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Abstract. Statistical analysis of humans, their motion and their behaviour is a
very well-studied problem. With the availability of accurate motion capture sys-
tems, it has become possible to use such analysis for animation, understanding,
compression and tracking of human motion. At the core of the analysis lies a
measure for determining the distance between two human poses; practically al-
ways, this measure is the Euclidean distance between joint angle vectors. Recent
work [7] has shown that articulated tracking systems can be vastly improved by
replacing the Euclidean distance in joint angle space with the geodesic distance in
the space of joint positions. However, due to the focus on tracking, no algorithms
have, so far, been presented for measuring these distances between human poses.
In this paper, we present an algorithm for computing geodesics in the Riemannian
space of joint positions, as well as a fast approximation that allows for large-scale
analysis. In the experiments we show that this measure significantly outperforms
the traditional measure in classification, clustering and dimensionality reduction
tasks.

1 Modelling Human Poses

For many years researchers in different research fields have studied image sequences of
moving humans and tried to reason about human behaviour. Examples of such reason-
ing include articulated tracking of the individual limbs in the human body [1,6,18,22],
clustering to e.g. learn a discrete vocabulary of human motion (visual words) [5, 13],
action recognition [25] and dimensionality reduction [9,19,23]. We also note a focus on
statistical analysis of humans in animation [4,21,24] and robotics [17]. Due to the com-
plexity of the human body it is common to use a rather simple body model consisting of
only a few selected mass-less bones, which gives the kinematic skeleton [3]. This “stick
figure” (see fig. 1a) is complex enough to capture many aspects of human behaviour,
but simple enough to give tractable algorithms. In the kinematic skeleton, bone lengths
are assumed constant such that the joint angles between connected bones constitute
the only degrees of freedom in the model. It is, thus, common to learn models directly
in the space of these joint angles, which can be treated as a Euclidean space. This is
computationally efficient, but, as we shall later see, leads to an unnatural distance mea-
sure. Alternatively, we can model humans in the space of joint positions, which is more
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similar to what is actually observed in images of humans. However, the space of joint
positions is a non-trivial Riemannian manifold [6], which complicates analysis. In this
paper, we provide an algorithm for computing geodesics on this manifold as well as a
very efficient approximation scheme. This allows us to perform larger studies, which
show that changing the distance measure has profound impact on the performance of
the learned models.

1.1 Related Work

(a) (b)

Fig. 1. Different distance measures. (a) Two motions of equal size (90◦) under the joint angle
metric. The example is adapted from [7]. (b) The mean pose and data from a jumping jack se-
quence under the Euclidean joint position distance measure. The resulting mean pose does not
respect the skeleton structure of the data.

As previously stated, most of the work concerning analysis of human movement
represents the human body with the kinematic skeleton. For a given skeleton, a human
pose can be represented by a vector of all joint angles; this vector is often assumed
to be Euclidean such that standard techniques apply. From the vector of joint angles,
we can compute joint positions by recursively orienting each bone in the skeleton ac-
cording to the angle vector. This process is known as forward kinematics [3]. From a
geometric point of view, we can think of forward kinematics as recursively selecting a
point on a 2-sphere with centre corresponding to the previous bone end-point and radius
corresponding to the bone length.

Letting θ denote the joint angles of the kinematic skeleton we define the joint angle
metric as

distθ(θ1, θ2) = ‖θ1 − θ2‖2 , (1)

i.e. the Euclidean metric in joint angle space. This metric appears frequently in the
literature [4, 9, 12, 17–19, 22–24].

In articulated tracking, i.e. sequential pose estimation, the joint angle metric is often
used as part of a Gaussian prior to ensure smooth motion estimates, see e.g. [8, 11, 12,
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18]. When learning activity specific priors, the angle metric is also used for comparing
training data, e.g. for learning Gaussian Process Latent Variable Models [22–24] and
for manifold learning techniques [9,19]. Furthermore, these learning schemes also often
use the angle metric for regularisation purposes.

The angle metric is often used due to its simplicity, but, as pointed out by Hauberg
et al. [7], it has little relation to the visual size of the motion. Fig. 1a shows two different
motions that all have the same size under the joint angle metric, as only one joint angle
has been changed 90 degrees. The motions, however, appear to have different size, with
the motion on the left appearing larger than the motion on the right. This behaviour is
due to the fact that the angle metric ignores the structure of the skeleton, i.e. the size of
the bones as well as how they are connected to each other.

In robotics and computer vision it is common to use twists and exponential maps
[1,10] instead of joint angles. This has great practical impact on, e.g., optimisation, but
the underlying distance measure still ignores bone lengths and connectivity. The same
can be said for quaternion [3] representations.

An alternative metric was suggested by Tournier et al. [21] for the purpose of motion
compression. This measure treats the kinematic skeleton as a product of one sphere per
bone, such that the metric is the sum of distances on SO(3). This measure incorporates
knowledge of bone lengths and has a simple physical interpretation as it works in the
world coordinate system. The measure, however, ignores how bones are connected, i.e.
it cannot capture that moving the upper arm causes the lower arm to move as well. A
better metric should incorporate both knowledge of bone lengths and bone connectivity.

2 The Space of Joint Positions

The simplest possible distance measure that takes both bone lengths and connectivity
into account is the Euclidean distance in the space of joint positions. This measure is
simple, easy to interpret and fast to compute. It can, however, be a problematic measure
when used for statistics; consider the jumping jacks sequence data shown in fig. 1b.
In the figure we also show the mean pose computed using the Euclidean joint position
distance and as can be seen the limbs of the mean pose are substantially smaller than
those found in the original data. Clearly, the choice of distance measure has resulted in
statistics that fail to preserve the skeleton structure.

The immediate solution is to perform analysis in the Euclidean space, but with the
restriction that only parts of space corresponding to a valid skeleton configuration is
allowed. The kinematic manifold [6] is exactly this part of the Euclidean space. The
manifoldM is defined as the space of all possible joint positions,

M = {F (θ) | θ ∈ Θ} , (2)

where F is the forward kinematics function, i.e. the function that maps from joint angles
to joint positions, and Θ is the set of legal joint angles, i.e. it encodes joint constraints.
This is a Riemannian manifold embedded in R3L, where L is the number of joints in
the skeleton [6]. As such, F (θ) is simply the vector containing the position of all joints
at the pose θ. The manifold structure arises due to the constraint that connected joints
have a fixed distance between them. This means that any point on M will be a valid
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skeleton, i.e. it will respect both bone lengths and joint constraints. If we confine our
statistics to this manifold, we avoid the problems of working directly in the Euclidean
space of joint positions.

As discussed in [7], the geodesic distance onM between two poses θ0 and θN is
the visually natural measure of the length of the spatial curves c that joints move along,
i.e.

distM(θ0, θN ) = min
c(τ)∈M,

c(0)=F (θ0),
c(1)=F (θN )

L(c) , (3)

where L denotes the length of a curve c, i.e.

L(c) =
∫ 1

0

∥∥∥∥∂c(τ)∂τ

∥∥∥∥dτ , (4)

As the geodesic curve c is restricted toM any point on the curve is a valid skeleton,
which makes the measure different from the ordinary Euclidean measure in joint posi-
tion space.

While the distance measure in eq. 3 provides a natural notion of the “size” of a
movement between two poses, no practical algorithms have yet been provided for com-
puting this distance and the corresponding geodesics.

2.1 Computing Geodesics and Distances
In order to compute geodesics, and hence distances, between two poses, we need to
minimise the integral in eq. 4. This can be vastly simplied by utilising that extremal
points of eq. 3 coincides with extremal points of the curve energy [2],

E(c) =
∫ 1

0

∥∥∥∥∂c(τ)∂τ

∥∥∥∥2 dτ . (5)

To compute a geodesic, we can, thus, iteratively evolve an initial curve c towards a
curve minimizing eq. 5. To do this, we discretise a given initial curve c connecting θ0
and θN by sampling N −1 points between θ0 and θN . The curve is, thus, approximated
by ĉ = {θ0 : θN} = {θ0, . . . , θN}. We can then compute the energy of this discrete
curve as

E(θ0 : θN ) ≈
N∑
n=1

‖F (θn−1)− F (θn)‖2 , (6)

which is a straight-forward discretisation of the integral in eq. 5. In order to minimise
eq. 6 we then seek the set of intermediate points θ1 : θN−1 that minimises E .

The derivative of the approximate curve energy can be computed in closed-form as
(derived in appendix A)

∂E
∂θi

= 2
(
F (θi−1)− F (θi+1

)T
Jθi , (7)

where Jθi =
∂F
∂θi

is the Jacobian of F evaluated in θi, which can easily be computed in
closed-form, cf. [26]. With this, we perform minimisation using a trust-region gradient
descent algorithm.
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2.2 Approximations and the Geometry of the Kinematic Manifold

One problem with the presented algorithm for computing geodesics is that it can be
rather time consuming due to its iterative nature. In most statistical computations we
need to repeatedly calculate distances, so this quickly becomes a bottleneck. We, thus,
look for fast alternatives that do not rely on an iterative optimisation. For this we take a
closer look at the geometry of the kinematic manifold.

The strength of the joint angle metric is that it is just the Euclidean metric in joint
angle space, which makes it fast and easy to compute. As discussed above, and as will
be illustrated by our experiments, this metric does, however, not model human pose
data well. Another issue with this metric is that it is dependent on the choice of root
node in the kinematic skeleton, whereas the joint position metric is not.

Our approximation of the geodesic curve on the kinematic manifold utilizes the
simplicity of computing the joint angle metric for a particular choice of root node in the
kinematic skeleton. As we shall see, this choice turns out to be a good approximation
for the geodesic curve in joint position space, even though the corresponding distances
– joint angle distance and joint position distance – are vastly different. This choice of
approximation rests on the following geometric considerations.

The simplest case of a kinematic manifold is when the skeleton only has one bone.
In this case the kinematic manifold reduces to the well-known 2-sphere in R3, as is
illustrated in the left of fig. 2. When the sphere is parametrised using angles, it is well-
known that geodesics in the joint position metric will form straight lines in the angle
space.

Fig. 2. Illustrations of the kinematic manifold for simple skeletons. Left: for skeletons with only
one bone, the kinematic manifold is a sphere, where the centre coincides with the root of the
skeleton. Right: for skeletons with two bones we can place the root of the skeleton at the joint
connecting the two bones. The kinematic manifold then corresponds to the product of two spheres
with a shared centre.

The situation is similarly simple when the skeleton has two bones. If we pick the
root of the skeleton as the joint that connects the two bones, then the kinematic manifold
is the product of two spheres with a shared centre that coincides with the root, see the
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right of fig. 2. If we consider geodesics in the joint position metric, then it is again clear
that it will consist of straight lines in the joint angle space representing the two spheres.

These observations provide us with the hint that many geodesics in the joint position
metric form straight lines in joint angle space. As the kinematic manifold is Rieman-
nian, we know that the metric tensor varies smoothly, such that we most often will see
smooth changes in geodesics when the end-points move. Hence, we will use the straight
line in joint angle space connecting the end-points as an approximation of the geodesic,
i.e. cline = {θ0, 1

N θ0 +
N−1
N θN , . . . , θN}. This path is a geodesic under the joint angle

metric and the SO(3) product metric suggested by Tournier et al. [21], but the actual
geodesic lengths differ. It is worth noting that when using the length of non-geodesic
curves as a distance measure, we are not guaranteed that the measure satisfies the tri-
angle inequality. In many practical scenarios this is, however, acceptable; see e.g. the
work on metric learning by Ramanan and Baker [14] where straight lines are also used
to approximate geodesics.

As we shall see in sec. 3.1, the suggested curve turns out to be a very good ap-
proximation of the true geodesic. As this approximation does not require any iterative
optimisation it can be computed very fast, which allows for large scale experiments.

3 Experiments

The purpose of the experiments is to show that the approximate spatial geodesic dis-
tance improves different machine learning tasks, such as dimensionality reduction, clus-
tering and classification. Here we focus on rather simple techniques as these are most
well-understood, allowing us to easier analyse the impact of changing the distance mea-
sure. We will use data collected with an optical motion capture system as large datasets
with different people and activities are readily available online3.

In all experiments we only consider the human pose and disregard global position
and orientation.

3.1 Quality of Geodesic Approximation

Our first experiment is concerned with how well the approximate geodesic curve, de-
scribed in sec. 2.2, approximates the true geodesic. This turns out to be a good approx-
imation of the true geodesic, but it is much faster to compute.

As a first qualitative experiment we pick two random poses from a walking se-
quence, form the approximate geodesic curve cline as described in sec. 2.2, and compute
the length minimising geodesic curve cgeodesic using the approach described in sec. 2.1.
We discretise the curves using 10 sample points and compute the first two principal
components of the discrete points, which allows us to visualise the curves, cf. fig. 3a.
In the figure, the background is colour coded with the trace of the local metric tensor,
which can be considered a measure of the local curvature ofM. The expression for the
metric tensor is derived in appendix B. We visually see that the approximate geodesic
curve is very similar to the length-minimising geodesic.

3 We use the Carnegie Mellon dataset from http://mocap.cs.cmu.edu/.
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Fig. 3. (a) A visualisation of the geodesic path and the straight-line approximation. The coordinate
system are the first two principal components of the sample points along the curves expressed in
joint angles. Notice the size of the y-axis compared to the x-axis; this is an indication that the
two curves are very similar. The background colouring of each point is proportional to the trace
of the local metric tensor expressed in joint angles, i.e. a measure of the local curvature of M. (b)
A histogram over the ratio in eq. 8. Notice that the smallest observed value of this ratio is 0.94,
which tells us that the approximation is quite good.

Next, we seek to quantify the above observations. Given an approximate geodesic
and a length minimising geodesic between two poses, we can measure how much they
differ as

r =
L(cgeodesic)
L(cline)

. (8)

As the length of the true geodesic is shorter than or equal to the length of the approxi-
mate curve r ∈ [0, 1]. In fig. 3b we show a histogram of the ratios for 100 random pairs
of poses. As can be seen, the ratio is always very close to 1, and the lowest observed
ratio is 0.94, which tells us that the approximation curve is indeed quite good. In prac-
tice, the true geodesic distance is too expensive to compute in large studies, so we only
consider the approximation in the remaining parts of the paper.

3.2 Dimensionality Reduction

One of the most basic machine learning tasks is to learn a low-dimensional model from
high-dimensional data. The most basic model for such dimensionality reduction tasks
is principal component analysis, which can be generalised to metric spaces, such as
Riemannian manifolds, with multidimensional scaling (MDS) [15]. This algorithm finds
the Euclidean representation of a set of points that preserve pair-wise distances of the
original data as well as possible.

As a first qualitative experiment we consider two sequences corresponding to the
walk cycles of two people. We then compute the first two principal components of
this data according to the angular metric and the geodesic approximation of the joint
position metric. In fig. 4a we show the results for the angular metric. As can be seen, the
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learned model is essentially bimodal, where each mode corresponds to the two different
persons. As such, the model fails to capture any similarity between the walking styles,
i.e. we cannot expect this model to generalise to new people. In fig. 4b we show the
comparable results for the geodesic approximation of the joint position metric. We see
that the resulting model is essentially unimodal, which indicates that the learned model
has captured the similarities between the two different walking styles.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1

Approximate Geodesic Distance
Angular Distance

(a) (b) (c)

Fig. 4. (a)–(b) Illustration of results attained for the different metrics when using multidimen-
sional scaling for dimensionality reduction; (a) show results for the angular metric and (b) the
spatial distance. The colours indicate different persons. Note how the angular metric fails to cap-
ture any similarity between the different walking styles. (c) A histogram of the percentage of
data explained by the first principal component under the two different metrics. The approximate
geodesic distance significantly outperforms the angular distance measure according to a Mann–
Whitney U -test. These figures are best viewed in colour.

In order to quantify the above observations, we measure how large a percentage
of the data is captured by the first principal component under the different distance
measures. We do this for 673 independent sequences and show a histogram of these
percentages in fig. 4c. For the results under the joint angle metric we see a mode of
explaining 40% of the data, whereas the mode is at 80% under the approximate joint
position geodesic distance. Using a Mann–Whitney U -test we see that the approximate
joint position geodesic distance model significantly explains more of the data in the
first component than the angular distance model (p-value below 10−6). This is a strong
indication that the approximate geodesic distance is better for dimensionality reduction
than the angular distance measure. It is worth noting that we have performed similar
experiments with other dimensionality reduction techniques, such as Isomap [20], and
see similar behaviour.

3.3 Classification

Another classical machine learning task is that of classification. To illustrate the im-
pact of the choice of distance measure, we pick a simple two-class problem consisting
of distinguishing walking from running. As we use motion capture data, we can ex-
pect little noise, so we expect this problem to be easily solved. We randomly select 10
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walking and 10 running sequences, and, in a leave-one-out fashion, test on 1 walking
sequence and train on the 19 remaining. We down-sample the sequences to 12Hz such
that we in total use 1096 data points. We choose to use the nearest neighbour classifier
to maximum stress on the choice of metric.

For this trivial classification problem, the approximate geodesic distance achieves
100% success rate, which clearly illustrates that the problem is not particularly hard.
The angular metric, on the other hand, only achieves a 90% success rate, which is a
very disappointing result that shows the limits of the joint angle metric.

3.4 Clustering

The last classical machine learning task we consider is that of clustering. Again, the
choice of distance measure can potentially have a large impact on the results attained
as this is often what determines whether two data points belong to the same cluster.
We pick a simple clustering technique that introduces little extra knowledge other than
what is provided by the metric. Specifically, we use the medioid–shift algorithm [16]
with a Gaussian kernel, where the bandwidth is selected to achieve the correct number
of clusters. We use the same data as in the classification example, i.e. 10 walking se-
quences and 10 running sequences. We combine all pairs of sequences from different
classes, which gives us 100 clustering tasks with two clusters. We then measure the
percentage of data points assigned to the correct class and report the average. When
using the angle metric we assign 60% of the data to the correct class and 65% when
using the approximate joint position geodesic distance, which is a small but noticeable
improvement.

4 Discussion

In this paper, we have provided a novel algorithm for computing geodesics on the kine-
matic manifold for representing joint positions in human skeleton models. This provides
a mathematically well-founded and visually natural distance measure for comparing hu-
man poses. This algorithm, however, depends on iterative optimisation, which can make
it impractical for large studies. For this reason, we have also provided a fast and accurate
algorithm for approximating the geodesics. In our experiments this approximation only
differs slightly from the true geodesic. More thorough experiements in this direction
would, however, be interesting.

In the experimental part of the paper, we perform a number of comparisons of the
new metric with the standard joint angle measure, which is used practically everywhere
else in the literature. The experiments included the classical machine learning tasks
clustering, classification and dimensionality reduction. In all cases we saw improved
results. Sometimes the improvements are drastic, as in the case of dimensionality reduc-
tion, and other times the improvements are minor, as in the case of clustering. However,
in general we see improvements in all experiments. As the suggested measure can be
computed efficiently, we see little reason to use the standard joint angle measure in the
future.

Acknowledgements: S.H. would like to thank the Villum Foundation for financial support.
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A Derivative of Curve Energy

We remind the reader that the energy of a curve onM is approximated as

E(θ0 : θN ) ≈
N∑
n=1

‖F (θn−1)− F (θn)‖2 . (9)

As this function only depends on θ1 : θN−1, the gradient can be written as

5E =


∂E
∂θ1
...
∂E

∂θN−1

 . (10)

Each of these partial derivatives can easily be computed using the chain rule, which
gives us

∂E
∂θi

=
∂

∂θi
‖F (θi−1)− F (θi)‖2 +

∂

∂θi
‖F (θi)− F (θi+1)‖2 (11)

= 2
(
(F (θi−1)− F (θi)) + (F (θi)− F (θi+1)

)T
Jθi (12)

= 2
(
F (θi−1)− F (θi+1

)T
Jθi , (13)

where Jθi = ∂F
∂θi

is the Jacobian of F evaluated in θi. This can easily be computed in
closed-form, cf. [26].

B The Metric Tensor of M in Angle Space

The background colour of fig. 3a is the trace of the metric tensor ofM expressed in the
joint angle space. The metric tensor is in itself an interesting object so we derive it here.

The length of a curve c(t) : [0, 1]→ Θ measured onM is defined as

L(c) =
∫ 1

0

∥∥∥∥∂F (c(t))∂t

∥∥∥∥dt = ∫ 1

0

∥∥∥∥∂F (c(t))∂c(t)

∂c(t)

∂t

∥∥∥∥ dt (14)

=

∫ 1

0

∥∥Jc(t)c′(t)∥∥ dt = ∫ 1

0

√
c′(t)TJTc(t)Jc(t)c

′(t)dt , (15)

where Jc(t) is the Jacobian of F evaluated at c(t) and c′(t) is the derivative of c with
respect to t. Eq. 15 tells us that the metric tensor ofM at a point θ in joint angle space
is given by JTθ Jθ.


