Skip to main content

Static versus Adaptive Gain Control Strategy for Visuo-motor Stabilization

  • Conference paper
  • 2806 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7375))

Abstract

Biological principles of closed-loop motor control have gained much interest over the last years for their potential applications in robotic system. Although some progress has been made in understanding of how biological systems use sensory signals to control reflex and voluntary behaviour, experimental platforms are still missing which allow us to study sensorimotor integration under closed-loop conditions. We developed a fly-robot interface (FRI) to investigate the dynamics of a 1-DoF image stabilization task. Neural signals recorded from an identified visual interneuron were used to control a two-wheeled robot which compensated for wide-field visual image shifts caused by externally induced rotations. We compared the frequency responses of two different controllers with static and adaptive feedback gains and their performance and found that they offer competing benefits for visual stabilization. In future research will use the FRI to study how different sensor systems contribute towards robust closed-loop motor control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schilstra, C., van Hateren, J.H.: Blowfly flight and optic flow: I. thorax kinematics and flight dynamics. J. Exp. Biol. 202, 1481–1490 (1999)

    Google Scholar 

  2. Heisenberg, M., Wolf, R.: The sensory-motor link in motion dependent flight control of flies. In: Miles, F.A., Wallman, J. (eds.) Visual Motion and its Role in the Stabilization of Gaze. Rev. of Oculomotor Res., vol. 5, pp. 265–283. Elsevier (1993)

    Google Scholar 

  3. Wehner, R.: Spatial vision in arthropods. In: Autrum, H. (ed.) Handbook of Sensory Phys. VII/6C, pp. 287–616. Springer (1981)

    Google Scholar 

  4. Krapp, H., Hengstenberg, R.: Estimation of self-motion by optic flow processing in single visual interneurons. Nat. 348, 463–466 (1996)

    Article  Google Scholar 

  5. Krapp, H., Hengstenberg, B., Hengstenberg, R.: Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J. Neurophys. 348, 1902–1917 (1998)

    Google Scholar 

  6. Krapp, H.G.: Neuronal matched filters for optic flow processing in flying insects. Int. Rev. Neurob. 44, 93–120 (2000)

    Article  Google Scholar 

  7. Gotz, K.G.: Hirnforschung am navigationssystem der fligen. Naturwis 62, 468–475 (1975)

    Article  Google Scholar 

  8. Reichardt, W., Wenking, H.: Optical detection and fixation of objects by fixed flying flies. Naturwis 56, 674–689 (1969)

    Article  Google Scholar 

  9. Warzecha, A.K., Egelhaaf, M.: Intrinsic properties of biological motion detectors prevent the optomotor control system from getting unstable. Phil. Trans.: Bio. Sci. 351, 1579–1591 (1996)

    Article  Google Scholar 

  10. Collet, T., Nalbach, H., Wagner, H.: Visual stabilization in arthropods. In: Miles, F.A., Wallman, J. (eds.) Visual Motion and Its Role in the Stabilization of Gaze. Rev. of Oculomotor Res., vol. 5, pp. 239–263. Elsevier (1993)

    Google Scholar 

  11. Ejaz, N., Peterson, K., Krapp, H.: An experimental platform to study the closed-loop performance of brain-machine interfaces. J. Vis. Exp. 10(3791) (2011)

    Google Scholar 

  12. Krapp, H.G., Hengstenberg, R., Egelhaaf, M.: Binocular contributions to optic flow processing in the fly visual system. J. Neurophys. 85, 724–734 (2001)

    Google Scholar 

  13. Franceschini, N.: Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In: Snyder, A.W., Menzel, R. (eds.) Photoreceptor Optics, pp. 98–125. Springer (1975)

    Google Scholar 

  14. Warzecha, A.K., Horstmann, W., Egelhaaf, M.: Temperature-dependence of neuronal performance in the motion pathway of the blowfly Calliphora erythrocephala. J. Exp. Biol. 202, 3161–3170 (1999)

    Google Scholar 

  15. Ejaz, N., Tanaka, R.J., Krapp, H.G.: Closed-loop performance of a proportional controller for visual stabilization using a fly-robot interface. In: IEEE Int. Conf. Rob. Biomim., pp. 1509–1515 (2011)

    Google Scholar 

  16. Laughlin, S.B.: Matching coding, circuits, cells, and molecules to signals - general principles of retinal design in the fly’s eye. In: Prog. in Ret. and Eye Res., vol. 13, pp. 165–196. Elsevier (1994)

    Google Scholar 

  17. Ogata, K.: Modern control engineering, 3rd edn. Prentice Hall PTR (1997)

    Google Scholar 

  18. Borst, A., Haag, J.: Neural networks in the cockpit of the fly. J. Comp. Phys. A 188, 419–437 (2002)

    Article  Google Scholar 

  19. Krapp, H.G., Wicklein, M.: Central processing of visual information in insects. In: Masland, R., Albright, T.D. (eds.) The Senses: a Comprehensive Reference, vol. 1, pp. 131–204. Academic Press (2008)

    Google Scholar 

  20. Theobald, J.C., Ringach, D.L., Frye, M.A.: Dynamics of optomotor responses in Drosophila to perturbations in optic flow. J. Exp. Biol. 213, 1366–1375 (2009)

    Article  Google Scholar 

  21. Webb, B.: Validating biorobotic models. J. Neur. Eng. 3, 25–35 (2006)

    Article  Google Scholar 

  22. Dickson, W.B., Polidoro, P., Tanner, M.M., Dickinson, M.H.: A linear systems analysis of the yaw dynamics of a dynamically scaled insect model. J. Exp. Biol. 213, 3047–3061 (2010)

    Article  Google Scholar 

  23. Hausen, K.: Functional characterisation and anatomical identification of motion sensitive neurones in the lobula plate of the blowfly Calliphora erythrocephala. Z. Naturforsch 31, 629–633 (1976)

    Google Scholar 

  24. Krapp, H.G.: Estimation and control of self-motion and gaze in flying insects. In: ION 63 Ann. Meet. (2007)

    Google Scholar 

  25. van Hateren, J.H., Kern, R., Schwerdtfeger, G., Egelhaaf, M.: Function and coding in the blowfly h1 neuron during naturalistic optic flow. J. Neuro. 25, 4343–4352 (2005)

    Article  Google Scholar 

  26. Kern, R., van Hateren, J.H., Michaelis, C., Lindemann, J.P., Egelhaaf, M.: Function of a fly motion-sensitive neuron matches eye movements during free flight. PLoS Biol. 3, 1130–1138 (2005)

    Article  Google Scholar 

  27. Graetzel, C.F., Nelson, B.J., Fry, S.N.: Frequency response of lift control in drosophila. J. Royal Soc. Int. 10 (2010)

    Google Scholar 

  28. Borst, A., Reisenman, C., Haag, J.: Adaptation of response transients in fly motion vision ii: model studies. Vis. Res. 43, 1309–1322 (2003)

    Article  Google Scholar 

  29. Egelhaaf, M.: Dynamic properties of two control systems underlying visually guided turning in house-flies. J. Comp. Phys. A. 161, 777–783 (1987)

    Article  Google Scholar 

  30. Borst, A.: Noise, not stimulus entropy, determines neural information rate. J. Comp. Neuro. 14, 23–31 (2003)

    Article  Google Scholar 

  31. Taylor, G.K., Krapp, H.G.: Sensory systems and flight stability: What do insects measure and why? Adv. Ins. Phys. 34, 231–316 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ejaz, N., Tanaka, R.J., Krapp, H.G. (2012). Static versus Adaptive Gain Control Strategy for Visuo-motor Stabilization. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2012. Lecture Notes in Computer Science(), vol 7375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31525-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31525-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31524-4

  • Online ISBN: 978-3-642-31525-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics