Skip to main content

Incremental Learning in a 14 DOF Simulated iCub Robot: Modeling Infant Reach/Grasp Development

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7375))

Included in the following conference series:

Abstract

We present a neurorobotic model that develops reaching and grasping skills analogous to those displayed by infants during their early developmental stages. The learning process is realized in an incremental manner, taking into account the reflex behaviors initially possessed by infants and the neurophysiological and cognitive maturations occurring during the relevant developmental period. The behavioral skills acquired by the robots closely match those displayed by children. Moreover, the comparison of the results obtained in a control non-incremental experiment demonstrates how the limitations characterizing the initial developmental phase channel the learning process toward better solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angulo-Kinzler, R.: Exploration and selection of intralimb coordination patterns in 3-month-old infants. Journal of Motor Behavior 33, 363–376 (2001)

    Article  Google Scholar 

  2. Atkinson, J.: Human visual development over the first 6 months of life. A review and a hypothesis. Human Neurobiology 3(2), 61–74 (1984)

    Google Scholar 

  3. Berthier, N.E., Clifton, R.K., McCall, D.D., Robin, D.J.: Proximodistal structure of early reaching in human infants. Experimental Brain Research 127(3), 259–269 (1999)

    Article  Google Scholar 

  4. Berthier, N.E., Keen, R.: Development of reaching in infancy. Experimental Brain Research (2005)

    Google Scholar 

  5. Berthouze, L., Lungarella, M.: Motor skill acquisition under environmental perturbations: On the necessity of alternate freezing and freeing of degrees of freedom. Adaptive Behavior 12(1), 47–63 (2004)

    Article  Google Scholar 

  6. Burnod, Y., Baraduc, P., Battaglia-Mayer, A., Guigon, E., Koechlin, E., Ferraina, S., Lacquaniti, F., Caminiti, R.: Parieto-frontal coding of reaching: an integrated framework. Experimental Brain Research 129(3), 325–346 (1999)

    Article  Google Scholar 

  7. Courage, M.L., Adams, R.J.: Infant peripheral vision: the development of monocular visual acuity in the first 3 months of postnatal life. Vision Research 36(8), 1207–1215 (1996)

    Article  Google Scholar 

  8. Hendrickson, A., Druker, D.: The development of parafoveal and mid-peripheral human retina. Behavioural Brain Research 49(1), 21–31 (1992)

    Article  Google Scholar 

  9. Lantz, C., Meln, K., Forssberg, H.: Early infant grasping involves radial fingers. Developmental Medicine and Child Neurology 38(8), 668–674 (1996)

    Article  Google Scholar 

  10. Konczak, J., Borutta, M., Topka, H., Dichgans, J.: The development of goal-directed reaching in infants: hand trajectory formation and joint torque control. Experimental Brain Research 106(1), 156–168 (1995)

    Article  Google Scholar 

  11. Konczak, J., Borutta, M., Dichgans, J.: The development of goal-directed reaching in infants. II. Learning to produce task-adequate patterns of joint torque. Experimental Brain Research 113(3), 465–474 (1997)

    Article  Google Scholar 

  12. Konczak, J., Dichgans, J.: The development toward stereotypic arm kinematics during reaching in the first 3 years of life. Experimental Brain Research 117(2), 346–354 (1997)

    Article  Google Scholar 

  13. Martin, J.H.: The corticospinal system: from development to motor control. The Neuroscientist 11(2), 161–173 (2005)

    Article  Google Scholar 

  14. McCarty, M.K., Clifton, R.K., Ashmead, D.H., Lee, P., Goulet, N.: How infants use vision for grasping objects. Child Development 72, 973–987 (2001)

    Article  Google Scholar 

  15. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  16. Nolfi, S., Marocco, D.: Evolving robots able to integrate sensory-motor information over time. Theory in Biosciences 120(3-4), 287–310 (2001)

    Google Scholar 

  17. Oztop, E., Bradley, N.S., Arbib, M.A.: Infant grasp learning: a computational model. Experimental Brain Research 158(4), 480–503 (2004)

    Article  Google Scholar 

  18. Paine, R.W., Tani, J.: Motor primitive and sequence self-organization in a hierarchical recurrent neural network. Neural Networks 17(8-9) (2004)

    Google Scholar 

  19. Piaget, J.: The origin of intelligence in the child. Routledge and Kegan Paul, London (1953)

    Google Scholar 

  20. Piek, J.: The role of variability in early motor development. Infant Behavior and Development 25(4), 452–465 (2002)

    Article  Google Scholar 

  21. Pfeifer, R., Iida, F., Bongard, J.: New robotics: design principles for intelligent systems. Artificial Life 11(1-2), 99–120 (2005)

    Article  Google Scholar 

  22. Rochat, P.: Object manipulation and exploration in 2- to 5-month-old infants. Developmental Psychology 25(6), 871–884 (1989)

    Article  Google Scholar 

  23. Sandini, G., Metta, G., Vernon, D.: Robotcub: An open framework for research in embodied cognition. International Journal of Humanoid Robotics 8(2), 18–31 (2004)

    Google Scholar 

  24. Schaal, S.: Arm and hand movement control. In: Arbib, M.A. (ed.) Handbook of Brain Theory and Neural Networks, 2nd edn., pp. 110–113. MIT Press, Cambridge (2002)

    Google Scholar 

  25. Schlesinger, M.: Evolving agents as a metaphor for the developing child. Developmental Science 7, 154–168 (2004)

    Google Scholar 

  26. Sokolov, Y.N.: Perception and the conditional reflex. Pergamon Press, London (1963)

    Google Scholar 

  27. Spencer, J.P., Thelen, E.: Spatially Specific Changes in Infants’ Muscle Coactivity as They Learn to Reach. Infancy 1(3), 275–302 (2000)

    Article  Google Scholar 

  28. Thelen, E., Corbetta, D., Kamm, K., Spencer, J.P., Schneider, K., Zernicke, R.F.: The Transition to Reaching: Mapping Intention and Intrinsic Dynamics The Transition to Reaching: Mapping Intention and Intrinsic Dynamics. Child Development 64(4), 1058–1098 (1993)

    Article  Google Scholar 

  29. Thelen, E., Corbetta, D., Spencer, J.P.: Development of reaching during the first year: role of movement speed. Journal of experimental psychology. Human Perception and Performance 22(5), 1059–1076 (1996)

    Article  Google Scholar 

  30. Tsagarakis, N.G., Metta, G., Sandini, G., Vernon, D., Beira, R., Santos-Victor, J., Carrazzo, M.C., Becchi, F., Caldwell, D.G.: iCub The Design and Realization of an Open Humanoid Platform for Cognitive and Neuroscience Research. International Journal of Advanced Robotics 21(10), 1151–1175 (2007)

    Article  Google Scholar 

  31. Turkewitz, G., Kenny, P.: Limitations on input as a basis for neural organization and perceptual development: A preliminary theoretical statement. Developmental Psychobiology 1, 357–368 (1982)

    Article  Google Scholar 

  32. von Hofsten, C.: Eye-Hand Coordination in the Newborn. Developmental Psychology 18(3), 450–461 (1982)

    Article  Google Scholar 

  33. von Hofsten, C.: Developmental changes in the organization of prereaching movements. Developmental Psychology 20(3), 378–388 (1984)

    Article  Google Scholar 

  34. von Hofsten, C., Rönnqvist, L.: The structuring of neonatal arm movements. Child Development 64(4), 1046–1057 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Savastano, P., Nolfi, S. (2012). Incremental Learning in a 14 DOF Simulated iCub Robot: Modeling Infant Reach/Grasp Development. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2012. Lecture Notes in Computer Science(), vol 7375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31525-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31525-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31524-4

  • Online ISBN: 978-3-642-31525-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics