Skip to main content

Arbitrary Precision Complex Interval Computations in C-XSC

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7204))

  • 1690 Accesses

Abstract

Based on the libraries MPFR and MPFI for arbitrary precision real and arbitrary precision real interval computations and corresponding interfaces to the C++ class library C-XSC, the new data type MpfciClass (multiple precision floating-point complex intervals) and corresponding operations/functions for arbitrary precision complex intervals have been implemented. Our new package allows to code mathematical expressions for the complex interval data type in their usual mathematical notation yielding easy to read and self-documenting source code. Meanwhile, more than 30 elementary mathematical functions have been realized. At any point of the program the user may change the precision setting of the computation. The maximum precision of complex interval variables is only restricted by memory limitations. Its exponent range is very large. To the knowledge of the authors there is no comparable package (with respect to the features provided) available worldwide. The new package is written in C++. It is freely available from http://www2.math.uni-wuppertal.de/org/WRST/xsc/cxscsoftware.html .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E., Kulisch, U.: Scientific Computing With Automatic Result Verification. Academic Press, Inc. (1993)

    Google Scholar 

  2. Behnke, H., Sommer, F.: Theorie der analytischen Funktionen einer komplexen Veränderlichen. Springer, Berlin (1962)

    MATH  Google Scholar 

  3. Blomquist, F., Hofschuster, W., Krämer, W., Neher, M.: Complex Interval Functions in C-XSC. Preprint BUW-WRSWT 2005/2, Bergische Universität Wuppertal, pp. 1–48 (2005)

    Google Scholar 

  4. Blomquist, F., Hofschuster, W., Krämer, W.: A Modified Staggered Correction Arithmetic with Enhanced Accuracy and Very Wide Exponent Range. In: Cuyt, A., Krämer, W., Luther, W., Markstein, P. (eds.) Numerical Validation. LNCS, vol. 5492, pp. 41–67. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Blomquist, F., Hofschuster, W., Krämer, W.: C-XSC-Langzahlarithmetiken für reelle und komplexe Intervalle basierend auf den Bibliotheken MPFR und MPFI. Preprint BUW-WRSWT 2011/1, Bergische Universität Wuppertal (2011), http://www2.math.uni-wuppertal.de/org/WRST/literatur/lit_wrswt.html#prep2011

  6. Blomquist, F., Krämer, W.: Interval Enclosure of Re(arccos(Z)) for Complex Intervals Z. Preprint, University of Wuppertal (2011) (to appear)

    Google Scholar 

  7. Brand, H.-S.: Integration und Test einer Langzahlintervallbibliothek in C-XSC. Bachelor-Arbeit, Universität Wuppertal (2010)

    Google Scholar 

  8. Braune, K., Krämer, W.: High Accuracy Standard Functions for Real and Complex Intervals. In: Kaucher, E., Kulisch, U., Ullrich, C. (eds.) Computerarithmetic: Scientific Computation and Programming Languages, pp. 81–114. Teubner, Stuttgart (1987)

    Google Scholar 

  9. Braune, K.: Standard Functions for Real and Complex Point and Interval Arguments with Dynamic Accuracy. Computing Supplementum 6, 159–184 (1988)

    Article  MathSciNet  Google Scholar 

  10. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Transactions on Mathematical Software (TOMS) 33(2) (June 2007)

    Google Scholar 

  11. Ghazi, K.R., Lefèvre, V., Théveny, P., Zimmermann, P.: Why and how to use arbitrary precision. Computing in Science and Engineering 12(3), 62–65 (2010)

    Google Scholar 

  12. Grimmer, M., Petras, K., Revol, N.: Multiple Precision Interval Packages: Comparing Different Approaches. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Dagstuhl Seminar 2003. LNCS, vol. 2991, pp. 64–90. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Hofschuster, W., Krämer, W.: C-XSC 2.0 – A C++ Library for Extended Scientific Computing. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Dagstuhl Seminar 2003. LNCS, vol. 2991, pp. 15–35. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Hofschuster, W., Krämer, W., Neher, M.: C-XSC and Closely Related Software Packages. In: Cuyt, A., Krämer, W., Luther, W., Markstein, P. (eds.) Numerical Validation. LNCS, vol. 5492, pp. 68–102. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C., Rauch, M.: C-XSC - A C++ Class Library for Extended Scientific Computing. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  16. Krämer, W.: Inverse Standardfunktionen für reelle und komplexe Intervallargumente mit a priori Fehlerabschätzungen für beliebige Datenformate, Dissertation, Universität Karlsruhe (1987)

    Google Scholar 

  17. Krämer, W.: Inverse Standard Functions for Real and Complex Point and Interval Arguments with Dynamic Accuracy. Computing Supplementum 6, 185–212 (1988)

    Article  Google Scholar 

  18. Krier, R.: Komplexe Kreisarithmetik. PhD thesis, Universität Karlsruhe (1973)

    Google Scholar 

  19. Lohner, R.: Interval Arithmetic in Staggered Correction Format. In: [1], pp. 301–342 (1993)

    Google Scholar 

  20. Neher, M.: Complex Standard Functions and Their Implementation in the CoStLy Library. ACM Transactions on Mathematical Software 33(1), 27 pages (2007)

    Article  Google Scholar 

  21. Petras, K.: A Method for Calculating the Complex Complementary Error Function with Prescribed Accuracy. Preprint, TU Braunschweig (2002), http://www-public.tu-bs.de:8080/~petras/publications.html

  22. Petras, K.: Numerical Computation of an Integral Representation for Artihmetic-Average Asian Options. Preprint, TU Braunschweig (2002), http://www-public.tu-bs.de:8080/~petras/publications.html

  23. Revol, N., Rouillier, F.: Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library. Reliable Computing 11, 275–290 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krämer, W., Blomquist, F. (2012). Arbitrary Precision Complex Interval Computations in C-XSC. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31500-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31500-8_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31499-5

  • Online ISBN: 978-3-642-31500-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics