t. the integration of non-structural constraints
as well.

When implementing a pattern matching engine, developers must decide on several
important issues (see Sec. 2) already in the early phase of design, which are hardly
modifiable in later development phases as they have radical consequences on the over-
all architecture. One of these critical topics is the decision whether a compiled or an
interpreter-based engine is to be built.

A compiled engine only consists of program code that is directly executable on a cer-
tain platform without an extra module for performing pattern matching. A compiled
engine typically features better runtime performance, as the algorithms are represented
as machine or byte code of the underlying execution system and no operation han-
dling layer is needed. In contrast, an interpreter-based engine requires a specific module
(the interpreter), which is responsible for executing the operations needed to perform
pattern matching. Such a technique could offer more flexibility (e.g., model-sensitive
performance optimization [VDWS12]) and provide additional services such as high-
level debug support, as the interpreter can access and exploit runtime information more
easily.

There exists a large variety of advanced compiled pattern matcher implemen-
tations [GSR05, GBG+06], and several sophisticated interpreter-based approaches
[JK05, VVF05] in different rule-based model transformation tools. Although some of
them provide solutions for both cases, the resulting engines can be considered to be
separate programs. The following statement [Voe09] is, therefore, still valid: “Inter-
pretation and code generation are often seen as two alternatives, not as a continuum”.
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In order to allow different combinations of these alternatives, techniques are needed
that handle compiled and interpreter-based pattern matchers in a uniform and tightly
integrated way.

In this paper, we propose a pattern matching framework that can produce both a stan-
dalone compiled and an interpreter-based engine as a result of a uniform development
process, which shares (i) the pattern specification, (ii) all internal data structures, and
(iii) all internal activities except for one engine-specific module. Furthermore, applying
exactly the same settings in this uniform process wherever possible, runtime perfor-
mance measurements are carried out on both engines to assess and reveal the overhead
of our interpreter-based solution. To our best knowledge, our proposed approach can
be considered the first pattern matcher to support both a compiled and an interpreter-
based setup in a unified, configurable and integrated manner and can, therefore, be
easily embedded and used by different rule-based model transformation tools.

The remainder of the paper is structured as follows. Related work is discussed in
Section 2. Section 3 introduces basic metamodelling terminology, pattern specification
constructs, and the process of pattern matching. Sections 4 and 5 present our data
structures and algorithms used in the unified pattern matching engine. Section 6 gives
a quantitative assessment and performance comparison of our compiled and interpreter-
based engines. Section 7 concludes our paper.

2 Design Space of Pattern Matchers and Related Work

A widely deployable pattern matching engine should support many different application
scenarios like the execution of rule-based model transformations on a desktop computer,
as well as performing security monitoring tasks on an embedded system. As the compu-
tational power and the amount of available resources of these architectures significantly
differ, the development of a pattern matcher requires considering several design issues
that influence the applicability and performance of the approach.

The design space of pattern matching engines can be characterized by the following
properties:

(1) Dependency on extra pattern matching modules. The first property, which
has the closest relation to the topic of this paper, expresses whether pattern matching
requires a specific interpreter (I), or can be performed without any extra modules in a
standalone manner as a compiled program (C).

(2) Existence and granularity of intermediate data structures. Pattern matching
interpreters and code generators that produce compiled engines usually operate on
data structures with different granularity. One group of solutions directly processes
the declarative, pattern specification either in a low-level form as an abstract syntax
tree representation (AST), or in a high-level form as a pattern definition (P). The other
group operates on a preprocessed (and typically optimized) intermediate data structure,
which can either be a low-level byte code representation (BC), or a high-level search
plan (SP).

(3) Generation schedule of intermediate data structures. When intermediate data
structures are used by the pattern matcher, their generation schedule can also be an
important design decision due to its time consuming nature. Intermediate data struc-
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tures can be calculated clearly at compile time (CT), at runtime in an on-demand
fashion (OD) by using a caching mechanism, or at runtime (RT) before each pattern
matching process.

(4) Availability of model sensitive pattern matching strategies. The size and the
structure of the underlying model often influence the runtime performance of a pattern
matcher. As both characteristics can significantly change as a transformation proceeds,
the runtime selection of a pattern matching strategy in a model sensitive (MS) way (i.e.,
by using statistics from the model) is a feasible optimization compared to approaches
that rely only on metamodel-level, domain-specific (DS) information.

(5) Incrementality. As matches for a given pattern are often requested several times
during the life cycle of several application scenarios, exploiting the reuse of already
calculated matches is a feasible optimization possibility. In this sense, batch engines (B)
restart the pattern matching process from scratch at each invocation, while incremental
approaches (I) store a set of (partial) matches, and update this set according to a defined
schedule that depends on changes in the underlying model.

(6) Implementation/target language. As the applicability of a pattern matcher in
a specific environment is largely determined by the implementation language of the
interpreter, or the target language of the code generator, this property has also been
included in our survey. The categorization here indicates support for a single (1) or
multiple (*) languages.

(7) Reusability in different modelling spaces. Another important factor, in the
evaluation of pattern matchers, is their reusability in different modelling environments.
In this sense, an engine can operate on non-standard (NS) or standard (S) (e.g., EMF,
MDR) model repositories. In the latter case, a star (*) suffix is added, if a tool provides
clear interfaces to several standard modelling environments.

(8) Model access. When a tool operates in a standard compliant modelling environ-
ment, the underlying model can be accessed via tailored (T) or reflective (R) interfaces,
which obviously affects both the runtime performance, and the resource (disk and mem-
ory) demand of an approach.

As a categorization of general model transformation tools is already available [CH06],
this survey, which cannot be complete due to space restrictions, focuses on the pattern
matching modules of state-of-the-art, rule-based transformation engines, and systemat-
ically compares them based on the previously listed criteria, which has been preceded
by a manual inspection of the available source code (or a related publication). Table 1
presents the evaluation of these pattern matchers, which are enumerated in alphabetical
order.

The N/A mark shows if a categorization is non-applicable, while the ‘–’ notation is
used to express that a tool is able to cover the whole range of values in an integrated
and configurable manner. The last two lines represent the evaluation of our current
approach, and a hypothetic ideal pattern matching engine that could be deployed in
many different application scenarios.

Table 1 clearly shows that many aspects of the ideal solution have already been solved
separately by the different existing tools; however, the coverage of design space ranges
along several properties is still not satisfactory. The main challenge here is that each
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Table 1: Tool comparison
Tool name (1) (2) (3) (4) (5) (6) (7) (8)

ATL [JK05] I BC CT DS B 1 S* R
Epsilon [KRP] I AST N/A DS B 1 S* R
Fujaba @ KS [GSR05] C SP CT DS B 1 S* T
Fujaba @ PO [GHS09] I SP RT MS B 1 S T – R
GReAT [AKN+06] I C P N/A DS B 1 NS T
GrGen [GBG+06] C SP OD MS B 1 NS N/A
Groove [Ren04] I SP OD MS B I 1 NS N/A
Henshin [ABJ+10] I P N/A DS B 1 S R
PROGRES [SWZ99] I C BC OD DS B I * NS N/A
VIATRA [BÖR+08, VVF05] I SP OD DS MS B I 1 NS S T

Our approach I – C SP CT OD – RT DS B 1 S T
Perfect tool I – C BC,SP CT – OD – RT DS – MS B – I * NS – S* T – R

above-mentioned design space property represents a decision that is hard-wired into
the tool architecture making reengineering tasks difficult in this context.

3 Modelling Concepts and Data Structures

In this section, we introduce basic metamodelling terminology required to present our
approach, define concepts related to pattern specification, and illustrate the process of
pattern matching and its runtime data structures.

3.1 Metamodels and Models

A metamodel is the specification of the concepts and relationships in a certain domain.
Figure 1(a) depicts an excerpt of the metamodel from a case study [SJ] for the Gra-
BaTs’09 transformation tool contest [LRvG], which poses a program comprehension
challenge based on the Eclipse Java Development Tools (JDT) API [BdR06]. Using the
common UML class diagram notation, parts that are relevant for our running exam-
ple are depicted. The metamodel has been taken unchanged from the case study, and
defines concepts as classes (e.g., a CompilationUnit). Classes can inherit from other
classes (e.g., every MethodDeclaration is a BodyDeclaration), can contain attributes
(every Name has an fqn as an attribute of type String), and can reference other classes
(CompilationUnits contain arbitrary many AbstractTypeDeclarations, which each
have exactly one SimpleName). Attributes and references are referred to as structural
features in the rest of the paper.

A model is an abstraction of a system, created with an intended goal in mind. In
alignment with the UML notation, nodes and edges are referred to as objects and links,
respectively. A model that is expressed using concepts specified in a metamodel is said
to conform to the metamodel. Figure 1(b) depicts a model, which corresponds to the
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ASTNode

BodyDeclaration

AbstractTypeDeclaration

TypeDeclaration

«interface»
ExtendedModifier

Modifier

- abstract:  boolean
- final:  boolean
- none:  boolean
- private:  boolean
- protected:  boolean
- public:  boolean
- static:  boolean

SimpleName

Expression

Name

- fqn:  String
MethodDeclaration Type

SimpleType

CompilationUnit

+bodyDeclarations

0..*

+name

1

+types

0..*

+modifiers

0..*

+returnType

1

+name

1

(a) An excerpt of the metamodel of the Eclipse JDT

cu:CompilationUnit

typeDecl:
TypeDeclaration

methodDecl:
MethodDeclaration

modifier:Modifier

- public = true

name:SimpleName

- fqn:  String = "Client"

typeName:SimpleName

- fqn:  String = "Client"

type:
SimpleType

+name

+modifiers

+returnType

+bodyDeclarations

+name
+types

(b) A sample model

Figure 1: An excerpt of the metamodel of the Eclipse JDT API and a sample model

Eclipse JDT representation of a Java class Client with a single public method, which
returns a Client.

3.2 Pattern Specification

This subsection introduces the concepts needed for specifying patterns. The following
definitions are based on [HVV07].

A pattern is a set of constraints over a set of variables. A variable is a placeholder
for an object in a model. Interface variables constitute a subset of all variables used in
a pattern, and represent the variables that can be accessed outside of the pattern. All
other local (i.e., non-interface) variables can only be accessed and used internally in the
pattern. A constraint specifies a condition on a set of variables that must be fulfilled by
the objects, which are assigned to the variables during pattern matching. A constraint
consists of a constraint type and a set of variables (also referred to as parameters in this
context), for which the constraint must hold. In the following, an explicit reference to
the type of a constraint shall be denoted by adding a ‘type’ suffix.

A class constraint (cls) restricts the type of the objects that can be assigned to its
single parameter. A structural feature constraint (sf) prescribes the existence of a link,
which connects the assigned objects and conforms to a given structural feature. Both
constraints cls and sf have references to types in the corresponding metamodel. A
Boolean constraint must evaluate to true for the assigned values to its single parameter.

The textual specification of patterns, used in this paper, is defined by the following
simplified EBNF grammar:

patternSpecification ::= "pattern" signature "=" body
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signature ::= NAME "(" interfaceVariables ")"

body ::= "{" constraint* "}"

constraint ::= NAME typeReference? "(" variables ");"

typeReference ::= "<" NAME ">"

interfaceVariables ::= variables

variables ::= ( NAME ",")* NAME

NAME ::= [a-zA-Z]+

Example. The graphical representation and the textual specification of pattern
publicMethods are presented in Fig. 2. This pattern requires the existence of a com-
pilation unit CU, which has a type declaration TD with a public method declaration MD.
Pattern publicMethods has three interface variables CU, TD, and MD (line 1). The class
constraint on line 3 prescribes that variable CU must be mapped to a CompilationUnit.
The structural feature constraint on line 10 requires a types reference that connects the
objects that are assigned to variables CU and TD. The Boolean constraint on line 16 pre-
scribes that the object assigned to variable PublicTag must be true. Please note that
the order of constraints (rows) in the textual representation of a pattern is arbitrary and
that constraints on references and attributes are handled in a uniform way (line 13).

pattern publicMethods (CU, TD, MD)

CU:
CompilationUnit

TD:
TypeDeclaration

MD:
MethodDeclaration

Mod:Modifier

PublicTag:
boolean

«Constraint»
{PublicTag 
     == 
    true}

public

modifiers

bodyDeclarations

types

1 pattern publicMethods(CU,TD,MD) = {
2 // Class constraints

3 cls<CompilationUnit >(CU);

4 cls<TypeDeclaration >(TD);

5 cls<MethodDeclaration >(MD);

6 cls<Modifier >(Mod);

7 cls<boolean >(PublicTag);

8
9 // Structural feature constraints

10 sf<types>(CU,TD);

11 sf<bodyDeclarations >(TD,MD);

12 sf<modifiers >(MD,Mod);

13 sf<public >(Mod,PublicTag);

14
15 // Boolean constraints

16 true(PublicTag);

17 }

Figure 2: Pattern publicMethods in a graphical and textual representation

3.3 Pattern Matching and Runtime Data Structures

Pattern matching is the process of determining mappings for all variables in a given
pattern, such that all constraints in the pattern are fulfilled. The mappings of variables
to objects are collectively called a match, which can be a complete match when all the
variables are mapped, or a partial match in all other cases.

An adornment represents binding information for a sequence of variables and is indi-
cated in the textual syntax by a sequence of letters B and F of the same length, which
appears as a superscript on the name of the concept to which the adornment is attached.
The letter B or F in an adornment, means that the variable in that position is bound or
free, respectively.
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When pattern matching is invoked, interface variables can be already bound to objects
to restrict the search. The corresponding binding information of all interface variables
is called a pattern adornment.

An operation represents a single atomic step in the matching process and it consists
of a constraint and a constraint adornment. A constraint adornment prescribes which
parameters must be bound when the operation is executed. A check operation has only
bound parameters. An extension operation has free parameters, which get bound when
the operation is executed.

Example. Suppose a matching process for the pattern publicMethods (Fig. 2) is to be
run on the model of Fig. 1(b), with the interface variable CU bound to the compilation
unit cu at pattern invocation. This single mapping itself constitutes a partial match,
and the corresponding pattern adornment is BFF,1 since only the first interface variable
has been bound. When the pattern matching process terminates, a complete match is
returned, which maps variables CU, TD, MD, Mod, and PublicTag to objects cu, typeDecl,
methodDecl, modifier, and a Boolean true value, respectively.

4 Workflow of Compiled Pattern Matching

This section presents the workflow for generating a compiled pattern matching engine.
In this process, a pattern matcher class is generated for every pattern. Although an
adornment is runtime binding information, the generated engine must be prepared to
handle a fixed set of pattern adornments, which are selected in advance at compile
time. For each selected pattern adornment, a method that performs the actual pattern
matching is generated into the corresponding pattern matcher class according to the
approach depicted in Fig. 3, which operates as follows:

Section 4.1 For each constraint type used in the pattern specification, the set of allowed
constraint adornments is calculated.

Section 4.2 For each pair of constraint and allowed constraint adornment, an operation
is loaded.

Section 4.3 Operations are filtered and ordered by a search plan algorithm to produce
an efficient search plan.

Section 4.4 Based on the search plan, generators are created, which control the code
generation process.

When the pattern matcher is invoked at runtime, the pattern adornment is determined
and used to select and execute the corresponding generated method.2 The selected
method performs the complete pattern matching process, collecting complete matches
in a result set. The following subsections discuss the steps of the process in detail.

1 The pattern adornment only contains binding information for interface variables (CU, TD and MD in
this example).

2 If no such method exists, an exception is thrown, which might initiate a pattern matcher regeneration
process.
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constraint 
types (CT)

constraint 

calculate allowed 
adornments

 allowed 
adornments

operation 
loader

 set of 
operations

search plan 
algorithm

 search 
plan

generator 
builder

type

shared

generators

Java

4.1

4.2 4.3 4.4

compiler-specific

compiler-
specific

Figure 3: Process for producing a compiled pattern matching engine

4.1 Allowed Adornment Calculation

In general, not every possible adornment is valid for every constraint type. Our frame-
work allows the underlying modelling layer to define the set of allowed adornments
for every available constraint type in a configurable way. For presentation purposes,
standard Ecore/EMF is assumed as the modelling layer in the following: A structural
feature constraint type, referring to a bidirectional reference, would allow adornments
BB, BF, and FB, where BB means checking the existence of a link, while BF and FB
denote forward and backward navigations, respectively. In the case of unidirectional
references, only BB and BF adornments make sense. Analogously, only BB and BF adorn-
ments are allowed for structural feature constraint types referring to an attribute. Only
the adornment B is allowed for class and Boolean constraint types.3

Example. The framed part of Figure 4(a) shows the complete list of constraint types
and allowed adornments for pattern publicMethods. Lines 1–5 show that class con-
straint types have the adornment B as type checks can be performed only on a bound
parameter. Line 6 represents a check for the existence of a types link, while line 7
means a forward navigation along a link of type types.

4.2 Operation Loading

The operation loader prepares all the operations that might be needed to execute pat-
tern matching by iterating through all constraints of a pattern. It looks up the allowed
adornments for the type of the constraint, and creates a new operation for each combi-
nation of constraint and allowed adornment.

Example. Figure 4(a) lists the set of operations that might be needed to calculate
matches for pattern publicMethods. For example, line 1 shows that variable CU must
already be mapped to an object before a corresponding type check can be performed.
Line 7 expresses that a forward navigation along types links is executable only when
an object has already been bound to variable CU.

3 The set of allowed adornments for standard MOF/JMI, in contrast to Ecore/EMF, would also allow
FF for associations, and F for class constraint types. Similarly, a modelling layer with additional EMF
services could also support an extended set of allowed adornments for EMF supporting e.g., FB for
indexed attributes.
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(a) Operations (b) Search plan for the sample pattern
publicMethods

Figure 4: Data structures used by both engines

4.3 Search Plan Generation

Operations are filtered and ordered by a search plan algorithm to produce efficient
search plans. Due to space restrictions, search plans generation techniques like [GSR05,
VDWS12, VVF05] and their details (e.g., cost functions, optimization algorithms) are
not discussed in this paper.

A search plan is defined as a sequence of operations satisfying the following condi-
tions:

1. Each constraint in the pattern has exactly one corresponding operation in the
search plan.

2. Each variable that must be bound according to the constraint adornment of an
operation is either already bound in the pattern adornment, or appears as a free
variable in one of the preceding operations.

3. Each variable that must be free according to the constraint adornment of an op-
eration is not bound in the pattern adornment and does not appear in any of the
preceding operations as free variables.

4. Each extension operation must be immediately followed by class check operations
that perform the type checking of the free variables of the extension operation.

Example. Figure 4(b) shows a search plan for pattern publicMethods, when the first
interface variable (CU) is bound when pattern matching is invoked. The search plan has
been derived from the set of operations (Fig. 4(a)) by filtering and reordering, and it
fulfills all conditions 1–4. The constraint adornment on line 3, for example, is valid, as
CU, that must be bound, is indeed bound in the pattern adornment. Similarly, TD that
must be free, is free in the pattern adornment, and does not appear in any preceding
operation as a free variable.
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4.4 Code Generation for a Compiled Pattern Matcher

The final step is code generation, which is controlled by a set of different generators
that each maintain a link to a template.4 As depicted in detail in Fig. 5 for the pattern
adornment BFF, a method generator references a series of operation generators, respon-
sible for navigation in the model (e.g., lines 2 and 5), that in turn reference variable
generators, that store the determined values for variables on the JVM stack (e.g., lines
3–4 and 6–7). A match generator is responsible for the code that should be executed
when a (complete) match is found (line 15). Code generation is initiated by starting
the template of the method generator.

Method Generator (BFF)

Operation 
Generator

Variable 
Generator

Operation 
Generator Variable 

Generator
Operation 
Generator

next

Variable 
Generator

Operation 
Generator

Variable 
Generator

Operation 
Generator Match 

Generator

next

next

next

Figure 5: Generated code to handle pattern matching

5 Workflow of Interpreter-Based Pattern Matching

Interpreter-based engines typically carry out all their pattern matching related tasks at
runtime. As such, the pattern specification should be considered as a starting point
when the matching process is invoked. Furthermore, in order to avoid any dependen-
cies on generated data structures, interpreter-based pattern matchers typically use a
reflective API of the modelling layer to access objects and to navigate along links.

In contrast to this general tendency, our interpreter-based solution (whose workflow
is presented in Fig. 6) uses tailored interfaces (just like the compiled pattern matcher)
to completely eliminate the performance effects that would be caused by the different
model access strategies, and thus, to enable a fair quantitative comparison of our com-
piled and interpreter-based engine variants. This requires generated operation classes
(and a loader class), which are subclasses of their generic counterparts and are pro-
duced at compile time (as shown by the solid arrows). A generated operation, thus,
represents an atomic step in the pattern matching process and uses a tailored interface
for model access purposes.

Although generated operations are produced at compile time, all the remaining activi-
ties are executed at runtime as highlighted by dashed arrows in Fig. 6. The runtime part
4 Velocity is used as a template language and engine.
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Figure 6: Process for producing an interpreter-based engine

of the interpreter-based pattern matching approach, which reuses all parts from Sec. 4
that are shaded in grey, works as follows:

Section 4.2 When the pattern matcher is invoked, a (generated) operation is loaded
for each pair of constraint and allowed constraint adornment. As constraints are
a part of the pattern, this behaviour completely aligns with the expectation that
an interpreter-based engine should start processing the pattern specification at
runtime.

Section 4.3 Operations are filtered and ordered by a search plan algorithm to produce a
search plan. The algorithm is obviously influenced by the pattern adornment, that
has been determined by examining which interface variables have been mapped
to objects in the model at pattern invocation.5

Section 5 Finally, the interpreter performs pattern matching by executing the search
plan. The details of this interpreter module are presented in the remaining part of
this section.

The interpreter uses a match array for storing the current match and the operations
in the search plan. Every operation has a link to the next operation and a mapping,
that identifies the slots in the match array, which correspond to the parameters of the
operation.

When the interpreter is invoked, it prepares the initial match array, whose size is de-
termined by the number of variables in the pattern. The initial match array is filled
according to the input mapping of interface variables to objects in the model, and is
passed to the first operation in the search plan. When an extension operation is per-
formed, the structural feature is traversed forwards (BF) or backwards (FB) to bind the
corresponding free variable, the type of the accessed object is validated, and the exe-
cution is passed on to the following operation for subsequent processing together with
the extended match array. For a check operation, the operation is performed and, in
case of success, the current match array is simply left unchanged and passed on. When
5 Search plans can be cached and reused depending on the configuration settings.
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the match array passes beyond the last operation, it represents a complete match and is
stored in a result set. A single match array is used for storing all (partial) matches, and
only complete matches are copied and stored in a result set.

This behaviour is a depth-first traversal6 of a state space (just like the compiled ap-
proach), where a state represents the processing of a partial match by an operation. The
state space can alternatively be described as a tree, whose root is the initial match, while
internal nodes and leaves correspond to partial and complete matches, respectively.

6 Measurement Results

In this section, we present measurement results from comparing our compiled engine
with our interpreter-based pattern matching engine, both produced via a uniform pro-
cess, using our framework as discussed in Sec. 4 and Sec. 5. The pattern used for the
measurements is from [SJ] and describes all classes, excluding inner classes, that con-
tain at least one public static method, whose return type is the same as the class itself.
Five models (Set0 – 4) of different size were taken unchanged from the same case study.

A 1.57 GHz Intel Core2 Duo CPU with 2.96 GB RAM was used for all measurements.
Windows XP Professional SP 3 and Java 1.6 served as the underlying operating system
and virtual machine, respectively. The maximum heap size was set to 1536 MB. User
time, which is the amount of time the CPU spends performing actions for a program,
was measured. On the used machine, this could only be measured with a precision of
±12.625 ms. As a single pattern matching task takes less time than this value, each
measurement was performed as a series of blocks. In a measurement block, the pattern
matching task of the compiled engine was performed 100 times, while in the case of the
interpreter-based engine, search plan generation and pattern matching were executed
500 times, and 20 times, respectively. This block-based measurement was repeated
50 times in all cases to provide stable average values.

The generated search plans and resulting matches in both cases were validated man-
ually to be equivalent. To obtain a fair comparison, search plan generation and pattern
matching were measured separately for the interpreter.

Table 2 presents the measured execution times. The first column indicates the model
used (Set0 – 4), the second and third columns the size of the model in number of Java
classes and number of objects, respectively. The fourth column denotes the correspond-
ing state space size in number of states, the fifth column the time (ms) for the compiled
engine, while the last two columns show the time (ms) for search plan generation and
pattern matching for the interpreter-based engine.

Table 2 shows that the compiled engine outperformed the interpreter-based engines
in all cases, and was about 4–6 times faster. For the interpreter-based engine, the time
spent for search plan generation increased for the larger models (Set3 and Set4), which
are loaded into memory prior to search plan generation. We believe this is caused by
garbage collection, which becomes necessary due to the substantial difference in size of
the models as compared to Set0 or Set1.

6 Alternative strategies (e.g., breadth-first traversal) would typically duplicate match arrays during the
execution of extension operations, which would cause an increased memory consumption.
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Table 2: Measurement results
Java Model State Compiled

classes size space PM SP PM

# # # ms ms ms

Set0 14 70447 232 0.03 0.12 0.19

Set1 40 198466 549 0.08 0.12 0.53

Set2 1605 2082841 37348 12.99 0.12 41.91

Set3 5769 4852855 94300 31.17 0.41 142.34

Set4 5984 4961779 103122 36.01 0.84 230.38

Interpreter‐based

As future work, the measurements should be performed on more patterns and on
different application domains e.g., like the ones mentioned in [VSV05]. An additional
comparison using reflective interfaces for our engines would also be interesting. Fur-
thermore, other dimensions could be measured including memory footprint, number of
loaded classes and RAM consumption.

The presented measurements do not imply any general conclusion regarding the per-
formance of compiled and interpreter-based engines, but rather show that our frame-
work enables a sound assessment and evaluation, which can provide a basis for deciding
if a compiled or interpreter-based approach is more suitable for a certain purpose.

We are of the opinion that the presented quantitative comparison gives a better in-
sight on the performance of the different pattern matching engine variants than a run-
time analysis from a complexity theory point of view, as both engine variants traversed
exactly the same state space, and the calculation steps needed for exploring one state
only differ by a constant factor in our implementation.

7 Conclusion

In this paper, we proposed a pattern matching framework that can produce both a
standalone compiled and an interpreter-based engine in a uniform process that shares
all internal data structures and the majority of modules. Additionally, we carried out
performance measurements on both engines with the same parameter settings to assess
the overhead of our interpreter-based solution.

The proposed approach has been implemented in the context of the Democles project,
whose goal is to provide a model-based pattern matcher implementation, which inte-
grates several advanced pattern matching algorithms in one framework, and can be em-
bedded into different tools. Contributions of this paper cover one aspect of this project,
which was to present the unified process for handling compiled and interpreter-based
pattern matchers. The model-sensitive search plan algorithm of the pattern matcher has
been published in [VDWS12]. The interpreter additionally supports (a yet unpublished)
step by step execution possibility, which can be the basis of a high-level debugger in the
future. Carrying out further measurements is also an important future task.
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