
ar
X

iv
:1

30
8.

24
73

v1
  [

cs
.D

C
] 

 1
2 

A
ug

 2
01

3

Super-Fast Distributed Algorithms for Metric Facility Location

Andrew Berns, James Hegeman, and Sriram V. Pemmaraju ∗

Department of Computer Science
The University of Iowa

Iowa City, Iowa 52242-1419, USA
[andrew-berns,james-hegeman,sriram-pemmaraju]@uiowa.edu

Abstract

This paper presents a distributed O(1)-approximation algorithm, with expected-O(log log n) run-
ning time, in the CONGEST model for the metric facility location problem on a size-n clique network.
Though metric facility location has been considered by a number of researchers in low-diameter settings,
this is the first sub-logarithmic-round algorithm for the problem that yields an O(1)-approximation in
the setting of non-uniform facility opening costs. In order to obtain this result, our paper makes three
main technical contributions. First, we show a new lower bound for metric facility location, extending
the lower bound of Bădoiu et al. (ICALP 2005) that applies only to the special case of uniform facility
opening costs. Next, we demonstrate a reduction of the distributed metric facility location problem
to the problem of computing an O(1)-ruling set of an appropriate spanning subgraph. Finally, we
present a sub-logarithmic-round (in expectation) algorithm for computing a 2-ruling set in a spanning
subgraph of a clique. Our algorithm accomplishes this by using a combination of randomized and
deterministic sparsification.

1 Introduction

This paper explores the design of “super-fast” distributed algorithms in settings in which bandwidth
constraints impose severe restrictions on the volume of information that can quickly reach an individual
node. As a starting point for our exploration, we consider networks of diameter one (i.e., cliques) so as to
focus on bandwidth constraints only and avoid latencies imposed by distance between nodes in the network.
We assume the standard CONGEST model [22], which is a synchronous message-passing model in which
each node in a size-n network can send a message of size O(log n) along each incident communication link in
each round. By “super-fast” algorithms we mean algorithms whose running time is strictly sub-logarithmic,
in any sense – deterministic, in expectation, or with high probability (w.h.p.). Several researchers have
previously considered the design of such “super-fast” algorithms; see [11, 14, 21] for recent examples of
relevant results. The working hypothesis is that in low-diameter settings, where congestion, rather than
distance between nodes, is the main bottleneck, we should be able to design algorithms that are much
faster than corresponding algorithms in high-diameter settings.

The focus of this paper is the distributed facility location problem, which has been considered by several
researchers [6, 17, 19, 20] in low-diameter settings. We first describe the sequential version of the problem.
The input to the facility location problem consists of a set of facilities F = {x1, x2, . . . , xm}, a set of clients
C = {y1, y2, . . . , yn}, an opening cost fi associated with each facility xi, and a connection cost D(xi, yj)
between each facility xi and client yj. The goal is to find a subset F ⊆ F of facilities to open so as to
minimize the facility opening costs plus connection costs, i.e.,

FacLoc(F ) :=
∑

xi∈F

fi +
∑

yj∈C
D(F, yj)

∗This work is supported in part by National Science Foundation grant CCF 0915543. This is a full version of a paper that
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where D(F, yj) := minxi∈F D(xi, yj). Facility location is an old and well-studied problem in operations
research [1, 3, 4, 8, 24] that arises in contexts such as locating hospitals in a city or locating distribution
centers in a region.

The metric facility location problem is an important special case of facility location in which the
connection costs satisfy the following “triangle inequality:” for any xi, xi′ ∈ F and yj , yj′ ∈ C, D(xi, yj) +
D(yj , xi′) + D(xi′ , yj′) ≥ D(xi, yj′). The facility location problem, even in its metric version, is NP-
complete and finding approximation algorithms for the problem has been a fertile area of research. A
series of constant-factor approximation algorithms have been proposed for the metric facility location
problem, with a steady improvement in the approximation factor. See [13] for a recent 1.488-approximation
algorithm. This result is near-optimal because it is known [7] that the metric facility location problem
has no polynomial-time algorithm yielding an approximation guarantee better than 1.463 unless NP ⊆
DTIME(nO(log logn)). For non-metric facility location, a simple greedy algorithm yields an O(log n)-
approximation, and this is also optimal (to within a constant factor) because it is easy to show that the
problem is at least as hard as set cover.

More recently, the facility location problem has been used as an abstraction for the problem of locating
resources in a wireless network [5, 18]. Motivated by this application, several researchers have considered
the facility location problem in a distributed setting. In [17, 19, 20], the underlying communication
network is a complete bipartite graph with F and C forming the bipartition. At the beginning of the
algorithm, each node, whether it is a facility or a client, has knowledge of the connection costs between
itself and all nodes in the other part. In addition, the facilities know their opening costs. In [6], the
underlying communication network is a clique. Each node in the clique may choose to open as a facility,
and each node that does not open will connect to an open facility. Note that all of the aforementioned
work assumes the CONGEST model of distributed computation. The facility location problem considered
in [18] assumes that the underlying communication network is a unit disk graph (UDG). The algorithm
presented in that paper ignores bandwidth constraints and works only in the LOCAL model [22]. While a
UDG can have high diameter relative to the number of nodes in the network, the authors [18] reduce the
UDG facility location problem to a collection of low-diameter facility location-type problems, providing
additional motivation for the current work.

None of the prior papers, however, achieve near-optimal approximation (i.e., constant-factor in the case
of metric facility location and O(log n)-factor for non-metric facility location) in sub-logarithmic rounds.
While [6] does present a constant-round, constant-factor approximation to metric facility location on a
clique, it is only for the special case of uniform metric facility location, i.e., when all facility opening costs
are identical. The question that drives this paper, then, is: Can we develop a distributed constant-factor
approximation algorithm for the metric facility location problem in the clique setting that runs in strictly
sub-logarithmic time? One can ask similar questions in the bipartite setting and for non-metric facility
location as well, but as a first step we focus on the metric version of the facility location problem on a
clique.

Distributed facility location is challenging even in low-diameter settings because the input consists of
Θ(n2) information (there are Θ(n2) connection costs), distributed across the network, which cannot quickly
be delivered to a single node (or even a small number of nodes) due to the bandwidth constraints of the
CONGEST model. Therefore, any fast distributed algorithm for the problem must be truly distributed
and must take advantage of the available bandwidth, as well as structural properties of approximate
solutions. Also worth noting is that even though tight lower bounds on the running times of distributed
approximation algorithms have been established [9], none of these bounds extend to the low-diameter
setting considered in this paper. Thus, at the outset it was unclear if a sub-logarithmic round algorithm
providing a constant-factor approximation was even possible for the facility location problem.

Main result. The main result of this paper is an O(1)-approximation algorithm, running in expected-
O(log logn) rounds in the CONGEST model, for metric facility location on a size-n clique. If the metric
satisfies additional properties (e.g., it has constant doubling dimension), then we obtain an O(log∗ n)-
round O(1)-approximation for the problem. Our results are achieved via a combination of techniques that
include (i) a new constant-factor lower bound on the optimal cost of metric facility location and (ii) a
randomized sparsification technique that leverages the available bandwidth to (deterministically) process
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Figure 1: This is an illustration of a radius-ri ball centered at xi. There are 6 points (including xi)
inside this ball, implying that the sum of 6 “distances,” denoted by line segments from points to the
ball-boundary, equals fi.

sparse subgraphs. For ease of exposition, we assume that numbers in the input (e.g., connection and
opening costs) can each be represented in O(log n) bits and thus can be communicated over a link in O(1)
rounds in the CONGEST model.

1.1 Technical Overview of Contributions

We start by precisely stating the distributed facility location problem on a clique, as in [16, 6]. Let (X,D)
be a discrete metric space with point set X = {x1, x2, . . . , xn}. Let fi be the opening cost of xi. We
view the metric space (X,D) as a completely-connected size-n network C = (X,E) with each point xi

represented by a node (which we also call xi) and with E representing the set of all pairwise communication
links. Each node xi knows fi and the connection costs (distances) D(xi, xj) for all xj ∈ X . The problem is
to design a distributed algorithm that runs on C in the CONGEST model and produces a subset F ⊆ X
such that each node xi ∈ F opens and provides services as a facility, and each node xi /∈ F connects to
the nearest open node. The goal is to guarantee that FacLoc(F ) ≤ α · OPT , where OPT is the cost
of an optimal solution to the given instance of facility location and α is some constant. We call this
the CliqueFacLoc problem. Of course, we also want our algorithm to be “super-fast” and terminate
in o(log n) rounds. In order to obtain the result described earlier, our paper makes three main technical
contributions.

1. Reduction to an O(1)-ruling set problem. Our first contribution is an O(1)-round reduction of
the distributed facility location problem on a clique to the problem of computing an O(1)-ruling set
of a specific spanning subgraph of the clique C. Let C′ = (X,E′) be a spanning subgraph of C. A
subset Y ⊆ X is said to be independent if no two nodes in Y are neighbors in C′. An independent set
Y is a maximal independent set (MIS) if no superset Y ′ ⊃ Y is independent in C′. An independent
set Y is β-ruling if every node in X is at most β hops along edges in C′ from some node in Y . Clearly,
an MIS is a 1-ruling set. We describe an algorithm that approximates distributed facility location on
a clique by first computing a spanning subgraph C′ in O(1) rounds. Then we show that a solution to
the CliqueFacLoc problem (i.e., a set of nodes to open) can be obtained by computing a β-ruling
set in C′ and then selecting a certain subset of the ruling set. This step – selecting an appropriate
subset of the β-ruling set – can also be accomplished in O(1) rounds. The parameter β affects the
approximation factor of the computed solution and we show that enforcing β = O(1) ensures that
the solution to facility location is an O(1)-approximation.

3
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f1 = 1 f2 = 99

Figure 2: Here r1 = 1 and r2 = 50. However, the optimal solution involves opening only point x1 and
costs only 2 units. The sum r1 + r2 can be made arbitrarily large relative to the optimal cost by simply
increasing f2. Note also that r2 is just 2.

2. A new lower bound for metric facility location. To show that the computation of an O(1)-
ruling set, as sketched above, does indeed lead to an O(1)-approximation algorithm for CliqueFa-

cLoc, we develop new analysis tools. In particular, we derive a new lower bound on the cost of an
optimal solution to the facility location problem. For x ∈ X , let B(x, r) denote the set of points
y ∈ X satisfying D(x, y) ≤ r. For each xi, let ri be the nonnegative real number satisfying

∑

y∈B(xi,ri)

(ri −D(xi, y)) = fi.

See Figure 1 for intuition regarding this definition of the ri’s. As observed by Mettu and Plaxton
[16], ri exists and is uniquely defined. Bădoiu et al. proved in [2] that

∑n
i=1 ri is a constant-factor

approximation for OPT in the case of uniform facility opening costs; this fact plays a critical role in
the design of the constant-round, constant-factor approximation algorithm of Gehweiler et al. [6] for
the special case of CliqueFacLoc in which all facility opening costs are identical. However, the sum
∑n

i=1 ri can be arbitrarily large in relation to OPT when the fi’s are allowed to vary. Consider an
example consisting of only two nodes, one of whose opening costs is large in comparison to the other
and to the distance between them. (See Figure 2.) Though the ri’s turn out not to directly provide
a lower bound, they are still quite useful. We apply the following (idempotent) transformation

ri → ri = min
1≤j≤n

{D(xi, xj) + rj}

to define, for each xi, a new quantity that we call ri, and use ri instead of ri to formulate a lower
bound. Note that for any i, ri ≤ ri. In the example in Figure 2, r2 = 50, but r2 = 2. We show later
that

∑n
i=1 ri bounds the optimal cost OPT from below (to within a constant factor) in the general

case of non-uniform facility opening costs (Lemma 2). We complete our analysis by showing that
using an O(1)-ruling set produces a solution to CliqueFacLoc whose cost is bounded above by a
constant times

∑n
i=1 ri (Lemma 5).

3. An O(1)-ruling set via a combination of randomized and deterministic sparsification.

Our final contribution is an expected-O(log logn)-round algorithm for computing a 2-ruling set of
a given spanning subgraph C′ of a clique C. We start by describing a deterministic “subroutine”
that takes a subset Z ⊆ X as input and computes an MIS of C′[Z] (i.e., the subgraph of C′ induced
by Z) in c rounds if C′[Z] has at most c · n edges. This is achieved via a simple load-balancing
scheme that communicates the entire subgraph C′[Z] to all nodes in c rounds. We then show how
to use randomization to repeatedly peel off subgraphs with linearly many edges (in expectation) for
processing by the aforementioned subroutine. In this manner, the entire graph C′ can be processed
using a number of subroutine calls which is O(log logn) in expectation (Theorem 2).

1.2 Related Work

In [17], Moscibroda and Wattenhofer use the technique of distributed LP-rounding to solve the facility
location problem in the CONGEST model, assuming that the communication network is the complete
bipartite graph G = (F , C, E). Let m = |F| and n = |C|. Assuming that the connection costs and
facility opening costs have size that is polynomial in (m + n), they achieve, for every constant k, an

O(
√
k(mn)1/

√
k log(m + n))-approximation in O(k) communication rounds. Note that one can obtain
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“super-fast” algorithms for facility location by taking k small enough, but with a significant corresponding
loss in the approximation factor. For the metric facility location problem, Pemmaraju and Pandit use
the primal-dual method to obtain a 7-approximation [19] that runs in O(logm + logn) rounds. The
same paper contains a generalization of this result: A k-round algorithm that, for every constant k,

yields an approximation factor of O(m2/
√
k · n3/

√
k). Note that setting k = log2(mn) here yields an

O(1)-approximation in O(log2(mn)) rounds for the metric facility location problem. Subsequently [20],
Pemmaraju and Pandit improved the Moscibroda-Wattenhofer result for non-metric facility location. For
instances with m facilities and n clients, for any positive k, the algorithm in [20] runs in O(k) rounds

and yields a O((mn)5/
√
k · log n)-approximation, shaving off a “logarithmic” term from the approximation

factor achieved by Moscibroda and Wattenhofer.
While all of the above mentioned distributed algorithms are fast and achieve near-optimal approxi-

mation ratios for facility location, none of them seem to take particular advantage of the small diameter
of the network on which they are executing. An excellent illustration of a distributed algorithm that
takes advantage of the low-diameter setting in which it operates is provided by the minimum spanning
tree (MST) algorithm of Lotker et al. [14]. Consider a clique network in which each edge (u, v) has an
associated weight w(u, v) of which only nodes u and v are aware. The problem is for the nodes to compute
an MST of the edge-weighted clique such that after the computation, each node knows the MST edges
incident on it. It is important to note that the problem is defined by Θ(n2) inputs and it would take

Ω
(

n
logn

)

rounds of communication for all of this information to reach a single node (in the CONGEST
model of distributed computation). Lotker et al. [14] showed that the MST problem on a clique can in
fact be solved in O(log logn) rounds in the CONGEST model. The algorithm of Lotker et al. employs a
clever merging procedure that causes the sizes of the MST components to, roughly speaking, square with
each iteration, leading to an O(log logn)-round computation time.

Several more recent papers have continued the development of “super-fast” algorithms in low-diameter
settings. In STOC 2011, Lenzen and Wattenhofer [12] derived tight bounds on parallel load balancing and
their result has applications in how information can be quickly disseminated in a clique (in the CONGEST
model). In PODC 2011, Patt-Shamir and Teplitsky [21] presented on O(log logn) randomized algorithm
for the distributed sorting problem. Third, Lenzen [10] showed that randomization is not necessary for
solving problems such as distributed sorting efficiently. Lenzen presented deterministic, constant-round
algorithms for a routing problem and for the distributed sorting problem considered in [21]. Constant-
round algorithms for sophisticated problems, of the kind described by Lenzen [10], highlight the difficulty
of showing non-trivial lower bounds in the CONGEST model for clique networks. For example, it has
been proved that computing an MST in general requires Ω( 4

√
n/ logn) rounds for diameter-3 graphs [15],

but no non-trivial lower bounds are known for diameter-2 or clique (diameter-1) networks.

2 Reduction to the O(1)-Ruling Set Problem

2.1 Algorithm

We present our distributed algorithm forCliqueFacLoc in Algorithm 1. This algorithm is not complete in
the sense that it does not solve CliqueFacLoc directly, but rather reduces it to a problem of computing
an s-ruling set on a spanning subgraph of the clique network. We complete the algorithm in the next
section by presenting a 2-ruling set algorithm that runs in expected-O(log logn) rounds.
Algorithm 1 consists of three stages, which we now describe.
Stage 1 (Steps 1-2). Each node knows its own opening cost and the distances to other nodes, so node xi

computes ri and broadcasts that value to all others. Once this is complete, each node knows all of the ri
values. Next, every node computes a partition of the network into groups whose ri values vary by at most
a factor of c0 = 1+ 1√

2
(Step 2). Specifically, let r0 := min1≤j≤n{rj}, and define the class Vk to be the set

of nodes xi such that ck0 · r0 ≤ ri < ck+1
0 · r0. Every node computes the class into which each node in the

network, including itself, falls.

Stage 2 (Steps 3-5). We now focus our attention on class Vk. Suppose xi, xj ∈ Vk. We define xi and xj

5



Algorithm 1 FacilityLocation

Input: A discrete metric space of nodes (X,D), with opening costs;
a sparsity parameter s
Assumption: Each node knows its own opening cost and the distances from itself to other nodes
Output: A subset of nodes (a configuration) to be declared open

1. Each node xi computes and broadcasts its value ri; r0 := mini ri.
2. Each node computes a partition of the network into classes Vk, k = 0, 1, . . . with

ck0 · r0 ≤ rj < ck+1
0 · r0 for xj ∈ Vk.

3. Each node xi ∈ Vk determines its neighbors within its own class Vk using the following rule:
For xj ∈ Vk, xj is a neighbor of xi if and only if D(xi, xj) ≤ ri + rj .
The graph on vertex set Vk induced by these edges is denoted Hk.

4. All nodes now use procedure RulingSet(
⋃

k Hk,s) to determine
an s-ruling set T ∗ ⊆ X . We use Tk to denote T ∗ ∩ Vk.

5. Each node xi broadcasts its membership status with respect to the s-ruling set
of its class, Tk.

6. A node xi ∈ Vk declares itself to be open if:
(i) xi is a member of set Tk ⊆ Vk, and
(ii) There is no node xj belonging to a class Vk′ , with k′ < k,

such that D(xi, xj) ≤ 2ri.
7. Each node broadcasts its status (open or not), and nodes connect to the nearest open facility.

to be adjacent in class Vk if D(xi, xj) ≤ ri + rj . Each node in Vk can determine its neighbors in Vk. We
refer to the graph on nodes in Vk induced by this adjacency condition as Hk. Next, consider the spanning
subgraph (on all n nodes)

⋃

k Hk. We apply procedure RulingSet() to
⋃

k Hk to compute an s-ruling set
T ∗ of

⋃

k Hk. We describe a “super-fast” (in expectation) implementation of RulingSet(·,2) in Section
3. An s-ruling set T ∗ ⊆ X of

⋃

k Hk determines, for each k, an s-ruling set Tk ⊆ Vk of Hk. After the
sparse sets Tk have been constructed for the classes Vk, each node broadcasts its membership status with
respect to the s-ruling set Tk of its own class.

Stage 3 (Steps 6-7). Finally, a node xi in class Vk opens if (i) xi ∈ Tk, and (ii) there is no node xj ∈
B(xi, 2ri) of a class Vk′ with k′ < k. Open facilities declare themselves via broadcast, and every node
connects to the nearest open facility.

2.2 Running Time Analysis

The accounting of the number of communication rounds required by Algorithm 1 is straightforward. Stage
1 requires exactly one round of communication, to broadcast ri values. Stage 2 requires O(T (n, s)) rounds
to compute the s-ruling subsets {Tk}k, and an additional round to broadcast membership status. Stage
3 requires one round, in order to inform others of a nodes decision to open or not. Thus, the running
time of our algorithm in communication rounds is O(T (n, s)). In Section 3 we show that T (n, 2) can be
O(log logn) in expectation.

Lemma 1 Algorithm 1 runs in O(T (n, s)) rounds, where T (n, s) is the number of communication rounds
needed to compute an s-ruling set of a spanning subgraph C′ of the n-node clique network.

2.3 Cost Approximation Analysis

We now show that Algorithm 1 produces anO(s)-approximation toCliqueFacLoc. This analysis borrows
ideas from the analysis of a simple, greedy, sequential facility location algorithm due to Mettu and Plaxton
[16]. The Mettu-Plaxton algorithm considers points xi in non-decreasing order of the ri’s. Then, each xi

under consideration is included in the solution if B(xi, 2ri) does not contain any point already included in
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the solution. Mettu and Plaxton show that, if FMP ⊆ X is the set of facilities opened by their algorithm,
FacLoc(FMP ) ≤ 3 ·OPT .

We next recall the charging scheme employed by Mettu and Plaxton for the analysis of their algorithm.
The charge(·, ·) of a node xi with respect to a collection of (open) facilities F (also known as a configuration)
is defined by

charge(xi, F ) = D(xi, F ) +
∑

xj∈F

max{0, rj −D(xj , xi)}

where D(xi, F ) = minxj∈F D(xi, xj). It is easy to check that the cost of a configuration F , FacLoc(F ), is
precisely equal to the sum of the charges with respect to F , i.e.,

∑n
i=1 charge(xi, F ) [16]. Given that the

Mettu-Plaxton algorithm yields a 3-approximation, we see that for any F ⊆ X ,

FacLoc(F ) ≥ 1

3
FacLoc(FMP ) =

1

3

n
∑

i=1

charge(xi, FMP )

The rest of our analysis consists of two parts. In the first part, we show (as promised) that
∑n

i=1 ri
is a constant-factor lower bound for OPT . In the second part, we show the corresponding upper bound
result. In other words, we show that for the subset F ∗ of facilities opened by Algorithm 1, FacLoc(F ∗) =
O(
∑n

i=1 ri).

2.3.1 A New Lower Bound for Non-uniform Metric Facility Location.

Lemma 2 FacLoc(F ) ≥ (
∑n

i=1 ri)/6 for any configuration F .

Proof. Notice that FMP has the property that no two facilities xi, xj ∈ FMP can be so close that
D(xi, xj) ≤ ri + rj [16]. Therefore, if xδ(i) denotes a closest open facility (i.e., an open facility satisfying
D(xi, xδ(i)) = D(xi, FMP )), then

FacLoc(FMP ) =

n
∑

i=1

charge(xi, FMP )

=
∑

xj∈FMP

charge(xj , FMP ) +
∑

xi /∈FMP

charge(xi, FMP )

≥
∑

xj∈FMP

rj +
∑

xi /∈FMP

[

D(xi, xδ(i)) + max{0, rδ(i) −D(xδ(i), xi)}
]

=
∑

xj∈FMP

rj +
∑

xi /∈FMP

max{rδ(i), D(xi, xδ(i))}

Note that the inequality in the above calculation (in the third line) follows from observing that charge(xj , FMP ) ≥
rj for xj ∈ FMP , and from throwing away some terms of the sum in the definition of charge(xi, FMP ) for
xi /∈ FMP .

Now, recall the definition ri = min1≤j≤n{D(xi, xj) + rj}. Therefore, ri ≤ ri, and ri ≤ D(xi, xδ(i)) +
rδ(i) ≤ 2 ·max{rδ(i), D(xi, xδ(i))}. It follows that

FacLoc(FMP ) ≥
∑

xj∈FMP

rj +
∑

xi /∈FMP

ri
2

≥
∑

xj∈FMP

rj
2

+
∑

xi /∈FMP

ri
2

=
1

2
·

n
∑

i=1

ri

7



Therefore FacLoc(F ) ≥ FacLoc(FMP )/3 ≥ (
∑n

i=1 ri)/6, for any configuration F . ⊓⊔

2.3.2 The Upper Bound Analysis

Let F ∗ be the set of nodes opened by our algorithm. We analyze FacLoc(F ∗) by bounding charge(xi, F
∗)

for each xi. Recall that FacLoc(F ) =
∑n

i=1 charge(xi, F ) for any F . Since charge(xi, F
∗) is the sum of two

terms, D(xi, F
∗) and

∑

xj∈F∗ max{0, rj −D(xj , xi)}, bounding each term separately by a O(s)-multiple
of ri, yields the result.

In the following analysis, we mainly use the property of an s-ruling set Tk ⊆ Vk that for any node
xi ∈ Vk, D(xi, Tk) ≤ 2c0ri · s. Note that here we are using distances from the metric D of (X,D). We also
make critical use of the property of our algorithm that if a node xj ∈ Tk does not open, then there exists
another node xj′ in a class Vk′ , with k′ < k, such that D(xj , xj′ ) ≤ 2rj .

Lemma 3 D(xi, F
∗) ≤ (s+ 1) · 4c20 · ri.

Proof. Let xi′ be a minimizer for D(xi, xy)+ ry (where xi′ may be xi itself), so that ri = D(xi, xi′ )+ ri′ .
Suppose that xi′ ∈ Vk′ . Note that k′ ≤ k. We know that xi′ is within distance 2c0s · ri′ of a node
xj′ ∈ Tk′ (which may be xi′ itself). Then, xj′ either opens, or there exists a node xj1 of a lower class
such that D(xj′ , xj1 ) ≤ 2rj′ . In the former case, D(xi′ , F

∗) ≤ 2c0s · ri′ ; in the latter case we have
D(xi′ , xj1) ≤ D(xi′ , xj′ ) +D(xj′ , xj1) ≤ 2c0s · ri′ + 2rj′ ≤ (s+ 1) · 2c0ri′ , the last inequality owing to the
fact that xi′ and xj′ belong to the same class.

So, within a distance (s+ 1) · 2c0ri′ of xi′ , there exists either an open node or a node of a lower class.
In the latter case (in which there is a node xj1 of a lower class), we repeat the preceding analysis for xj1 ;
within a distance (s + 1) · 2c0rj1 of xj1 , there must exist either an open node or a node of a class Vk2 ,
where k2 ≤ k′ − 2.

Repeating this analysis up to k′ + 1 times shows that, within a distance of at most (s+ 1) · 2c0 · (ri′ +
rj1 + rj2 + rj3 + . . .+ rjk′

), where rjw is the characteristic radius of a node xjw in class Vk′−w, there exists
a node which opens as a facility. This distance is naturally bounded above by (s + 1) · 2c0 · (ri′ + ri′ +
1
c0
ri′ +

1
c20
ri′ + . . .) ≤ (s+ 1) · 2c0 · (2 +

√
2)ri′ = (s+ 1) · 4c20 · ri′ . Therefore,

D(xi, F
∗) ≤ D(xi, xi′ ) +D(xi′ , F

∗)

≤ D(xi, xi′ ) + (s+ 1) · 4c20 · ri′

≤ (s+ 1) · 4c20 · (D(xi, xi′ ) + ri′)

= (s+ 1) · 4c20 · ri

⊓⊔

Lemma 4
∑

xj∈F∗ max{0, rj −D(xj , xi)} ≤ c0 · ri.

Proof. We begin by observing that we cannot simultaneously have D(xj , xi) ≤ rj and D(xl, xi) ≤ rl for
xj , xl ∈ F ∗ and j 6= l. Indeed, if this were the case, then D(xj , xl) ≤ rj + rl. If xj and xl were in the same
class Vy, then they would be adjacent in Hy; this is impossible, for then they could not both be members
of Ty (for a node in Vy, membership in Ty is necessary to join F ∗). If xj and xl were in different classes,
assume WLOG that rj < rl. Then D(xj , xl) ≤ rj + rl ≤ 2rl, and xl should not have opened. These
contradictions imply that there is at most one node xj ∈ F ∗ for which D(xj , xi) ≤ rj .

For the rest of this lemma, then, assume that xj ∈ F ∗ is the unique open node such that D(xj , xi) ≤ rj
(if such a xj does not exist, there is nothing to prove). Note that xi cannot be of a lower class than xj

(for else xj would not have opened). Consequently, rj < c0 · ri.
Now, suppose that c0ri < rj −D(xj , xi). As before, let xi′ be a minimizer for D(xi, xy) + ry (where

xi′ may be xi itself). Then c0 ·D(xi, xi′ ) + c0 · ri′ < rj −D(xj , xi), so we have (i) c0ri′ < rj (and xi′ is in
a lower class than xj) and (ii) D(xj , xi′) ≤ D(xj , xi) +D(xi, xi′ ) < rj , which means that xj should not
have opened. This contradiction completes the proof of the lemma. ⊓⊔
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Lemma 5 FacLoc(F ∗) ≤ 6 · (4c20s+ 4c20 + c0) · OPT.

Proof. Combining the Lemmas 3 and 4 gives

FacLoc(F ∗) =
n
∑

i=1

charge(xi, F
∗) =

n
∑

i=1



D(xi, F
∗) +

∑

xj∈F∗

max{0, rj −D(xj , xi)}





≤
n
∑

i=1

[

(4c20s+ 4c20) · ri + c0ri
]

≤ (4c20s+ 4c20 + c0) ·
n
∑

i=1

ri

From Lemma 2, we know that
∑n

i=1 ri ≤ 6 · OPT . Combining this fact with the above inequality, yields
the result. ⊓⊔

Lemma 1 on the running time of the algorithm, combined with the above lemma on the approximation
factor, yield the following result.

Theorem 1 Algorithm 1 (FacilityLocation) computes an O(s)-factor approximation to CliqueFa-

cLoc in O(T (n, s)) rounds, where T (n, s) is the running time of the RulingSet() procedure called with
argument s.

3 Computing a 2-Ruling Set

The facility location algorithm in Section 2 depends on being able to efficiently compute a β-ruling set, for
small β, of an arbitrary spanning subgraph C′ of a size-n clique C. This section describes how to compute
a 2-ruling set of C′ in a number of rounds which is O(log logn) in expectation.

3.1 Deterministic Processing of a Sparse Subgraph

For completeness we start by presenting a simple deterministic subroutine for efficiently computing a
maximal independent set of a sparse, induced subgraph of C′. Our algorithm is a simple load-balancing
scheme. For a subset M ⊆ X , we use C′[M ] to denote the subgraph of C′ induced by M , and E[M ] and
e[M ] to denote the set and number, respectively, of edges in C′[M ]. The subroutine we present below
computes an MIS of C′[M ] in e[M ]/n + O(1) rounds. Later, we use this repeatedly in situations where
e[M ] = O(n).

We assume that nodes in X have unique identifiers and can therefore be totally ordered according to
these. Let ρi ∈ {0, 1, . . . , n − 1} denote the rank of node xi in this ordering. Imagine (temporarily) that
edges are oriented from lower-rank nodes to higher-rank nodes and let E(xi) denote the set of outgoing
edges incident on xi. Let di denote |E(xi)|, the outdegree of xi, and let Di =

∑

j:ρj<ρi
dj denote the

outdegree sum of lower-ranked nodes.
The subroutine shares the entire topology of C′[M ] with all nodes in the network. To do this efficiently,

we map each edge e ∈ E[M ] to a node in X . Information about e will be sent to the node to which e is
mapped. Each node will then broadcast information about all edges that have been mapped to it. See
Algorithm 2.

Lemma 6 Algorithm 2 computes an MIS L of C′[M ] in e[M ]
n +O(1) rounds.

Proof. Each node pi reserves a distinct range {Di, Di + 1, . . . , Di + di − 1} of size di for labeling the di
outgoing edges incident on it (Steps 1-3). This implies that the edges in E[M ] get unique labels in the
range {0, 1, . . . , e[M ]− 1}. Sending each edge e to a node pj with rank ℓ(e) mod n means that each node
receives at most e[M ]/n+1 edges (Step 4). Note that Steps 1-4 take at most one round each. Step 5 takes
no more than e[M ]/n+1 rounds, as this is the maximum number of edges that can be received by a node
in Step 4. ⊓⊔
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Algorithm 2 Deterministic MIS for Sparse Graphs

Input: A subset of nodes M ⊆ X
Output: An MIS L of C′[M ]

1. Each node xi broadcasts its ID.
2. xi computes and broadcasts di.
3. xi assigns a distinct label ℓ(e) from {Di, Di + 1, . . . , Di + di − 1} to each

incident outgoing edge e.
4. xi sends each outgoing edge e to the node xj of rank ρj = (ℓ(e) mod n).
5. xi receives and broadcasts all edges sent to it in the previous step, one per round.
6. Each node xi computes C′[M ] from received edges and uses a deterministic algorithm to

locally compute an MIS L.

3.2 Algorithm

We are now ready to present an algorithm for computing a 2-ruling set of C′ which is “super-fast” in
expectation. We show that this algorithm has an expected running time of O(log logn) rounds. The
algorithm proceeds in Iterations and in each Iteration some number of nodes leave C′. We measure
progress by the number of edges remaining in C′, as nodes leave C′.

In an Iteration i, each node remaining in C′ joins a “Test” set T independently with probability
q =

√

n
m (Line 6), where m = e[C′] is the number of edges remaining in C′ (we also use the notation m(i)

to refer specifically to the value of m at the beginning of, and during, the ith iteration). The probability
q is set such that the expected number of edges in C′[T ] is equal to n. Once the set T is picked and each
node has broadcast its membership status with respect to T , each node can broadcast its degree in C′[T ]
and thus allow all nodes to compute e[C′[T ]] in a constant number of rounds.

If e[C′[T ]] ≤ 4n, we use Algorithm 2 to process C′[T ] in O(1) rounds, and then we delete T and its
neighborhood N(T ) from C′. (Lines 7-10). Because m = e[C′] decreases, we can raise q (Line 12) while
still having the expected number of edges in C′[T ] during the next iteration bounded above by n. See
Algorithm 3.

If e[C′[T ]] > 4n, then Algorithm 2 is not run, no progress is made, and we proceed to the next iteration.
We would like to mention that the use of this cutoff is for ease of analysis only and is not fundamentally
important to the algorithm.

3.3 Analysis

Lemma 7 Algorithm 3 computes a 2-ruling set of C′.

Proof. During any iteration in which e[C′[T ]] ≤ 4n, the only nodes removed from C′ are those in
T ∪ N(T ). Since we compute an MIS L of C′[T ] and include only these nodes in the final output R,
currently every node in T is at distance at most one from a node in L and every node in N(T ) is at
distance at most 2 from a member of L. Furthermore, after deletion of T ∪ N(T ), no node remaining in
C′ is a neighbor of any node in T , and therefore no node that can be added to R in the future will have
any adjacencies with nodes added to R in this iteration. So R will remain an independent set. When the
algorithm terminates, all nodes were either in T or in N(T ) at some point, and therefore R is a 2-ruling
set of C′. ⊓⊔

Define Lk = n1+1/2k for k = 0, 1, . . .. Think of the Lk’s as specifying thresholds for the number of edges
still remaining in C′. (Initially, i.e., for k = 0, L0 = n2 is a trivial upper bound on the number of edges in
C′.) As the algorithm proceeds, we would like to measure the number of rounds for the number of edges in
C′ to fall from the threshold Lk−1 to the threshold Lk. Note that the largest k in which we are interested
is k = log logn, because for this value of k, Lk = 2n and if the number of edges falls below this threshold
we know how to process what remains in C′ in O(1) rounds. Let Sk denote the smallest iteration index i
at the start of which e[C′] ≤ Lk. Define T (k) by T (k) = Sk − Sk−1, i.e., T (k) is the number of iterations
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Algorithm 3 Super-Fast 2-Ruling Set

Input: A spanning subgraph C′ of the clique C
Output: A 2-ruling set R of C′

1. R := ∅
2. m := e[C′] (Each node x broadcasts its degree in C′ to all others,

after which each can compute m locally)
3. q :=

√

n
m

4. while m > 2n do

Start of Iteration:

5. T := ∅
6. Each x ∈ C′ joins T independently with probability q and broadcasts its choice.
7. if e[C′[T ]] ≤ 4n then

8. All nodes compute an MIS L of C′[T ] using Algorithm 2.
9. R := R ∪ L
10. Remove (T ∪N(T )) from C′.
11. m := e[C′]
12. q :=

√

n
m

End of Iteration

13. All nodes compute an MIS L of C′ (C′ has at most 2n edges remaining) using AlgorithmgSet 2.
14. R := R ∪ L
15. Output R.

required to progress from having Lk−1 edges remaining in C′ to having only Lk edges remaining. We are
interested in bounding E(T (k)).

Lemma 8 For each i ≥ 1, the probability that e[C′[T ]] ≤ 4n during the ith iteration is at least 3
4 .

Proof. In the ith iteration, each node remaining in C′ joins T independently with probability
√

n
m ,

where, as before, m = m(i) = e[C′] is the number of edges remaining in C′. Therefore, for any edge
remaining in C′, the probability that both of its endpoints join T (and hence that this edge is included in
C′[T ]) is

√

n
m ·√ n

m = n
m . Thus the expected number of such edges, E(e[C′[T ]]), is equal to e[C′] · n

m = n.

By Markov’s inequality, P(e[C′[T ]] > 4n) ≤ n
4n = 1

4 . ⊓⊔

Lemma 9 For each k ≥ 1, E(T (k)) = O(1).

Proof. Suppose that, after i − 1 iterations, m = m(i − 1) = e[C′] ≤ Lk−1. We analyze the expected
number of edges remaining in C′ after the next iteration.

Let Algorithm 3∗i refer to the variation on Algorithm 3 in which, during iteration i only, the cutoff value
of 4n in Line 7 is ignored; i.e., an MIS is computed, and nodes subsequently removed from C′, regardless of
the number of edges in C′[T ] (during iteration i). We view Algorithms 3 and 3∗i as being coupled through
the first i iterations; in other words, the two algorithms have the same history and make the same progress
during the first i− 1 iterations.

Let m∗(j) be the random variable which is the number of edges remaining at the beginning of iteration
j with Algorithm 3∗i . Let deg

∗
j (x) be the degree of x in C′ under Algorithm 3∗i at the beginning of iteration

j. We can bound the expected value of m∗(i+ 1) by bounding, for each x, E(deg∗i+1(x)).
In turn, E(deg∗i+1(x)) can be bounded above by the degree of x at the beginning of the ith iteration,

deg∗i (x), multiplied by the probability that x remains in C′ after iteration i. (The degree of x can be
considered to be 0 if x has been removed from C′, for the purpose of computing the number of edges
remaining in the subgraph. Furthermore, under Algorithm 3∗i , we may upper bound the probability of x
remaining in C′ after the ith iteration by the probability that no neighbor of x joins T during iteration i.
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Under Algorithm 3∗i , then, the expected number of edges remaining in C′ after iteration i is

E (m∗(i + 1)) = E

(

1

2

∑

x∈C

deg∗i+1(x)

)

=
1

2

∑

x∈C

E
(

deg∗i+1(x)
)

≤ 1

2

∑

x∈C

P (x /∈ T ∪N(T ) under Alg. 3∗i ) · deg∗i (x)

≤ 1

2

∑

x∈C

(

1−
√

n

m∗(i)

)deg∗i (x)

· deg∗i (x)

≤ 1

2

∑

x∈C

(

e
−
√

n
m∗(i)

)deg∗i (x) · deg∗i (x)

≤ 1

2

√

m∗(i)

n
·
∑

x∈C

[
√

n

m∗(i)
deg∗i (x) · e−

√
n

m∗(i)
deg∗i (x)

]

Note that z · e−z ≤ 1
e for all z ∈ R, so the summand in this last quantity can be replaced by 1

e . We then
have

E

(

1

2

∑

x∈C

deg∗i+1(x)

)

≤ 1

2

√

m∗(i)

n
·
∑

x∈C

1

e

=
1

2

√

m∗(i)

n
· n
e

=
1

2e

√

n ·m∗(i)

Since Algorithms 3 and 3∗i are coupled through the first i−1 iterations, m∗(i) = m(i) and this last quantity
satisfies

1

2e

√

n ·m∗(i) =
1

2e

√

n ·m(i) ≤ 1

2e

√

n2+1/2k−1 =
Lk

2e
.

Therefore, the expected value of m∗(i + 1) is bounded above by 1
2eLk, and so by Markov’s inequality,

P(m∗(i + 1) > Lk | m∗(i) ≤ Lk−1) ≤ Lk

2e·Lk
< 1

4 .
As mentioned before, Algorithm 3 and Algorithm 3∗i have the same history through the first i−1 iterations.
As well, they also have the same history through the ith iteration in the event that e[C′[T ]] ≤ 4n during
the ith iteration. During iteration i, if e[C′[T ]] > 4n, then Algorithm 3∗i may still make progress (adding
nodes to the 2-ruling set), whereas Algorithm 3 makes none.

Let E1 = {e[C′[T ]] > 4n in iteration i}. By Lemma 8, P(E1 | m(i) ≤ Lk−1) ≤ 1
4 . Let E2 =

{m∗(i+1) ≤ Lk}. By the earlier analysis, P(E2 | m∗(i) ≤ Lk−1) >
3
4 . Thus the event E2 \E1 conditioned

on m∗(i) ≤ Lk−1 is such that (i) Algorithm 3 is identical to (with the same history and behavior as)
Algorithm 3∗i through iteration i, and (ii) m(i+ 1) = m∗(i+ 1) ≤ Lk. Thus,

P(E2 \ E1 | m∗(i) ≤ Lk−1) ≥ P(E2 | m∗(i) ≤ Lk−1)−P(E1 | m∗(i) ≤ Lk−1)

≥ 3

4
− 1

4

=
1

2
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Thus, given that m(i) = m∗(i) ≤ Lk−1, with probability at least 1
2 we have m(i+1) = m∗(i+1) ≤ Lk, and

Algorithm 3 makes progress by one level. Since this holds for every i, the expected number of additional
iterations required under Algorithm 3 before m ≤ Lk is a (small) constant (2), and hence E(T (k)) = O(1).

⊓⊔

Theorem 2 Algorithm 3 computes a 2-ruling set on the subgraph C′ of the clique C and has an expected
running time of O(log logn) rounds.

Proof. By Lemma 7, the output R is a 2-ruling set of C′. To bound the expected running time, observe
that

Llog log n = n1+1/2log log n

= n1+1/ logn = n1+logn 2 = 2n,

which is the point at which Algorithm 3 exits the while loop and runs one deterministic iteration to process
the remaining (sparse) graph. Now, given some history, T (k) is the random variable which is the number
of iterations necessary to progress from having at most Lk−1 edges remaining in C′ to having at most Lk

edges remaining, so let Ik,j be the running time, in rounds, of the jth such iteration (for j = 1, . . . , T (k);
as well, T (k) may be 0). Note that Ik,j is bounded by a constant due to the cutoff condition of Line 7.

The running time of Algorithm 3 is thus O(1) +
∑log log n

k=1

∑T (k)
j=1 Ik,j , and the expected running time

can be described as

E



O(1) +

log logn
∑

k=1

T (k)
∑

j=1

Ik,j



 = O(1) +

log logn
∑

k=1

E





T (k)
∑

j=1

Ik,j





≤ O(1) +

log logn
∑

k=1

E





T (k)
∑

j=1

O(1)





= O(1) +

log logn
∑

k=1

O (E (T (k)))

= O(1) +

log logn
∑

k=1

O(1)

= O(log logn)

which completes the proof. ⊓⊔

Using Algorithm 3 as a specific instance of the procedure RulingSet() for s = 2 and combining
Theorems 1 and 2 leads us to the following result.

Theorem 3 There exists an algorithm that solves the CliqueFacLoc problem with an expected running
time of O(log logn) communication rounds.

4 Concluding Remarks

It is worth noting that under special circumstances an O(1)-ruling set of a spanning subgraph of a clique
can be computed even more quickly. For example, if the subgraph of C induced by the nodes in class Vk is
growth-bounded for each k, then we can use the Schneider-Wattenhofer [23] result to compute an MIS for
Hk in O(log∗ n) rounds (in the CONGEST model). It is easy to see that if the metric space (X,D) has
constant doubling dimension, then Hk would be growth-bounded for each k. A Euclidean space of constant
dimension has constant doubling dimension and therefore this observation applies to constant-dimension
Euclidean spaces. This discussion is encapsulated in the following theorem.
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Theorem 4 The CliqueFacLoc problem can be solved in O(log∗ n) rounds on a metric space of constant
doubling dimension.

The lack of lower bounds for problems in the CONGEST model on a clique network essentially means
it might be possible to solve CliqueFacLoc via even faster algorithms. It may, for example, be possible
to compute an s-ruling set, for constant s > 2, in time o(log logn); this would lead to an even faster
constant-approximation for CliqueFacLoc. This is a natural avenue of future research suggested by this
work.

Another natural question suggested by our expected-O(log logn)-round algorithm for computing a 2-
ruling set on a subgraph of a clique is whether or not an algorithm this fast exists for computation of a
maximal independent set (1-ruling set), in the same setting, also. The analysis of our algorithm depends
very significantly on the fact that when a node is added to our solution, not only its neighbors but all
nodes in its 2-neighborhood are removed. Thus MIS computation, and additionally (∆ + 1)-coloring, in
O(log logn) rounds on a spanning subgraph of a clique are examples of other open problems suggested by
this work.
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