
ar
X

iv
:1

10
6.

30
54

v2
 [

cs
.L

O
]

 8
 M

ay
 2

01
2

The Complexity of

Mean-Payoff Automaton Expression

Yaron Velner

The Blavatnik School of Computer Science, Tel Aviv University, Israel

Abstract. Quantitative languages are extension of Boolean languages
that assign to each word a real number. With quantitative languages,
systems and specifications can be formalized more accurately. For exam-
ple, a system may use a varying amount of some resource (e.g., memory
consumption, or power consumption) depending on its behavior, and a
specification may assign a maximal amount of available resource to each
behavior, or fix the long-run average available use of the resource.
Mean-payoff automata are finite automata with numerical weights on
transitions that assign to each infinite path the long-run average of the
transition weights. Mean-payoff automata forms a class of quantitative
languages that is not robust, since it is not closed under the basic alge-
braic operations: min, max, sum and numerical complement. The class
of mean-payoff automaton expressions, recently introduced by Chatterjee
et al., is currently the only known class of quantitative languages that
is robust, expressive and decidable. This class is defined as the closure
of mean-payoff automata under the basic algebraic operations. In this
work, we prove that all the classical decision problems for mean-payoff
expressions are PSPACE-complete. Our proof improves the previously
known 4EXPTIME upper bound. In addition, our proof is significantly
simpler, and fully accessible to the automata-theoretic community.

1 Introduction

In algorithmic verification of reactive systems, the system is modeled as a finite-
state transition system, and requirements are captured as languages of infinite
words over system observations [15,17]. The classical verification framework only
captures qualitative aspects of system behavior, and in order to describe quanti-
tative aspects, for example, consumption of resources such as CPU and energy,
the framework of quantitative languages was proposed [6].

Quantitative languages are a natural generalization of Boolean languages
that assign to every word a real number instead of a Boolean value. With such
languages, quantitative specifications can be formalized. In this model, an im-
plementation LA satisfies (or refines) a specification LB if LA(w) ≤ LB(w) for
all words w.

This notion of refinement is a quantitative generalization of language inclu-
sion, and it can be used to check for example if for each behavior, the long-run
average response time of the system lies below the specified average response re-
quirement. The other classical decision problems such as emptiness, universality,

http://arxiv.org/abs/1106.3054v2

2 Yaron Velner

and language equivalence have also a natural quantitative extension. For exam-
ple, the quantitative emptiness problem asks, given a quantitative language L and
a rational threshold ν, whether there exists some word w such that L(w) ≥ ν,
and the quantitative universality problem asks whether L(w) ≥ ν for all words
w. We also consider the notion of distance between two quantitative languages
LA and LB, defined as supw∈Σω |LA(w) − LB(w)|.

The model of mean-payoff automaton is a popular approach to express quan-
titative properties; in this model, a payoff (or a weight) is associated with each
transition of the automaton, the mean-payoff of a finite run is simply the average
of the payoff of the transitions in the run, and the mean-payoff of an infinite run
is the limit, as the length of the run tends to infinity.

In this work, we study the computational complexity of the classical decision
problems for the class of quantitative languages that are defined by mean-payoff
expression. An expression is either a deterministic1 mean-payoff automaton, or
it is the max, min or sum of two mean-payoff expressions. This class, introduced
in [4], is robust as it is closed under the max, min, sum and the numerical
complement operators [4].

The decidability of the classical decision problems, as well as the computabil-
ity of the distance problem, was first established in [4]; in this paper we describe
alternative proofs for these results. Our proofs offer the following advantages:
First, the proofs yield PSPACE complexity upper bounds, which match corre-
sponding PSPACE lower bounds; in comparison to 4EXPTIME upper bounds
achieved in [4]. Second, our proofs reside only in the frameworks of graph theory
and basic linear-programing, which are common practices among the automata-
theoretic community, whereas a substantial part of the proofs in [4] resides in
the framework of computational geometry.

Our proofs are based on a reduction from the emptiness problem to the
feasibility problem for a set of linear inequalities; for this purpose, inspired by
the proofs in [19], we establish a connection between the emptiness problem
and the problem of finding a multi-set of cycles, with certain properties, in a
directed graph. The reduction also reveals how to compute the maximum value
of an expression, and therefore the decidability of all mentioned problems is
followed almost immediately.

This paper is organized as follows: In the next section we formally define the
class of mean-payoff expressions; in Section 3 we describe a PSPACE algorithm
that computes the maximum value of an expression that does not contain the
max operator; in Section 4 we show PSPACE algorithm for all the classical
problems and prove their corresponding PSPACE lower bounds. Due to lack of
space, in some cases the proofs are omitted, and in other cases only sketches of
the proofs are presented. The full proofs are given in the appendix.

1 We note that the restriction to deterministic automata is inherent; for nondetermin-
istic automata all the decision problems are undecidable [4].

The Complexity of Mean-Payoff Automaton Expression 3

2 Mean-Payoff Automaton Expression

In this section we present the definitions of mean-payoff expressions from [4].

Quantitative languages. A quantitative language L over a finite alphabet Σ is
a function L : Σω → R. Given two quantitative languages L1 and L2 over Σ, we
denote by max(L1, L2) (resp., min(L1, L2), sum(L1, L2) and −L1) the quantita-
tive language that assigns max(L1(w), L2(w)) (resp., min(L1(w), L2(w)), L1(w)+
L2(w), and −L1(w)) to each word w ∈ Σω. The quantitative language −L is
called the complement of L.

Cut-point languages. Let L be a quantitative language over Σ. Given a
threshold ν ∈ R, the cut-point language defined by (L, ν) is the language L≥ν =
{w ∈ Σω|L(w) ≥ ν}.

Weighted automata. A (deterministic) weighted automaton is a tuple A =
〈Q, qI , Σ, δ,wt〉, where (i) Q is a finite set of states, qI ∈ Q is the initial state,
and Σ is a finite alphabet; (ii) δ ⊆ Q × Σ × Q is a set of transitions such that
for every q ∈ Q and σ ∈ Σ the size of the set {q′ ∈ Q|(q, σ, q′) ∈ δ} is exactly 1;
and (iii) wt : δ → Q is a weight function, where Q is the set of rationals.

The product of weighted automata. The product of the weighted automata
A1, . . . , An such that Ai = 〈Qi, q

i
I , Σ, δi,wt i〉 is the multidimensional weighted

automaton A = A1 × · · · ×An = 〈Q1 × · · · ×Qn, (q
1
I , . . . , q

n
I), Σ, δ,wt〉 such that

t = ((q1, . . . , qn), σ, (q
′
1, . . . , q

′
n)) ∈ δ if ti = (qi, σ, q

′
i) ∈ δi for all i ∈ {1, . . . , n},

and wt(t) = (wt1(t1), . . . ,wtn(tn)) ∈ Qn. We denote by Ai the projection of the
automaton A to dimension i.

Words and runs. A word w ∈ Σω is an infinite sequence of letters from Σ. A
run of a weighted automatonA over an infinite word w = σ1σ2 . . . is the (unique)
infinite sequence r = q0σ1q1σ2 . . . of states and letters such that q0 = qI , and
(qi, σi+1, qi+1) ∈ δ for all i ≥ 0. We denote by wt(w) = wt(r) = v0v1 . . . the
sequence of weights that occur in r where vi = wt(qi, σi+1, qi+1) for all i ≥ 0.

Quantitative language of mean-payoff automata. The mean-payoff value
(or limit average) of a sequence v = v0v1 . . . of real numbers is either

LimInfAvg(v) = lim infn→∞
1
n
·
∑n−1

i=0 vi; or LimSupAvg(v) = lim supn→∞
1
n
·

∑n−1
i=0 vi. The quantitative language A of a weighted automaton A is defined by

A(w) = LimInfAvg(wt(w)); analogously the quantitative language A is defined
by A(w) = LimSupAvg(wt(w)). In the sequel we also refer to the quantitative
language A as the LimInfAvg automaton A, and analogously the LimSupAvg
automaton A is the quantitative language A.

Mean-payoff automaton expressions. A mean-payoff automaton expression
E is obtained by the following grammar rule:

E ::= A|A|max(E,E)|min(E,E)| sum(E,E)

where A is a deterministic (one-dimensional) weighted automaton. The quanti-
tative language LE of a mean-payoff automaton expression E is LE = A (resp.,
LE = A) if E = A (resp., if E = A), and LE = op(LE1

, LE2
) if E = op(E1, E2)

4 Yaron Velner

for op ∈ {max,min, sum}. We shall, by convenient abuse of notation, inter-
changeably use E to denote both the expression and the quantitative language
of the expression (that is, E will also denote LE). An expression E is called an
atomic expression if E = A or E = A, where A is a weighted automaton.

It was established in [4] (and it follows almost immediately by the construc-
tion of the class) that the class of mean-payoff automaton expressions is closed
under max, min, sum and numerical complement.

Decision problems and distance. We consider the following classical decision
problems for a quantitative language defined by a mean-payoff expression. Given
a quantitative language L and a threshold ν ∈ Q, the quantitative emptiness
problem asks whether there exists a word w ∈ Σω such that L(w) ≥ ν, and the
quantitative universality problem asks whether L(w) ≥ ν for all words w ∈ Σω.

Given two quantitative languages L1 and L2, the quantitative language-
inclusion problem asks whether L1(w) ≤ L2(w) for all words w ∈ Σω, and
the quantitative language-equivalence problem asks whether L1(w) = L2(w) for
all words w ∈ Σω. Finally, the distance between L1 and L2 is Dsup(L1, L2) =
supw∈Σω |L1(w) − L2(w)| ; and the corresponding computation problem is to
compute the value of the distance.

Maximum value of expression. Given an expressionE, its supremum value is
the real number supw∈Σω E(w). While it is obvious that such supremum exists, it
was proved in [4] that a maximum value also exists (that is, there exists w′ ∈ Σω

s.t E(w′) = supw∈Σω E(w)). Hence the maximum value of the expression E is
supw∈Σω E(w) or equivalently maxw∈Σω E(w).

Encoding of expressions and numbers. An expression E is encoded by the
tuple (〈E〉, 〈A1〉, . . . , 〈Ak〉), where 〈E〉 is the expression string and A1, . . . , Ak

are the weighted automata that occur in the expression, w.l.o.g we assume that
each automaton occur only once. A rational number is encoded as a pair of
integers, where every integer is encoded in binary.

3 PSPACE Algorithm for Computing the Maximum

Value of max-free Expressions

In this section we consider only max-free expressions, which are expressions that
contain only the min and sum operators. We will present a PSPACE algorithm
that computes the maximum value of such expressions; computing the maximum
value amounts to computing the maximum threshold for which the expression
is nonempty; for this purpose we present four intermediate problems (and so-
lutions), each problem is presented in a corresponding subsection below. The
first problem asks whether an intersection of cut-point languages of LimSupAvg
automata is empty; the second problem asks the same question for LimInfAvg
automata; the third problem asks if an arbitrary intersection of cut-point lan-
guages of LimSupAvg and LimInfAvg automata is empty; and the last problem
asks whether a max-free expression is empty. We will first present a naive solu-
tion for these problems; the solution basically lists all the simple cycles in the

The Complexity of Mean-Payoff Automaton Expression 5

product automaton of the automata that occur in the expression; it then con-
structs linear constraints, with coefficients that depend on the weight vectors of
the simple cycles, which their feasibility corresponds to the non-emptiness of the
expression.

In the fifth subsection we will analyze the solution for the max-free emptiness
problem; we will show a PSPACE algorithm that solves the problem; and we will
bound the number of bits that are needed to encode the maximum threshold
for which the expression is nonempty (recall that such maximal threshold is
the maximum value of the expression); this will yield a PSPACE algorithm for
computing the maximum value of a max-free expression.

In subsections 3.1-3.4 we shall assume w.l.o.g that the product automaton
of all the automata that occur in the expression is a strongly connected graph;
this can be done since in these subsections we do not refer to the complexity of
the presented procedures.

3.1 The emptiness problem for intersection of LimSupAvg automata

In this subsection we consider the problem where k weighted automataA1, . . . , Ak

and a rational threshold vector r = (r1, . . . , rk) are given, and we need to de-
cide whether there exists an infinite word w ∈ Σω such that Ai(w) ≥ ri for all

i ∈ {1, . . . , k}; equivalently, whether the intersection
⋂k

i=1 Ai
≥ri

is nonempty.
Informally, we prove that there is such w iff for every i ∈ {1, . . . , k}, there is

a word wi such that Ai(wi) ≥ ri.
Formally, let A = A1 × · · · ×Ak be the product automaton of the automata

A1, . . . , Ak. Recall that an infinite word corresponds to an infinite path in A,
and that w.l.o.g we assume that the graph of A is strongly connected. Let
C1, C2, . . . , Cn be the simple cycles that occur in A. The next lemma claims
that it is enough to find one cycle with average weight ri for every dimension i.

Lemma 1 There exists an infinite path π in A such that Ai(π) ≥ ri, for all
i ∈ {1, . . . , k}, iff for every i ∈ {1, . . . , k} there exists a simple cycle Ci in A,
with average weight at least ri

Proof. The direction from left to right is easy: Since for every i ∈ {1, . . . , k}
there exists a path πi (namely π) such that Ai(πi) ≥ ri it follows that there
exists a simple cycle in A with average at least ri in dimension i. (This fact is
well-known for one-dimensional weighted automata, e.g., see [20], and hence it
is true for the projection of A to the i-th dimension.)

For the converse direction, we assume that for every i ∈ {1, . . . , k} there
exists a simple cycle Ci in A with average weight at least ri. Informally, we
form the path π by following the edges of the cycle Ci until the average weight
in dimension i is sufficiently close to ri, and then we do likewise for dimension
1 + (i (mod k)), and so on. (Full proof is given in the appendix.) ⊓⊔

Lemma 1 shows that the emptiness problem for intersection of LimSupAvg au-
tomata can be naively solved by an exponential time algorithm that constructs
the product automaton and checks if the desired cycles exist.

6 Yaron Velner

3.2 The emptiness problem for intersection of LimInfAvg automata

In this subsection we consider the problem where k weighted automataA1, . . . , Ak

and a rational threshold vector r = (r1, . . . , rk) are given, and we need to de-
cide whether there exists an infinite word w ∈ Σω such that Ai(w) ≥ ri for all

i ∈ {1, . . . , k} ; or equivalently, whether the intersection
⋂k

i=1 Ai
≥ri is nonempty.

For LimInfAvg automata, the componentwise technique we presented in the
previous subsection will not work; to solve the emptiness problem for the inter-
section of such automata we need the notion of r multi-cycles.

r multi-cycles. Let G be a directed graph equipped with a multidimensional
weight function wt : E → Qk, and let r be a vector of rationals. A multi-cycle is a
multi-set of simple cycles; the length of a multi-cycle C = {C1, . . . , Cn}, denoted
by |C|, is

∑n
i=1 |Ci|. A multi-cycle C = {C1, . . . , Cn} is said to be an r multi-cycle

if 1
|C|

∑n

j=1 wt(Cj) ≥ r, that is, if the average weight of the multi-cycle, in every

dimension i, is at least ri.
In the sequel we will establish a connection between the problem of finding an

r multi-cycle and the emptiness problem for intersection of LimInfAvg automata.
A polynomial time algorithm that decides if an r multi-cycle exists is

known [12]; in this work however, it is sufficient to present the naive way for
finding such multi-cycles; for this purpose we construct the following set of lin-
ear constraints: Let C denote the set of all simple cycles in A; for every c ∈ C

we define a variable Xc; we define the r multi-cycle constraints to be:

∑

c∈C
Xcwt(c) ≥ r ;

∑

c∈C
|c|Xc = 1 ; and for every c ∈ C: Xc ≥ 0

In the next lemma we establish the connection between the feasibility of the r
multi-cycle constraints and the existence of an r multi-cycle.

Lemma 2 The automaton A has an r multi-cycle iff the corresponding r multi-
cycle constraints are feasible.

Proof. The direction from left to right is immediate, indeed if we define Xc as
the number of occurrences of cycle c in the witness r multi-cycle divided by the
length of that multi-cycle, then we get a solution for the set of constraints.

In order to prove the converse direction, it is enough to notice that if the
constraints are feasible then they have a rational solution. Let X be such rational
solution, and let N be the least common multiple of all the denominators of the
elements of X; by definition, the multi-set that contains NXc copies of the cycle
c is an r multi-cycle. ⊓⊔

In the following lemma we establish a connection between the problem of
finding an r multi-cycle and the emptiness problem for intersection of LimInfAvg
automata.

Lemma 3 There exists an infinite path π in A such that Ai(π) ≥ ri, for all
i ∈ {1, . . . , k}, iff the graph of A contains an r = (r1, . . . , rk) multi-cycle.

The Complexity of Mean-Payoff Automaton Expression 7

Proof. To prove the direction from right to left, we show, in the following lemma,
that if an r multi-cycle does not exist, then for every infinite path there is a
dimension i for which Ai(π) < ri.

Lemma 4 Let G = (V,E) be a directed graph equipped with a weight function
wt : E → Qk, and let r ∈ Qk be a threshold vector. If G does not have an r
multi-cycle, then there exist constants ǫG > 0 and mG ∈ N such that for every
finite path π there is a dimension i for which wt i(π) ≤ mG + (ri − ǫG)|π|.

Lemma 4 implies that if an r multi-cycle does not exists, then for every infinite
path π there exist a dimension i and an infinite sequence of indices j1 < j2 <
j3 . . . such that the average weight of the prefix of π, of length jm, is at most
ri −

ǫG
2 , for all m ∈ N. Hence by definition LimInfAvg i(π) < ri.

In order to prove the converse direction, let us assume that G has an r multi-
cycle C = C1, . . . , Cn, such that the cycle Ci occurs mi times in C. We obtain
the witness path π in the following way (we demonstrate the claim for n = 2):
let π12 be a path from C1 to C2 and π21 be a path from C2 to C1 (recall that
the graph is strongly connected), we define

π = Cm1

1 π12C
m2

2 π21(C
m1

1)2π12(C
m2

2)2π21 . . . (C
m1

1)ℓπ12(C
m2

2)ℓπ21 . . .

Informally, the long-run average weight of the path π is determined only by the
cycles Cm1

1 and Cm2

2 , since the effect of the paths π12 and π21 on the average
weight of a prefix of π becomes negligible as the length of the prefix tends to
infinity. Thus Ai(π) ≥ ri for every dimension i, which concludes the proof of
Lemma 3 ⊓⊔

Lemma 3 and Lemma 2 immediately give us the following naive algorithm
for the emptiness problem for intersection of LimInfAvg automata: First, con-
struct the product automaton; second, list all the simple cycles in the product
automaton; third, construct the r multi-cycle constraints and check for their
feasibility.

When the automata and the threshold vector are clear from the context,
we shall refer to the r multi-cycle constraints, which are constructed from the
intersection of the given LimInfAvg automata and the threshold r, as the lim-inf
constraints.

3.3 The emptiness problem for intersection of LimSupAvg and

LimInfAvg automata

In this subsection we consider the problem where 2k weighted automata
A1, . . . , Ak, B1, . . . , Bk and two k-dimensional rational threshold vectors ra and
rb are given, and we need to decide whether there exists an infinite word w ∈ Σω

such that Ai(w) ≥ rai and Bi(w) ≥ rbi for all i ∈ {1, . . . , k}; or equivalently,

whether the intersection (
⋂k

i=1 Ai
≥ra

i) ∩ (
⋂k

i=1 Bi
≥rb

i) is nonempty.
Our solution will be a result of the following two lemmata. The first lemma

claims that there is a word that satisfies all the conditions iff there are words
w1, . . . , wk such that wj satisfies all the lim-inf conditions and the lim-sup con-
dition for the automaton Bj .

8 Yaron Velner

Lemma 5 There exists an infinite word w for which Ai(w) ≥ rai and Bi(w) ≥ rbi
for all i ∈ {1, . . . , k} iff there exist k infinite words w1, w2, . . . wk such that for
every j ∈ {1, . . . , k}:

Ai(wj) ≥ rai for all i ∈ {1, . . . , k} ; and Bj(wj) ≥ rbj

The second lemma shows that the emptiness problem for an intersection of
lim-inf automata and one lim-sup automaton can be reduced to the emptiness
problem for an intersection of lim-inf automata.

Lemma 6 The intersection B1
≥rb

1 ∩ (
⋂k

i=1 Ai
≥ra

i) is nonempty iff the intersec-

tion B1
≥rb

1 ∩ (
⋂k

i=1 Ai
≥ra

i) is nonempty.

Due to Lemma 5 and 6 we can solve the emptiness problem for intersection
of lim-inf and lim-sup automata in the following way: First, we construct the
product automata Ai = A1 × · · · × Ak × Bi for all i ∈ {1, . . . , k} and list all
the simple cycles that occur in it; second, we construct the threshold vector
ri = (ra1 , . . . , r

a
k , r

b
i) and check if the graph of Ai has an ri multi-cycle, for all

i ∈ {1, . . . , k}. Due to Lemma 5 and 6 the intersection is nonempty iff every Ai

has an ri multi-cycle, that is, if the ri multi-cycle constraints are feasible.
Recall that the existence of an ri multi-cycle in the graph of Ai is equivalent

to the feasibility of the corresponding lim-inf constraints for Ai and ri; in the se-
quel, we will refer to the set of constraints

⋃k

i=1{lim-inf constraints for Ai and ri}
as the min-only constraints. (As we use them to decide the emptiness of expres-
sions that contain only the min operator.)

In this subsection we proved that the emptiness of the intersection of
LimInfAvg and LimSupAvg automata is equivalent to the feasibility of the cor-
responding min-only constraints.

3.4 The emptiness problem for max-free expressions

In this subsection we solve the emptiness problem for max-free expressions. The
solution we present is a reduction to the emptiness problem for an intersection of
lim-inf and lim-sup automata with a threshold vector that satisfies certain linear
constraints; the reduction yields a naive double-exponential complexity upper-
bound for the problem, which we will improve in the succeeding subsection.

The reduction is based on the next simple observation.

Observation 1 The expression E = E1 + E2 is nonempty with respect to the
rational threshold ν iff there exist two thresholds ν1, ν2 ∈ R such that (i) The

intersection of the cut-point languages E≥ν1
1 and E≥ν2

2 is nonempty; and (ii) ν1+
ν2 ≥ ν.

If E = E1 + E2 and E1 and E2 are min-only expressions then we decide the
emptiness of E in the following way: we combine the min-only constraints for the
expressions E1 and E2 with respect to arbitrary thresholds r1 and r2 (that is, r1
and r2 are variables in the constraints), note that these are still linear constraints;

The Complexity of Mean-Payoff Automaton Expression 9

we then check the feasibility of the constraints subject to r1+r2 ≥ ν. (Note that
as all the constraints are linear, this can be done by linear programming.)

The next lemma shows that in the general case, the emptiness problem for
an arbitrary max-free expression and a threshold ν can be reduced, in polyno-
mial time, to the emptiness problem for an intersection of lim-inf and lim-sup
automata with respect to threshold vectors ra and rb subject to certain linear
constraints on ra and rb.

Lemma 7 Let E be a max-free expression with atomic expressions e1, . . . , ek,
and let ν be a rational threshold, then there exist a 2k×2k matrix ME and a 2k-
dimensional vector bν , with rational coefficients, and computable in polynomial
time (from E and ν) such that:

The expression E is nonempty (with respect to ν) iff there exists a 2k-

dimensional vector of reals r such that the intersection
⋂k

i=1 e
≥ri
i is

nonempty and ME × r ≥ bν .

Instead of formally proving the correctness of Lemma 7, we provide a generic
example that illustrates the construction of the matrix ME and the vector bν .

Example 1 Let E = min(A1, (A2 +A3)) +min(A4, A5). Then for every ν ∈ R,
each the following condition is equivalent to E≥ν 6= ∅.

– ∃r6, r7 ∈ R such that L≥r6

min(A1,(A2+A3))
∩ L≥r7

min(A4,A5)
6= ∅ and r6 + r7 ≥ ν.

– ∃r1, r4, r5, r6, r7, r8 such that A1
≥r1 ∩ L≥r8

A2+A3

∩ A4
≥r4

∩ A5
≥r5 6= ∅ and

r1 ≥ r6, r8 ≥ r6, r4 ≥ r7, r5 ≥ r7 and r6 + r7 ≥ ν.

– ∃r1, r2, r3, r4, r5, r6, r7, r8 such that A1
≥r1∩A2

≥r2∩A3
≥r3

∩A4
≥r4

∩A5
≥r5 6= ∅

and r1 ≥ r6, r2 + r3 ≥ r8, r8 ≥ r6, r4 ≥ r7, r5 ≥ r7 and r6 + r7 ≥ ν.

The reader should note that we associate every variable ri either with a sub-
expression or with an atomic expression; as we assume that each atomic expres-
sion occurs only once, the number of variables is at most 2k.

Hence we can solve the emptiness problem for a rational threshold ν and a
max-free expression E, which contains the atomic expressions e1, . . . , ek in the
following way: First, we construct the matrix ME and the vector bν ; second, we
construct the min-only constraints for the intersection

⋂k
i=1 e

≥ri
i and check for

their feasibility subject to the constraints ME × r ≥ bν .
In the sequel we will refer to the min-only constraints along with the ME,ν ×

r ≥ bν constraints as the max-free constraints ; we will show that even though
the size of the constraints is double-exponential, there is a PSPACE algorithm
that decides their feasibility (when the input is E and ν).

3.5 PSPACE algorithm for the emptiness problem of max-free

expressions

In this subsection we will present a PSPACE algorithm that for given max-free
expression E and rational threshold ν, decides the feasibility of the max-free

10 Yaron Velner

constraints; as shown in subsection 3.4, such algorithm also solves the emptiness
problem for max-free expressions. Informally, we will show that if the max-
free constraints are feasible then they have a short solution, and that a short
solution can be verified by a polynomial-space machine; hence the problem is in
NPSPACE, and due to Savitch Theorem, also in PSPACE.

The next lemma describes key properties of max-free constraints, which we
will use to obtain the PSPACE algorithm.

Lemma 8 For every max-free expression E:

1. For every threshold ν, the max-free constraints have at most O(k2) con-
straints, where k is the number of automata that occur in E, that are not of
the form of x ≥ 0, where x is a variable.

2. There exists a bound t, polynomial in the size of the expression, such that for
every threshold ν, the max-free constraints are feasible iff there is a solution
that assigns a nonzero value to at most t variables.

3. There exists a bound t, polynomial in the size of the expression, such that the
maximum threshold ν ∈ R, for which the max-free constraints are feasible, is
a rational and can be encoded by at most t bits. (In particular such maximum
ν exists.)

Recall that a rational solution for the max-free constraints corresponds to vectors
of thresholds and a set of multi-cycles, each multi-cycle with an average weight
that matches its corresponding threshold vector; by Lemma 8(2) the number of
different simple cycles that occur in the witness multi-cycles set is at most t. We
also observe that if a multi-set of cycles (that are not necessarily simple) with
average weight vector ν exists, then a ν multi-cycle (of simple cycles) also exists,
since we can decompose every non-simple cycle to a set of simple cycles; thus, a
ν multi-cycle exists iff there exists a multi-set of short cycles, where the length
of each cycle in the multi-set is at most the number of vertices in the graph (note
that in particular, every simple cycle is short).

Hence, we can decide the feasibility of the max-free constraints in the follow-
ing way: First, we guess t weight vectors of t short cycles that occur in the same
strongly connected component (SCC) of the product automaton of all the au-
tomata that occur in the expression; second, we construct the O(k2) constraints
of the max-free constraints and assign zero values to all the variables of the non-
chosen cycles; third, we check the feasibility of the formed O(k2) constraints,
where each constraint has at most t+ 1 variables.

Note that we can easily perform the last two steps in polynomial time (as
the values of the weight vector of every short cycle can be encoded by polyno-
mial number of bits); hence, to prove the existence of a PSPACE algorithm, it
is enough to show how to encode (and verify by a polynomial-space machine) t
average weight vectors of t short cycles that belong to one SCC of the product
automaton. Informally, the encoding scheme is based on the facts that every
vertex in the product automaton is a k-tuple of states, and that a path is a
sequence of alphabet symbols; the verification is done by simulating the k au-
tomata in parallel, and since the size of the witness string should be at most

The Complexity of Mean-Payoff Automaton Expression 11

exponential, we can do it with a polynomial-size tape. (More details are given
in the appendix.)

To conclude, we proved that there is a PSPACE algorithm that decides the
feasibly of the max-free constraints, and therefore the next lemma follows.

Lemma 9 The emptiness problem for max-free expressions is in PSPACE.

Lemma 9 along with Lemma 8(3) imply a PSPACE algorithm that computes
the maximum value of a max-free expression; the next lemma formally states
this claim.

Lemma 10 (i) The maximum value of a max-free expression is a rational value
that can be encoded by polynomial number of bits (in particular, every expression
has a maximum value); and (ii) The maximum value of a max-free expression
is PSPACE computable.

4 The Complexity of Mean-Payoff Expression Problems

In this section we will prove PSPACE membership, and PSPACE hardness, for
the classical mean-payoff expression problems; the key step in the proof of the
PSPACE membership is the next theorem, which extends Lemma 10 to arbitrary
expressions (as opposed to only max-free expressions).

Theorem 1 (i) The maximum value of an expression is a rational value that
can be encoded by polynomial number of bits (in particular, every expression has
a maximum value); and (ii) The maximum value of an expression is PSPACE
computable.

Proof (of Theorem 1). Informally, we prove that if the number of max operators
in the expressionE ism > 0, then we can construct in linear time two expressions
E1 and E2, each with at most m−1 max operators and of size at most |E|, such
that E = max(E1, E2); hence, in order to compute the maximum value of E, we
recursively compute the maximum values of E1 and E2, and return the maximum
of the two values; note that if the expression is max-free (that is, if m = 0), then
thanks to Lemma 10, the maximum value is PSPACE computable and can be
encoded by polynomial number of bits. (Formal proof is given in the appendix.)

⊓⊔

The PSPACE membership of the classical problems follows almost trivially from
Theorem 1. Indeed, for a given threshold, an expression is empty if its maximum
value is less than the threshold, and an expression is universal if its minimum
value (that is, the maximum of its numerical complement) is not less than the
threshold; the language inclusion and equivalence problems are special cases of
the universality problem (since the class of mean-payoff expressions is closed
under numerical complement and the sum operator); and the distance of the
expressions E1 and E2 is the maximum value of the expression F = max(E1 −
E2, E2 − E1).

12 Yaron Velner

The PSPACE lower bounds for the decision problems are obtained by re-
ductions from the emptiness problem for intersection of regular languages (see
proofs in the appendix), which is PSPACE-hard [14].

Thus, we get the main result of this paper:

Theorem 2 For the class of mean-payoff automaton expressions, the quanti-
tative emptiness, universality, language inclusion, and equivalence problems are
PSPACE-complete, and the distance is PSPACE computable.

5 Conclusion and Future Work

We proved tight complexity bounds for all classical decision problems for mean-
payoff expressions and for the distance computation problem. Future work is
to investigate the decidability of games with mean-payoff expression winning
condition.

Acknowledgements. The author would like to thank Prof. Alexander Rabi-
novich for his helpful comments. This research was partially supported by the
Israeli Centers of Research Excellence (I-CORE) program, (Center No. 4/11).

References

1. R. Alur, A. Degorre, O. Maler, and G. Weiss. On omega-languages defined by
mean-payoff conditions. FOSSACS ’09, pages 333–347. Springer-Verlag, 2009.

2. M. Bojanczyk. Beyond omega-regular languages. In STACS, pages 11–16, 2010.
3. U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman. Temporal specifi-

cations with accumulative values. In LICS, pages 43–52, 2011.
4. K. Chatterjee, L. Doyen, H. Edelsbrunner, T. A. Henzinger, and P. Rannou. Mean-

payoff automaton expressions. In CONCUR, pages 269–283, 2010.
5. K. Chatterjee, L. Doyen, and T. A. Henzinger. Expressiveness and closure prop-

erties for quantitative languages. Logical Methods in Computer Science, 2010.
6. K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages. ACM

Trans. Comput. Log., 11(4), 2010.
7. K. Chatterjee, A. Ghosal, T. A. Henzinger, D. Iercan, C. M. Kirsch, C. Pinello,

and A. Sangiovanni-Vincentelli. Logical reliability of interacting real-time tasks.
DATE ’08, pages 909–914. ACM.

8. M. Droste and P. Gastin. Weighted automata and weighted logics. Theor. Comput.

Sci., pages 69–86, 2007.
9. M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Springer

Publishing Company, Incorporated, 2009.
10. M. Droste and D. Kuske. Skew and infinitary formal power series. ICALP’03,

pages 426–438. Springer-Verlag.
11. M. Droste and G. Rahonis. Weighted automata and weighted logics on infinite

words. In Developments in Language Theory, pages 49–58, 2006.
12. S. Kosaraju and G. Sullivan. Detecting cycles in dynamic graphs in polynomial

time. STOC, pages 398–406. ACM, 1988.
13. O. Kupferman and Y. Lustig. Lattice automata. VMCAI’07, pages 199–213.

Springer-Verlag, 2007.

The Complexity of Mean-Payoff Automaton Expression 13

14. K.J. Lange and P. Rossmanith. The emptiness problem for intersections of regular
languages. MFCS ’92, pages 346–354. Springer-Verlag, 1992.

15. Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems.
Springer-Verlag New York, Inc., 1992.

16. K. G. Murty. Linear Programming. Wiley, New York, 1983.
17. A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977.
18. Y. Velner. The complexity of mean-payoff automaton expression. CoRR,

abs/1106.3054, 2012.
19. Y. Velner and A. Rabinovich. Church synthesis problem for noisy input. In FOS-

SACS, pages 275–289, 2011.
20. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theor.

Comput. Sci., 158(1&2):343–359, 1996.

14 Yaron Velner

Appendix

A Proofs for Section 3

A.1 Proofs for subsection 3.1

Proof of Lemma 1

Proof. The direction from left to right is easy:
Since for every i ∈ {1, . . . , k} there exists a path πi (namely π) such that

Ai(πi) ≥ ri it follows that there exists a simple cycle in A with average weight
at least ri in dimension i. (This fact is well-known for one-dimensional weighted
automata (e.g., see [20]), and hence it is true for the projection of A to the i-th
dimension.)

For the converse direction, we assume that for every i ∈ {1, . . . , k} there
exists a simple cycles Ci in A with average weight at least ri. Informally, we
form the path π by following the edges of the cycle Ci until the average weight
in dimension i is sufficiently close to ri, and then we do likewise for dimension
1 + (i (mod k)), and so on. Formally, for every ǫ > 0, and an arbitrary finite
path λ in A, we construct the path πǫ(λ) in the following way: The first part
of the path is λ, then we continue to a vertex in the cycle C1 and follow the
edges of the cycle C1 until the average weight in the first dimension of the path
is at least r1 − ǫ; we then continue to a vertex in C2 and follow the edges of C2

until the average weight in the second dimension is at least r2− ǫ; we repeat the
process also for C3, . . . , Ck. We recall that A is strongly connected, and therefore
πǫ(λ) is a valid path. Note that for every i ∈ {1, . . . , k} there is a prefix of πǫ(λ)
with average weight at least ri − ǫ in dimension i. Let π0 be an arbitrary path,
let ǫi =

1
2i and let πi = πǫi(πi−1). The reader can verify that the infinite path

π = π0π1π2 . . . satisfies Ai(π) ≥ ri for every i ∈ {1, . . . , k}, which concludes the
proof of the lemma. ⊓⊔

A.2 Proofs for subsection 3.2

Proof of Lemma 3

Proof. To prove the direction from right to left, we show, in the following lemma,
that if an r multi-cycle does not exist, then for every infinite path there is a
dimension i such that Ai(π) < ri.

Lemma 11 Let G = (V,E) be a directed graph equipped with a weight function
wt : E → Qk, and let r ∈ Qk be a threshold vector. If G does not have an r
multi-cycle, then there exist constants ǫG > 0 and mG ∈ N such that for every
finite path π there is a dimension i for which wt i(π) ≤ mG + (ri − ǫG)|π|.

Proof. Let ǫG be the minimal ǫ for which the r − ǫ multi-cycle constraints are
feasible; note that ǫG is the optimal solution for a linear programming problem;
the constraints of the linear programming problem are feasible, since the r − ǫ

The Complexity of Mean-Payoff Automaton Expression 15

multi-cycle constraints are feasible for ǫ = 2W + max{r1, . . . , rk} (where W is
the maximal weight that occur in the graph); in addition the solution is bounded
by ǫ = −W ; hence such ǫG must exist, and if G does not have an r multi-cycle
then ǫG > 0 (due to Lemma 2).

Let π be an arbitrary finite path in G of length longer than |V |, we de-
compose π into three paths namely π0, πc and π1 such that |π0|, |π1| ≤ |V |
and πc is a cyclic path (this can be done since any path longer then |V | con-
tains a cycle). Let C1, . . . , Cn be the simple cycles that occur in πc, and let
mi be the number of occurrences of cycle Ci in πc. By definition we get that
1

|πc|
wt(πc) = 1

|πc|

∑n
j=1 mjwt(Cj); and |πc| =

∑n
j=1 mj |Cj |. Towards contra-

diction let us assume that there exists δ < ǫG such that for every dimension
1

|πc|
wi(πc) ≥ ri − δ. Hence, by definition the r − δ multi-cycle constraints are

feasible, which contradicts the minimality of ǫG.
Therefore, for mG = −2|V |W (where −W is the minimal weight that occur

in the graph) we get that for every finite path π there exists a dimension i for
which wt i(π) ≤ mG + (ri − ǫG)|π|. ⊓⊔

Lemma 4 implies that if an r multi-cycle does not exists, then for every
infinite path π there exist a dimension i and an infinite sequence of indices
j1 < j2 < j3 . . . such that the average weight of the prefix of π of length jm is
at most ri −

ǫG
2 , for all m ∈ N. Hence by definition LimInfAvg i(π) < ri.

In order to prove the converse direction, let us assume that G has an r multi-
cycle C = C1, . . . , Cn, such that the cycle Ci occurs mi times in C. We obtain the
witness path π, for which we will prove that LimInfAvg(π) ≥ r, in the following
way: Let πi→j be a path from the cycle Ci to the cycle Cj (recall that the graph
is strongly connected). For every index ℓ ∈ N we define the finite path πℓ to be

(Cm1

1)ℓπ1→2(C
m2

2)ℓπ2→3 . . . πn−1→n(C
mn

n)ℓπn→1

We set π = π1π2 . . . πi . . . , and claim that LimInfAvg i(π) is at least ri in every
dimension i; for this purpose, it is enough to prove that for every ǫ > 0 we
have LimInfAvg i(π) ≥ ri − ǫ. For the rest of the proof we shall assume w.l.o.g
that ri = 0. Let us denote by πj the finite path π1π2 . . . πj ; by P the sum
|π1→2|+ | · · ·+ |πi→i+1|+ | · · ·+ πn−1→n|+ |πn→1|; by |C| the total length of the
multi-cycle, that is,

∑n
i=1 mi|Ci|; and by −W the minimal weight that occur in

the graph (in all dimensions). Then the average weight of dimension i for the
path πj is at least

−W |P |j

j · P + |C|
∑j

ℓ=1 ℓ
(1)

more over, in the path πj+1 = πjπ
j+1 the average weight in dimension i, for any

prefix longer than |πj | is at least

−W |P |(j + 1)−W (j + 1)|C|

j · P + |C|
∑j

ℓ=1 ℓ
(2)

Since the value of the sum
∑j

ℓ=1 ℓ is at least j2

4 , we get that for a large enough
number jǫ, for any prefix of π that is longer than jǫ, the average weight in
dimension i is at least −ǫ, and the claim follows.

16 Yaron Velner

Thus Ai(π) ≥ ri for every dimension i, which concludes the proof of Lemma 3
⊓⊔

A.3 Proofs for subsection 3.3

Proof of Lemma 5 In this proof, w.l.o.g, we assume that both threshold vectors
are the zero vector (that is, the vector 0).

The proof for the direction from left to right is trivial. To prove the con-
verse direction, we denote by A the 2k-dimensional product automaton of the
automata A1, . . . , Ak, B1, . . . , Bk; recall that an infinite word corresponds to an
infinite path in A; hence we can assume that there exist infinite paths π1, . . . , πk

such that for every j ∈ {1, . . . , k}:

Ai(πj) ≥ 0 for all i ∈ {1, . . . , k} ; and Bj(πj) ≥ 0

Informally, we shall construct the witness path π, for which Ai(π) ≥ 0 and
Bi(π) ≥ 0 for all i ∈ {1, . . . , k}, by following the path πj until the average
weights in the corresponding dimensions of A1, . . . , Ak and Bj are sufficiently
close to 0, and repeat the process for 1 + j mod k, and so on.

Formally: We denote the value of the minimal weight that occur in the graph
by −W . For every j ∈ {1, . . . , k} and ǫ > 0 we denote by N ǫ

j the first position
in the path πj such that in every position of πj , that is greater than N ǫ

j , the
average weight in all the dimensions that corresponds to A1, . . . , Ak is at least
−ǫ; the reader should note that by definition, such N ǫ

j always exists; we denote
N ǫ = maxj∈{1,...,k} N

ǫ
j . For every m ∈ N, ǫ > 0 and a finite path λ we denote

by πm,ǫ,λ
j the shortest prefix of the path λ · πj , of length at least m, such that

average weights in the prefix, in all the dimensions that correspond to A1, . . . , Ak

and Bj , are at least −ǫ (note that by the definition of πj , such prefix exists).
The following remark demonstrate the key property of the definitions above.

Remark 1 Let λ be a finite path, and let Mǫ =
(WNǫ)

ǫ
. For every i, j ∈ {1, . . . , k}

and ǫ > 0, the infinite path πMǫ,ǫ,λ
i πj satisfies

In every position of the path, greater than πMǫ,ǫ,λ
i , the average weight in

the dimensions that correspond to A1, . . . , Ak is at least −2ǫ.

We define an infinite sequence of finite paths λ0, λ1, λ2, . . . , in the following way:

– λ0 is an arbitrary path, for example: the first edge of π1.

– For i > 0: we denote λi = λi−1 · π
Mǫi

,ǫi,λi−1

i , where ǫi =
1
i
and for i > k:

πi ≡ π1+(i (mod k)).

We define π to be the limit path of the sequence {λi}∞i=1; by the construction of
π it follows that for every ǫ > 0, in infinite many positions, the average weight
of the dimension that corresponds to Bi is at least −ǫ, and that as of certain
position, the average weight in all the dimensions that correspond to A1, . . . , Ak

is at least −ǫ. Hence, by definition, for all i ∈ {1, . . . , k}:

Ai(π) ≥ 0 and Bi(π) ≥ 0

as required, and the proof of the lemma follows. ⊓⊔

The Complexity of Mean-Payoff Automaton Expression 17

Proof of Lemma 6

Proof. The direction from right to left is trivial; to prove the converse direction,

let us assume that the intersection B1
≥rb

1 ∩ (
⋂k

i=1 Ai
≥ra

i) is empty, and we shall

prove that the intersection B1
≥rb

1∩(
⋂k

i=1 Ai
≥ra

i) is also empty. W.l.o.g we assume

that ra = rb = 0. Let A be the k + 1-dimensional product automaton of the
automata A1, . . . , Ak and B1. Let π be an infinite path in A, we will show that
either Ai(π) < 0 for some i ∈ {1, . . . , k} or that B1(π) < 0. We first observe
that the automaton A does not have a 0 multi-cycle; this fact follows from
the assumption that the intersection B1

≥0 ∩ (
⋂k

i=1 Ai
≥0) is empty and from

Lemma 3. Hence, by Lemma 4, there exist constants m ∈ N and c > 0 such
that for every prefix π′ of the path π there exists a dimension i for which the
weight of π′ in dimension i is at most m − c|π′|; let j be the corresponding
dimension of the automaton B1, and let π∗ be the longest prefix with average
weight at most − c

2 in dimension j (note that π∗ does not necessarily exist). We
consider two disjoint cases: In the first case, there exists such π∗, and then, by
definition B1(π) ≤ − c

2 < 0 and the claim follows. In the second case, the path
π has infinitely many prefixes with average weight at least − c

2 in dimension j;
therefore (by Lemma 4) there must exist a dimension i for which the average
weight in dimension i is at most − c

2 for infinitely many prefixes of π; hence,
Ai(π) ≤ − c

2 < 0, and the claim follows.

To conclude, if the intersection B1
≥0 ∩ (

⋂k

i=1 Ai
≥0) is empty, then for every

infinite path π, either B1(π) < 0 or there exists some i ∈ {1, . . . , k} such that
Ai(π) < 0, which concludes the proof of Lemma 6. ⊓⊔

A.4 Proofs for subsection 3.5

Proof of Lemma 8

Proof. To prove the first item of Lemma 8 we present a detailed description of
the max-free constraints for an expression E and a threshold ν. Let A be the
k-dimensional product automaton of the automata that occur in the expression
E; w.l.o.g we assume that for some j, the first j dimensions of A correspond to
the LimInfAvg automata A1, . . . , Aj , and the last k − j dimensions correspond
to the LimSupAvg automata Aj+1, . . . , Ak. Let r be a 2k-dimensional vector of
variables; let C be the set of all simple cycles in A; and we define a variable
X i

c for every cycle c in C and a dimension i ∈ {j + 1, . . . , k}; then the min-
only constraints for the expression E and the threshold vector (r1, . . . , rk) are
as follows:

∑

c∈C

X i
cwtm(c) ≥ rm for every i ∈ {j + 1, . . . , k},m ∈ {1, . . . , j, i} (3)

∑

c∈C

|c|X i
c = 1 for every i ∈ {j + 1, . . . , k} (4)

X i
c ≥ 0 for every i ∈ {j + 1, . . . , k}, and c ∈ C (5)

18 Yaron Velner

and the max-free constraints are the min-only constraints along with the con-
straints

ME × r ≥ bν (6)

where ME and bν are the 2k × 2k matrix and the 2k-dimensional vector from
Lemma 7.

The proof of Lemma 8(1) follows immediately from the definition of the
max-free constraints.

To prove the additional two items of the lemma, we observe that the max-
free constraints for the expression E and the threshold ν remain linear when the
threshold ν is a variable; hence, the problem of computing the maximum thresh-
old ν for which the max-free constraints are feasible amounts to the following
linear-programming problem:

Find the maximum ν subject to the max-free constraints for expression
E and threshold ν.

Let W be a bound on the absolute value of the weights of A; clearly the max-free
constraints are feasible for the threshold −W , and are infeasible for the threshold
+2W ; hence, the domain of feasible thresholds is bounded and nonempty, and
by standard properties of linear programming [16], it follows that a maximum
threshold exists. Moreover, we observe that every coefficient in the max-free
constraints can be encoded by polynomial number of bits (as the length of a
simple cycle in the product automaton is at most exponential in the size of the
input), and that the number of constraints, which are not of the form of x ≥ 0,
is O(k2); we denote by D the maximal coefficient in the max-free constraints,
by standard properties of linear programming [16], it follows that the maximum
value of ν is obtained when at most O(k2) variables are assigned with rational
nonzero values, and the result of the linear-programming (that is, the maximum

threshold) is a rational with numerator and denominator bounded by DO(k2);
therefore only O(k2) log(D) bits are required to encode the maximum threshold.

To conclude, we proved that for the maximum threshold ν∗ for which the
max-free constraints are feasible, there is a solution for the corresponding max-
free constraints such that at most O(k2) variables are assigned with nonzero
values; and the threshold ν∗ requires only polynomial number of bits to encode;
hence the last two items of Lemma 8 immediately follows. ⊓⊔

Proof of Lemma 9

Proof. Recall that we can decide the non-emptiness of a max-free expression
by checking the feasibility of its corresponding max-free constraints, and that a
rational solution for the max-free constraints corresponds to vectors of thresholds
and a set of multi-cycles, each multi-cycle with an average weight that matches
its corresponding threshold vector; by Lemma 8(2) the number of different simple
cycles that occur in the witness multi-cycles set is at most t. We also observe
that if a multi-set of cycles (that are not necessarily simple) with average weight
vector ν exists, then a ν multi-cycle (of simple cycles) also exists, since we can

The Complexity of Mean-Payoff Automaton Expression 19

decompose every non-simple cycles to a set of simple cycles; thus, a ν multi-cycle
exists iff there exists a multi-set of short cycles, where the length of each cycle
in the multi-set is at most the number of vertices in the graph (note that in
particular, every simple cycle is short).

Hence, we can decide the feasibility of the max-free constraints in the follow-
ing way: First, we guess t weight vectors of t short cycles that occur in the same
SCC of the product automaton of all the automata that occur in the expression;
second, we construct the O(k2) constraints of the max-free constraints and as-
sign zero values to all the variables of the non-chosen cycles; third, we check the
feasibility of the formed O(k2) constraints, where each constraint has at most
t+ 1 variables.

Note that we can easily perform the last two steps in polynomial time (as the
values in the weight vector of every short cycle can be encoded by polynomial
number of bits); hence, to prove the existence of a PSPACE algorithm, it is
enough to show how to encode (and verify by a polynomial-space machine) t
average weight vectors of t short cycles that belong to one SCC of the product
automaton.

The encoding technique is straight forward and standard; we present its de-
tails only for the purpose of self-containment. We based the encoding on the
observations that a vertex in the product automaton is a k-tuple of states, and
that a short cycle is characterized by: (a) its length, which is at most the size
of the product automaton (that is, at most exponential in the size of the ex-
pression); (b) its initial (and final) vertex (that is, a k-tuple of states); and (c) a
sequence of alphabet symbols that corresponds to the path from its initial vertex
to its end vertex.

Thus, we encode t average weights by the sequence

(w1, . . . , wt)#(a1, b1, c1)#(a2, b2, c2)# . . .#(at, bt, ct)#π1→2→···→t→1

where w1, . . . , wt are the t average weights; ai ,bi and ci are respectively the
length, initial vertex and the path (that is, sequence of alphabet symbols) of
the cycle with the weight wi; and π1→2→···→t→1 is a sequence of symbols that
corresponds to a cyclic path between all the initial vertices of all t cycles.

To verify the encoding, we simply simulate, in parallel, each of the k weighted
automata, and store the weight vectors of each short cycle, which requires at
most polynomial number of bits2; we verify that all the cycles are in the same
SCC, given the witness π1→2→···→t→1, in similar way; finally, all that is left is
to verify that the vector (w1, . . . , wt) corresponds to the real average weights of
the cycles; in addition, we reject the witness if its number of bits exceeds the (at
most exponential) length threshold of t3|A|, where A is the product automaton
of all the automata occur in the expression.

To conclude, we proved that there is a PSPACE algorithm that decides the
feasibly of the max-free constraints, and Lemma 9 follows. ⊓⊔

2 Note that in general, the sum of exponential number of rationals may require ex-
ponential number of bits; however, in our case, there are only |A| different rational
numbers, hence their lowest common denominator has only polynomial number of
bits, and their sum can be encoded by polynomial number of bits.

20 Yaron Velner

Proof of Lemma 10

Proof. By definition, there exists an infinite word w such that E(w) ≥ ν iff
the expression E is nonempty with respect to threshold ν. By Lemma 8(3)
and by the equivalence of the feasibility of the max-free constraints and the
emptiness of the expression, the maximum threshold for which the expression E
is nonempty is a t-bits rational number (and moreover such maximum threshold
exists); hence we can find this maximum threshold by checking the emptiness of
E for all thresholds that are t-bits rational numbers, and return the maximal such
threshold (possible optimization is to do binary search over all t-bits thresholds);
this can be done in polynomial space due to Lemma 9. ⊓⊔

B Proofs for Section 4

B.1 Proof of Theorem 1

Proof. First, we claim that if the number of max operators in the expression
E is m > 0, then we can construct in linear time two expressions E1 and E2,
each with at most m− 1 max operators and of size at most |E|, such that E =
max(E1, E2). We prove the claim by induction on the number of (any) operators
in the expression: if the number of operators in the expression is zero, the claim
is trivially satisfied; otherwise let E = op(F,G) such that the expression F has
at least one max operator; as F has strictly fewer operators (as compared to E),
by the inductive hypothesis there exist two expressions F1 and F2, each with at
mostm−1 max operators, and of length at most |F |, such that F = max(F1, F2);
the reader can verify that E1 = op(F1, G) and E2 = op(F2, G) satisfy the claim,
that is, E = max(E1, E2) and |E1|, |E2| ≤ |E|.

Second, we observe the fact that if E = max(E1, E2), then

supw∈Σω E(w) = max(supw∈Σω E1(w), supw∈Σω E2(w))

Hence, in order to compute the maximum value of E, we simply compute the
maximum value of E1, the maximum value of E2 and return the maximum of
the two values. If E1 and E2 are max-free expressions, then thanks to Lemma 10
we can compute their maximum values by polynomial space Turing machine; in
the general case, if the number of max operators in the expression E is m, then
we construct in linear time two expressions E1 and E2, each with at most m− 1
max operators, such that E = max(E1, E2); then we recursively compute the
maximum value of E1 and the maximum value of E2 and return the maximum
of these values.

The reader can easily verify that the procedure we described requires only
polynomial space to run, and thus the proof of Theorem 1 follows. ⊓⊔

B.2 Lower bounds

In this subsection we will establish PSPACE lower bounds for the emptiness, uni-
versality, language inclusion and language equivalence problems; we obtain the

The Complexity of Mean-Payoff Automaton Expression 21

PSPACE lower bound for the emptiness problem by a reduction from the empti-
ness problem for intersection of regular languages (which is PSPACE-hard [14]);
for the universality problem we obtain the bound by a reduction from the uni-
versality problem for union of regular languages (which is the complement of
the first problem, and hence, also PSPACE-hard); and the lower bounds for the
language inclusion and equivalence problems are obtained by a reduction from
the universality problem (of mean-payoff expressions).

To present the reduction from the emptiness problem for intersection of regu-
lar languages we define, for a language of finite words L ⊆ Σ∗, and for a symbol
ξ /∈ Σ, the following function, for every infinite word w ∈ (Σ ∪ {ξ})ω:

fL(w) =

{

+1 if w ∈ L · ξ · (Σ + ξ)ω

−1 otherwise

It is easy to verify that if the language L is recognizable by a finite-state au-
tomaton A, then we can construct in linear time a weighted automaton A
such that A ≡ fL(A); and that for any k finite-state automata A1, . . . , Ak

over the alphabet Σ, the intersection
⋂k

i=1 L(Ai) is nonempty iff the expression
E = min(A1, . . . ,Ak) is nonempty with respect to threshold 0 and alphabet
Σ ∪ {ξ}; thus, the emptiness problem for mean-payoff expressions is PSPACE-
hard.

We prove the PSPACE hardness of the universality problem in a similar way;
we define the next function for every infinite word w ∈ (Σ ∪ {ξ})ω:

g(w) =

{

+1 if w ∈ Σω

−1 otherwise

we denote by G the (minimal) weighted automaton for which G(w) ≡ g (surely,
such automaton exists); and we observe that the union of the regular languages
⋃k

i=1 L(Ai) is universal iff the expression E = max(A1, . . . ,Ak, G) is universal

with respect to threshold 0 and alphabet Σ ∪ {ξ} (recall that Ai ≡ fL(Ai)).
Thus, the universality problem for mean-payoff expressions is PSPACE-hard.

The reductions from the universality problem to the language inclusion and
equivalence problems are trivial; let Z denote a weighted automaton for which
Z(w) ≡ 0 (for example an automaton where all the weights of the edges are zero,
and let E0 denote Z; then the expression E is universal with respect to threshold
0 iff E ≥ E0, and iff the expression min(E,E0) is equivalent to the expression
E0. Since the universality problem is PSPACE-hard even for threshold 0, the
next lemma follows.

Lemma 12 For the class of mean-payoff automaton expressions, the quantita-
tive emptiness, universality, language inclusion, and equivalence problems are
PSPACE-hard.

	The Complexity of Mean-Payoff Automaton Expression

