
ar
X

iv
:1

61
0.

00
45

0v
1

 [
cs

.L
O

]
 3

 O
ct

 2
01

6

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES

LUCA ACETO, ARNAUD CARAYOL, ZOLTÁN ÉSIK, AND ANNA INGÓLFSDÓTTIR

ICE-TCS, School of Computer Science, Reykjavik University, Iceland

Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE, UPEM, France

Institute of Informatics, University of Szeged, Hungary

ICE-TCS, School of Computer Science, Reykjavik University, Iceland

Abstract. We study algebraic synchronization trees, i.e., initial solutions of algebraic
recursion schemes over the continuous categorical algebra of synchronization trees. In par-
ticular, we investigate the relative expressive power of algebraic recursion schemes over two
signatures, which are based on those for Basic CCS and Basic Process Algebra, as a means
for defining synchronization trees up to isomorphism as well as modulo bisimilarity and
language equivalence. The expressiveness of algebraic recursion schemes is also compared
to that of the low levels in Caucal’s pushdown hierarchy.

1. Introduction

The study of recursive program schemes is one of the classic topics in programming language
semantics. (See, e.g., [5, 24, 31, 38, 41] for some of the early references.) One of the main
goals of this line of research is to define the semantics of systems of recursive equations such
as

F (n) = ifzero(n, 1,mult(2, F (pred(n)))). (1.1)

In the above recursion scheme, the symbols ifzero, add, pred, 1 and 2 denote given function
symbols; these are used to define the derived unary function F (n), which we will refer
to as a functor variable. Interpreting ifzero as the function over the set of triples of N3

that returns its second argument when the first is zero and the third otherwise, mult as
multiplication and pred as the predecessor function, intuitively one would expect the above

1998 ACM Subject Classification: F.4.1, F.4.2 and F.4.3.
Key words and phrases: Synchronization trees, process algebra, recursion schemes.
An extended abstract of this article was published in the proceedings of ICALP 2012.
Luca Aceto and Anna Ingólfsdóttir have been partially supported by the project ‘Meta-theory of Algebraic

Process Theories’ (nr. 100014021) of the Icelandic Research Fund. The work on the paper was partly carried
out while Luca Aceto and Anna Ingólfsdóttir held Abel Extraordinary Chairs at Universidad Complutense
de Madrid, Spain, supported by the NILS Mobility Project. Arnaud Carayol has been supported by the

project AMIS (ANR 2010 JCJC 0203 01 AMIS). Zoltán Ésik’s work on this paper was partly supported by
grant T10003 from Reykjavik University’s Development Fund and by the Labex Bézout part of the program
Investissements d’Avenir (ANR-10-LABX-58).

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© L. Aceto, A. Carayol, Z. Ésik, and A. Ingólfsdóttir
Creative Commons

1

http://arxiv.org/abs/1610.00450v1

2 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

recursion scheme to describe the function over the natural numbers that, given an input
n, returns 2n. This expectation has been formalized in several ways in the literature on
recursive program schemes. A classic answer can be summarized by the ‘motto’ of the
initial-algebra-semantics approach: ‘The semantics of a recursive program scheme is the
infinite term tree (or ranked tree) that is the least fixed point of the system of equations
associated with the program scheme.’

In the light of the role that infinite term trees play in defining the semantics of recursive
program schemes, it is not surprising that the study of infinite term trees has received a lot
of attention in the research literature. Here we limit ourselves to mentioning Courcelle’s
classic survey paper [24], which presents results on topological and order-theoretic properties
of infinite trees, notions of substitutions for trees as well as regular and algebraic term trees.
Algebraic term trees are those that arise as solutions of recursive program schemes that, like
(1.1), are ‘first order’. On the other hand, regular term trees are the solutions of systems of
equations like

X = f(X,Y)

Y = a,

which define parameterless functions X and Y . Regular term trees arise naturally as the
unfoldings of flowcharts, whereas algebraic term trees stem from the unfoldings of recursion
schemes that correspond to functional programs [24].

In this paper, we study recursion schemes from a process-algebraic perspective and in-
vestigate the expressive power of algebraic recursion schemes over the signatures of Basic
CCS [36] and of Basic Process Algebra (BPA) [3] as a way of defining possibly infinite
synchronization trees [35]. Both these signatures allow one to describe every finite synchro-
nization tree and include a binary choice operator +. The difference between them is that
the signature for Basic CCS, which is denoted by Γ in this paper, contains a unary action
prefixing operation a. for each action a, whereas the signature for BPA, which we denote
by ∆, has one constant a for each action that may label the edge of a synchronization tree
and offers a full-blown sequential composition, or sequential product, operator. Intuitively,
the sequential product t · t′ of two synchronization trees is obtained by appending a copy
of t′ to the leaves of t that describe successful termination of a computation. In order to
distinguish successful and unsuccessful termination, both the signatures Γ and ∆ contain
constants 0 and 1, which denote unsuccessful and successful termination, respectively.

As an example of a regular recursion scheme over the signature ∆, consider

X = (X · a) + a.

On the other hand, the following recursion scheme is Γ-algebraic, but not Γ-regular:

F1 = F2(a.1)

F2(v) = v + F2(a.v).

It turns out that both these recursion schemes define the infinitely branching synchroniza-
tion tree depicted on Figure 3.

In the setting of process algebras such as CCS [36] and ACP [3], synchronization trees
are a classic model of process behaviour. They arise as unfoldings of labelled transition
systems that describe the operational semantics of process terms and have been used to
give denotational semantics to process description languages—see, for instance, [1]. Regular
synchronization trees over the signature Γ are unfoldings of processes that can be described

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 3

in the regular fragment of CCS, which is obtained by adding to the signature Γ a facility for
the recursive definition of processes. On the other hand, regular synchronization trees over
the signature ∆ are unfoldings of processes that can be described in Basic Process Algebra
(BPA) [3] augmented with constants for the deadlocked and the empty process as well as
recursive definitions.

As is well known, the collection of regular synchronization trees over the signature
∆ strictly includes that of regular synchronization trees over the signature Γ even up to
language equivalence. Therefore, the notion of regularity depends on the signature. But
what is the expressive power of algebraic recursion schemes over the signatures Γ and ∆?
The aim of this paper is to begin the analysis of the expressive power of those recursion
schemes as a means for defining synchronization trees, and their bisimulation or language
equivalence classes.

In order to characterize the expressive power of algebraic recursion schemes defining
synchronization trees, we interpret such schemes in continuous categorical Γ- and ∆-algebras
of synchronization trees. Continuous categorical Σ-algebras are a categorical generalization
of the classic notion of continuous Σ-algebra that underlies the work on algebraic seman-
tics [11, 26, 30, 31], and have been used in [9, 10, 28] to give semantics to recursion schemes
over synchronization trees and words. (We refer the interested reader to [32] for a recent
discussion of category-theoretic approaches to the solution of recursion schemes.) In this
setting, the Γ-regular (respectively, Γ-algebraic) synchronization trees are those that are
initial solutions of regular (respectively, algebraic) recursion schemes over the signature Γ.
∆-regular and ∆-algebraic synchronization trees are defined in similar fashion.

Our first contribution in the paper is therefore to provide a categorical semantics for
first-order recursion schemes that define processes, whose behaviour is represented by syn-
chronization trees. The use of continuous categorical Σ-algebras allows us to deal with
arbitrary first-order recursion schemes; there is no need to restrict oneself to, say, ‘guarded’
recursion schemes, as one is forced to do when using a metric semantics (see, for instance, [14]
for a tutorial introduction to metric semantics), and this categorical approach to giving
semantics to first-order recursion schemes can be applied even when the order-theoretic
framework either fails because of the lack of a ‘natural’ order or leads to undesirable iden-
tities.

As a second contribution, we provide a comparison of the expressive power of regular
and algebraic recursion schemes over the signatures Γ and ∆, as a formalism for defining
processes described by their associated synchronization trees. We show that each ∆-regular
tree is Γ-algebraic (Theorem 3.2) by providing an algorithm for transforming a ∆-regular re-
cursion scheme into an equivalent Γ-algebraic one that involves only unary functor variables.
In addition, we prove that every synchronization tree that is defined by a Γ-algebraic recur-
sion scheme of a certain form that involves only unary functor variables can be transformed
into an equivalent ∆-regular recursion scheme.

We provide examples of Γ-algebraic synchronization trees that are not ∆-regular and
of ∆-algebraic trees that are not Γ-algebraic, not even up to bisimulation equivalence. In
particular, in Proposition 5.5 we prove that the synchronization tree associated with the bag
over a binary alphabet (which is depicted on Figure 18 on page 39) is not Γ-algebraic, even
up to language equivalence, and that it is not ∆-algebraic up to bisimilarity. These results
are a strengthening of a classic theorem from the literature on process algebra proved by
Bergstra and Klop in [6].

4 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

Γ-alg.
=

Tree2
=

∆-reg.

Tree3
=

∆-alg.

Tree1
=

Graph1
=

Γ-reg.

(a)

∆-reg.

Γ-alg.
=

Tree2

∆-alg.

Graph3

Tree1
=

Graph1
=

Γ-reg.

(b)

Tree2 ∆-reg.

Γ-alg.

∆-alg.

Graph3

Graph1
=

Γ-reg.

(c)

Figure 1: The expressiveness hierarchies up to language equivalence (a), up to bisimilarity
(b) and up to isomorphism (c)

Since each Γ-algebraic synchronization tree is also ∆-algebraic, we obtain the following
strict expressiveness hierarchy, which holds up bisimilarity [36, 39]:

Γ-regular ⊂ ∆-regular ⊂ Γ-algebraic ⊂ ∆-algebraic.

In the setting of language equivalence, the notion of Γ-regularity corresponds to the reg-
ular languages, the one of ∆-regularity or Γ-algebraicity corresponds to the context-free
languages, and ∆-algebraicity corresponds to the macro languages [29], which coincide with
the languages generated by Aho’s indexed grammars [2].

In order to obtain a deeper understanding of Γ-algebraic recursion schemes, we char-
acterize their expressive power by following the lead of Courcelle [22, 23, 24]. In those
references, Courcelle proved that a term tree is algebraic if, and only if, its branch language
is a deterministic context-free language. In our setting, we associate with each synchro-
nization tree with bounded branching a family of branch languages and we show that a
synchronization tree with bounded branching is Γ-algebraic if, and only if, the family of
branch languages associated with it contains a deterministic context-free language (Theo-
rem 5.2). In conjunction with standard tools from formal language theory, this result can
be used to show that certain synchronization trees are not Γ-algebraic.

As a final main contribution of the paper, we compare the expressiveness of those
recursion schemes to that of the low levels in Caucal’s hierarchy. This hierarchy is already
known to include the term trees defined by safe1 higher-order recursion schemes when
interpreted over the free continuous algebra [18]. Unsurprisingly, we show that the classes
of Γ-algebraic and ∆-algebraic synchronization trees belong to the third level of the Caucal
hierarchy. We provide a more detailed comparison, which is summarized in Figure 1.

As a benefit of the comparison with the Caucal hierarchy, we obtain structural prop-
erties and decidability of the monadic second-order theories of ∆-algebraic synchronization
trees [44]. By contraposition, this implies that a synchronization tree with an undecid-
able monadic second-order theory cannot be ∆-algebraic. This allows us to show that
Γ-algebraic (and hence ∆-algebraic trees) are not closed under minimization with respect
to bisimulation equivalence (Proposition 6.4).

1Safety is a syntactic restriction which is trivial for first order schemes. In particular, it does not play
any role in our setting.

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 5

The technical developments in this paper make use of techniques and results from a
variety of areas of theoretical computer science. We employ elementary tools from category
theory and initial-algebra semantics to define the meaning of recursion schemes over algebras
of synchronization trees. Tools from concurrency and formal-language theory are used to
obtain separation results between the different classes of synchronization trees we consider
in this paper. The proof of Theorem 5.2, characterizing the expressive power of Γ-algebraic
recursion schemes in the style of Courcelle, uses a Mezei-Wright theorem for categorical
algebras [10] as well as tools from monadic second-order logic [13, 15]. Overall, we find
it pleasing that methods and results developed by different communities within theoretical
computer science play a role in the study of natural structures like the synchronization trees
that arise from the solution of algebraic recursion schemes.

The paper is organized as follows. In Section 2, we introduce (first-order) recursion
schemes and the synchronization trees they define using continuous categorical algebras. In
Section 3, we compare the classes of Γ-regular, ∆-regular, Γ-algebraic and ∆-algebraic syn-
chronization trees up to isomorphism, bisimulation and language equivalence. In Section 4,
we compare our classes of synchronization trees to the first levels of the Caucal hierarchy.
In Section 5, following Courcelle, we characterize the expressive power of Γ-algebraic re-
cursion schemes by studying the branch languages of synchronization trees whose vertices
have bounded outdegree. In Section 6, we show how the previous results can be used to
prove that some synchronization trees cannot be defined using algebraic recursion schemes.
Section 7 concludes the paper and lists topics for future research.

2. Categorical semantics of first-order recursion schemes

In this section, we provide a categorical semantics for first-order recursion schemes using
continuous categorical algebras, and introduce several notions and results that will be used
throughout the paper. Section 2.1 introduces the necessary categorical background. The
continuous categorical algebras associated with synchronization trees are introduced in Sec-
tion 2.2. Sections 2.3–2.5 present edge-labelled graphs, monadic second order logic over such
structures and the kinds of graph transformations used in the paper. The definition of the
synchronization tree defined by a recursion scheme is given in Section 2.6. Sections 2.7 and
2.8 describe the essentially unique morphisms from the initial continuous ordered Γ-algebra
(resp. ∆-algebra) of Γ-term trees (resp. ∆-term trees) to the continuous Γ-algebra (resp.
∆-algebra) of synchronization trees. These morphisms play an important role when com-
paring the synchronization trees defined by recursion schemes to the low levels of the Caucal
hierarchy in Section 4. We conclude by giving some basic properties of synchronization trees
defined by first-order recursion schemes in Section 2.9.

Throughout the paper, when n is a non-negative integer, we denote the set {1, . . . , n}
by [n].

2.1. Continuous categorical algebras. In this section, we recall the notion of continuous
categorical Σ-algebra. These structures were used in [9, 10, 28] to give semantics to recursion
schemes over synchronization trees and words.

Let Σ =
⋃
n≥0Σn be a ranked set (or ‘signature’). A categorical Σ-algebra is a small

category C equipped with a functor σC : Cn → C for each σ ∈ Σn, n ≥ 0. A morphism

6 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

between categorical Σ-algebras C and D is a functor h : C → D such that for each σ ∈ Σn,
the diagram

Dn D
σD

//

Cn

Dn

hn

��

Cn C
σC // C

D

h

��

commutes up to a natural isomorphism. Here, the functor hn : Cn → Dn maps each object
and morphism (x1, . . . , xn) in C

n to (h(x1), . . . , h(xn)) in D
n.

Suppose that C is a categorical Σ-algebra. We call C continuous if C has a distinguished
initial object (denoted ⊥C or 0C) and colimits of all ω-diagrams (fk : ak → ak+1)k≥0.
Moreover, each functor σC is continuous, i.e., preserves colimits of ω-diagrams. Thus, if
σ ∈ Σ2, say, and if

x0
f0
→ x1

f1
→ x2

f2
→ . . .

y0
g0
→ y1

g1
→ y2

g2
→ . . .

are ω-diagrams in C with colimits (xk
φk→ x)k and (yk

ψk→ y)k, respectively, then

σC(x0, y0)
σC(f0,g0)

→ σC(x1, y1)
σC(f1,g1)

→ σC(x2, y2)
σC (f2,g2)

→ . . .

has colimit

(σC(xk, yk)
σC(φk,ψk)

→ σC(x, y))k.

A morphism of continuous categorical Σ-algebras is a categorical Σ-algebra morphism which
preserves the distinguished initial object and colimits of all ω-diagrams. In what follows,
we will often write just σ for σC , in particular when C is understood.

For later use, we note that if C and D are continuous categorical Σ-algebras then so is
C×D. Moreover, for each k ≥ 0, the category [Ck → C] of all continuous functors Ck → C

is also a continuous categorical Σ-algebra, where for each σ ∈ Σn,

σ[C
k→C](f1, . . . , fn) = σC ◦ 〈f1, . . . , fn〉

with 〈f1, . . . , fn〉 standing for the target tupling of the continuous functors f1, . . . , fn :

Ck → C. On natural transformations, σ[C
k→C] is defined in a similar fashion. In [Ck → C],

colimits of ω-diagrams are formed pointwise.
In the rest of the paper, we will assume, without loss of generality, that the signature Σ

contains a special symbol denoted ⊥ or 0 of rank 0, interpreted in a continuous categorical
Σ-algebra as its initial object.

2.2. Synchronization trees. A synchronization tree t = (V, v0, E, l) over an alphabet A
of ‘action symbols’ consists of

• a finite or countably infinite set V of ‘vertices’ and an element v0 ∈ V , the ‘root’;
• a set E ⊆ V × V of ‘edges’;
• a ‘labelling function’ l : E → A ∪ {ex} where ex 6∈ A is a label used to denote
successful termination.

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 7

These data obey the following restrictions.

• (V, v0, E) is a rooted tree: for each u ∈ V , there is a unique path v0 ❀ u.
• If e = (u, v) ∈ E and l(e) = ex, then v is a leaf, and u is called an exit vertex.

A synchronization tree is deterministic if no node in the tree has two equally-labelled out-
going edges.

A morphism φ : t → t′ of synchronization trees is a function V → V ′ which preserves
the root, the edges and the labels, so that if (u, v) is an edge of t, then (φ(u), φ(v)) is an
edge of t′, and l′(φ(u), φ(v)) = l(u, v). In particular such a morphism maps the root of t
to the root of t′. Morphisms are therefore functional simulations [34, 39]. It is clear that
the trees over A and tree morphisms form a category, which we denote by ST(A). The tree
that has a single vertex and no edges is initial. It is known that the category of trees has
colimits of all ω-diagrams, see [8]. (It also has binary coproducts.) In order to make the
category of trees small, we may require that the vertices of a tree form a subset of some
fixed infinite set.

Remark 2.1. Suppose that (φn : tn → tn+1)n≥0 is an ω-diagram in ST(A), where tn =
(Vn, vn, En, ln) for each n ≥ 0. Then the colimit Colim(φn : tn → tn+1)n≥0 can be con-
structed in the expected way. First, we define for each n ≤ m the tree morphism φn,m as
the composition of the morphisms φn, . . . , φm−1 or the identify morphism if n = m. Then
we take the disjoint union {(v, n) | v ∈ Vn and n ≥ 0} of the sets Vn, n ≥ 0, and define a
vertex (v, n) equivalent to a vertex (v′,m) if and only if there is some k ≥ max{n,m} with
φn,k(v) = φm,k(v

′). The set of vertices of the colimit tree will be the equivalence classes of
{(v, n) | v ∈ Vn and n ≥ 0}. The root will be the equivalence class containing the roots
(vn, n) of the trees tn, n ≥ 0. When C and C ′ are equivalence classes, the pair (C,C ′) is
an edge in the colimit tree exactly when there exist (v, n) ∈ C and (v′, n) ∈ C ′ for some
n such that En contains the edge (v, v′). The label of this edge is l((C,C ′)) = ln((v, v

′)).
Note that, in this case, for each k ≥ n we have that (φn,k(v), φn,k(v

′)) ∈ Ek, and that the
label of this edge in tk is equal to ln(v, v

′). This defines the object part t of the colimit.
The canonical morphism tn → t maps a vertex v ∈ Vn to its equivalence class.

In the particular case when the morphisms φn are injective, we may usually assume
that Vn ⊆ Vn+1 for each n and that the morphism φn is the inclusion of Vn into Vn+1. In
this case the colimit is simply the ‘union’ of the trees tn.

Consider the sequence tn = ({0, . . . , n}, 0, En, ln), n ≥ 0 of synchronization trees, where
En = {(i, i + 1) | 0 ≤ i < n} and ln maps each edge in En to the action symbol a. Let
ψn : tn → tn+1 be the inclusion map from {0, . . . , n} into {0, . . . , n+ 1}. Then (φn = tn →
tn+1)n≥0 is an ω-diagram and its colimit is (fn : tn → tω)n, where

tω = ({i | i ≥ 0}, 0, {(i, i + 1) | i ≥ 0}, l)

and l maps each edge to a. Pictorially, we have:

8 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

t0 t1

a

t2

a

a

t3

a

a

a

tω

a

a

a

a

The category ST(A) of synchronization trees over A is equipped with two binary op-
erations: + (sum) and · (sequential product or sequential composition), and either with a
unary operation or a constant associated with each letter a ∈ A.

The sum t + t′ of two trees is obtained by taking the disjoint union of the vertices of
t and t′ and identifying the roots. The edges and labelling are inherited. The sequential
product t · t′ of two trees is obtained by replacing each edge of t labelled ex by a copy of t′.
With each letter a ∈ A, we can either associate a constant, or a unary prefixing operation.
As a constant, a denotes the tree with vertices v0, v1, v2 and two edges: the edge (v0, v1),
labelled a, and the edge (v1, v2), labelled ex. As an operation a(t) is the tree a · t, for each
tree t. Let 0 denote the tree with no edges and 1 the tree with a single edge labelled ex.
On morphisms, all operations are defined in the expected way. For example, if h : t → t′

and h′ : s→ s′, then h+ h′ is the morphism that agrees with h on the non-root vertices of
t and that agrees with h′ on the non-root vertices of s. The root of t+ s is mapped to the
root of t′ + s′.

In the sequel we will consider two signatures for synchronization trees, Γ and ∆. The
signature Γ contains +, 0, 1 and each letter a ∈ A as a unary symbol. In contrast, ∆
contains +, ·, 0, 1 and each letter a ∈ A as a nullary symbol. It is known that, for both
signatures, ST(A) is a continuous categorical algebra. See [8] for details.

In what follows, for each a ∈ A and term/tree t, we write a.t for a(t). We shall also
abbreviate a.1 to a, and write an.t for

a.a.︸ ︷︷ ︸
n times

t.

Remark 2.2. Note that · is associative and has 1 as unit, at least up to isomorphism, and
that for all trees t1, t2 and s, (t1 + t2) · s = (t1 · s)+ (t2 · s) and 0 · s = 0 up to isomorphism.

Remark 2.3. A continuous categorical ∆-algebra C naturally induces an associated Γ-
algebra D. For each letter a ∈ A, the functor aD associated to unary symbol a is defined
for each object and morphism x by aD(x) = aC ·C x. The functors for the other symbols are
inherited (i.e., for all f ∈ Σ \ A, fD = fC). It is easy to see that D is indeed a continuous
categorical Γ-algebra. In particular the ∆-algebra of synchronization trees induces in this
sense the Γ-algebra of synchronization trees.

Definition 2.4. Two synchronization trees t = (V, v0, E, l) and t′ = (V ′, v′0, E
′, l′) are

bisimilar [36, 39] if there is some symmetric relation R ⊆ (V × V ′) ∪ (V ′ × V), called a
bisimulation, that relates their roots, and such that if (v1, v2) ∈ R and there is some edge
(v1, v

′
1), then there is an equally-labelled edge (v2, v

′
2) with (v′1, v

′
2) ∈ R.

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 9

(v0)

(v1)

a

(v2)

(v4)

(v7)

b

e
(v5)

(v8)

ex

c

e
(v3)

(v6)

(v9)

b

e

e

(v0)

(v1)

a

(v7)

b
(v5)

(v8)

ex

c

(v9)

b

Figure 2: A synchronization tree (on the left) over {a, b, c, e} and its {e}-contraction (on
the right)

The path language of a synchronization tree is composed of the words in A∗ that label
a path from the root to the source of an exit edge. Two trees are language equivalent if
they have the same path language.

Lemma 2.5. If t and t′ are deterministic, bisimilar synchronization trees, then they are
isomorphic.

Remark 2.6. The above lemma fails up to language equivalence. For example, the trees
and a are language equivalent but not isomorphic.

We conclude this section by defining an operation on synchronization trees over A⊎B
that contracts all edges labelled by some symbol in B. The definition of this operation is
illustrated in Figure 2. This notion will, in particular, be used to characterize Γ-algebraic
trees in the Caucal hierarchy.

Definition 2.7. Let t = (V, v0, E, l) be synchronization tree over an alphabet A ⊎B. The
B-contraction of t is the synchronization tree t′ = (V ′, v0, E

′, l′) defined by:

• V ′ = {v′ ∈ V | ∃v ∈ V (v, v′) ∈ E with l(v, v′) ∈ A ∪ {ex}} ∪ {v0},
• a pair (v, v′) ∈ V ′×V ′ is an edge in E′ if there exists a path in t from v to v′ labelled
by a word in B∗(A ∪ {ex}),

• for each (v, v′) ∈ E′, l(v, v′) is the unique letter a ∈ A ∪ {ex} such that the path
from v to v′ in t is labelled in B∗a.

2.3. Edge-labelled graphs. An edge-labelled graph (or simply graph), whose edges are
labelled by letters in a finite alphabet A, is a pair (V,E) where V is a finite or countable
set of vertices and E ⊆ V × A× V is a set of labelled edges. The edge (u, a, v) has source

u, target v and label a. The existence of an edge (u, a, v) in E is denoted by u
a

−→
G

v or

simply u
a

−→ v when G is clear from the context. This notation is extended to words in A∗

in the usual way. For a language L over A, we write u
L

−→ v if there is some word w ∈ L

such that u
w

−→ v.
A graph (V,E) is deterministic if for all u, v1, v2 ∈ V and a ∈ A, if u

a
−→ v1 and

u
a

−→ v2 then v1 = v2.
A root of a graph (V,E) labelled by A is a vertex v0 such that for all v ∈ V , there exists

a path from v0 to v. If this path is unique for each vertex v, the graph (V,E) is a tree with
v0 as its root.

10 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

A graph (V,E) labelled in A∪ {ex} represents a synchronization tree if (V,E) is a tree
with root v0 and if the target of an ex-labelled edge is always a leaf of the tree. We will
identify such a graph with the synchronization tree (V, v0, E

′, l) where E′ = {(u, v) | ∃a ∈

A ∪ {ex}.u
a

−→ v} and for all (u, v) ∈ E′, l((u, v)) is the unique symbol in A ∪ {ex} such
that (u, l((u, v)), v) belongs to E.

The definition of B-contraction for labelled graphs generalizes the case of synchroniza-
tion trees introduced in Section 2.2. The B-contraction of a graph G labelled in A⊎B from
one of its root vertices r is the graph labelled by A whose vertices are the targets (in G) of
edges labelled in A together with the vertex r. There is an edge from a vertex u to a vertex
v if there is a path from u to v in G labelled by a word in B∗A.

2.4. Monadic second-order logic on edge labelled graphs. Monadic second-order
logic (MSO) on graphs is the extension of first-order logic with the ability to quantify over
sets of vertices. We use monadic-second order logic over edge-labelled graphs with the
standard syntax and semantics (see e.g. [27] for a detailed presentation).

Monadic second-order formulas are built using first-order variables, which are inter-
preted as vertices of the graph and are denoted by lower case letters x, y . . . and monadic
second-order variables, which are interpreted as sets of vertices of the graph and are denoted

by upper case letters X,Y . . . Atomic formulas are of the form x ∈ X, x = y and x
a

−→ y

where x and y are first-order variables, X is a second-order variable and a is an edge label.
Complex formulas are built as usual from atomic ones using Boolean connectives and quan-
tifiers. Free and bound occurrences of variables in a formula are defined in the standard
fashion. We write ϕ(X1, . . . ,Xn, y1, . . . , ym) to denote that the formula ϕ has free variables
in {X1, . . . ,Xn, y1, . . . , ym}. A closed formula has no free variables.

For a formula ϕ(X1, . . . ,Xn, y1, . . . , ym), a graph G, vertices u1, . . . , um of G and sets of
vertices U1, . . . , Un of G, we write G |= ϕ[U1, . . . , Un, u1, . . . , um] to denote that G satisfies
ϕ when the free variable Xi, i ∈ [n], is interpreted as the set of vertices Ui and the free
variable xj, j ∈ [m], is interpreted as the vertex uj . For a closed formula ϕ, we simply write
G |= ϕ. The MSO-theory of G is the set of closed formulas satisfied by G.

For example, the MSO formula

ϕ(x, y) = ∀X.
[(

∀x∀y(x ∈ X ∧ x
a

−→ y) ⇒ y ∈ X
)
∧ x ∈ X

]
⇒ y ∈ X

expresses that there exists a path from x to y whose edges are labelled a.

2.5. Graph transformations. In the remainder of the paper, we will use several trans-
formations of edge-labelled graphs, namely the unfolding of a graph, MSO-interpretations
and MSO-transductions.

The unfolding Unf(G, r) of a graph G from one of its vertices r is the tree whose vertices
are the paths in G starting from r and with an edge labelled a between two such paths π
and π′ if π′ extends π by exactly one edge labelled a.

An MSO-interpretation is a graph transformation specified using MSO-formulas. An
MSO-interpretation is given by a tuple of MSO-formulas of the form (δ(x), (ϕb(x, y))b∈B),
where B is a set of labels. This interpretation when applied to a graph G will produce
a graph, denoted I(G), whose edges have labels in B. The set of vertices of I(G) is the
subset of the vertices of G satisfying the formula δ(x). For each edge label b ∈ B, there is

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 11

an edge from u to v labelled by b in I(G) if and only if G satisfies ϕb[u, v]. More formally,
the graph (V ′, E′) obtained by applying I to a graph (V,E) is such that:

V ′ = {u ∈ V | G |= δ[u]}
E′ = {(u, b, v) ∈ V ′ ×B × V ′ | G |= ϕb[u, v]}.

MSO-interpretations cannot increase the number of vertices of a graph. To overcome
this weakness the notion of a transduction was introduced by Courcelle in [25]. The idea is
to perform an operation that will increase the number of vertices before applying the MSO-
interpretation. Let K = {k1, . . . , km} be a finite set of edge labels. A K-copying operation
applied to a graph G adds, to every vertex of G, m outgoing arcs respectively labelled
by k1, . . . km−1 and km all going to fresh vertices. An MSO-transduction is a K-copying
operation followed by an MSO-interpretation.

2.6. Algebraic objects and functors. We start by introducing the types of recursion
schemes studied in this paper.

Definition 2.8. Let Σ be a signature. A Σ-recursion scheme, or recursion scheme over Σ,
is a sequence E of equations

F1(v1, . . . , vk1) = t1
... (2.1)

Fn(v1, . . . , vkn) = tn

where each ti is a term over the signature ΣΦ = Σ ∪ Φ in the variables v1, . . . , vki , and
Φ contains the symbols Fi (sometimes called ‘functor variables’ or ‘function variables”) of
rank ki, i ∈ [n]. A Σ-recursion scheme is regular if ki = 0, for each i ∈ [n].

Suppose that C is a continuous categorical Σ-algebra. Define

Cr(Φ) = [Ck1 → C]× · · · × [Ckn → C].

Then Cr(Φ) is a continuous categorical Σ-algebra, as noted in Section 2.1.
When each Fi, i ∈ [n], is interpreted as a continuous functor fi : C

ki → C, each term
over the extended signature ΣΦ = Σ ∪ Φ in the variables v1, . . . , vm induces a continuous
functor Cm → C that we denote by tC(f1, . . . , fn). In fact, tC is a continuous functor

tC : Cr(Φ) → [Cm → C].

More precisely, we define tC as follows. Let fi, gi denote continuous functors Cki → C,
i ∈ [n], and let αi be a natural transformation fi → gi for each i ∈ [n]. When t is the variable
vi, say, then t

C(f1, . . . , fn) is the ith projection functor Cm → C, and tC(α1, . . . , αn) is the
identity natural transformation corresponding to this projection functor. Suppose now that
t is of the form σ(t1, . . . , tk), where σ ∈ Σk and t1, . . . , tk are terms. Then tC(f1, . . . , fn) =
σC ◦ 〈h1, . . . , hk〉 and tC(α1, . . . , αn) = σC ◦ 〈β1, . . . , βk〉, where hj = tCj (f1, . . . , fn) and

βj = tCj (α1, . . . , αn) for all j ∈ [k]. (Here, we use the same notation for a functor and the

corresponding identity natural transformation.) Finally, when t is of the form Fi(t1, . . . , tki),
then tC = fi◦〈h1, . . . , hki〉, and the corresponding natural transformation is αi◦〈β1, . . . , βki〉,
where the hj and βj , j ∈ [ki], are defined similarly as above.

Note that if each αi : fi → fi is an identity natural transformation (so that fi = gi,
for all i ∈ [n]), then tC(α1, . . . , αn) is the identity natural transformation tC(f1, . . . , fn) →
tC(f1, . . . , fn).

12 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

In any continuous categorical Σ-algebra C, by target-tupling the functors tCi associated
with the right-hand sides of the equations in a recursion scheme E as in (2.1), we obtain a
continuous functor

EC : Cr(Φ) → Cr(Φ).

Indeed, tCi : Cr(Φ) → [Cki → C], for i ∈ [n], so that

EC = 〈tC1 , . . . , t
C
n 〉 : C

r(Φ) → Cr(Φ).

Thus, EC has an initial fixed point in Cr(Φ), unique up to natural isomorphism, that we
denote by

|EC | = (|E|C1 , . . . , |E|Cn),

so that, in particular,

|E|Ci = tCi (|E|C1 , . . . , |E|Cn),

at least up to isomorphism, for each i ∈ [n].
It is well known that the initial fixed point |E|C can be ‘computed’ in the following

way. Let g0 = (g0,1, . . . , g0,n), where, for each j ∈ [n], g0,j = 0[C
kj→C] is the constant

functor Ckj → C determined by the object 0C . Then, for each i ≥ 0, define gi+1 =
(gi+1,1, . . . , gi+1,n), where gi+1,j = tCj (gi) for all j ∈ [n]. Next, let φ0 = (φ0,1, . . . , φ0,n),

where φi,j, j ∈ [n], is the unique natural transformation 0[C
kj→C] → g1,j . Moreover, for

each i ≥ 0, define φi+1 = (φi+1,1, . . . , φi+1,n) as the natural transformation φi+1,j = tCj (φi).

Then |E|C is the colimit of the ω-diagram (φi : gi → gi+1)i≥0 in the continuous functor

category Cr(Φ).

Definition 2.9. Suppose that C is a continuous categorical Σ-algebra. We call a functor
f : Cm → C Σ-algebraic, if there is a recursion scheme E such that f is isomorphic to
|E|C1 , the first component of the above-mentioned initial solution of E. When m = 0, we
identify a Σ-algebraic functor with a Σ-algebraic object. Last, a Σ-regular object is an object
isomorphic to the first component of the initial solution of a Σ-regular recursion scheme.

In particular, we get the notions of Γ-algebraic and Γ-regular trees, and ∆-algebraic
and ∆-regular trees.

Remark 2.10. Suppose that C is the continuous categorical Σ-algebra ST(A), where Σ is
either Γ or ∆, and consider a recursion scheme E of the form (2.1). If the continuous functors
g1 : ST(A)k1 → ST(A), . . ., gn : ST(A)kn → ST(A) preserve injective synchronization
tree morphisms (in each variable), then so does each tj(g) : ST(A)r(Φ) → ST(A)[kj→k],
where g = (g1, . . . , gn). It follows by induction that the functors gi,j preserve injective
synchronization tree morphisms. moreover, the components of the natural transformations
φi,j are injective synchronization tree morphisms. Thus, when k1 = 0, so that the recursion
scheme defines a tree, each φi,1 is an embedding of the tree gi,1 into gi+1,1. If we represent

the trees gi,1 so that these embeddings are inclusions, then the colimit |E|
ST(A)
1 of the

ω-diagram (φi,1 : gi,1 → gi+1,1)i≥0 becomes the union of the trees gi,1, i ≥ 0.

Remark 2.11. It is sometimes convenient to add to the signature Γ sums of arbitrary
nonzero rank. For this, we consider the signature2 Γ̃ = {+n | n ≥ 1} ∪ A ∪ {0, 1} where

2Although the signature is infinite, we will always only use a finite subset of it.

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 13

ex

a

ex

a

a

ex

a

a

a

ex

a

a

a

a

Figure 3: An infinitely branching synchronization tree

the rank of each symbol +n is n. The synchronization tree associated with a Γ̃-term tree is
defined similarly as the synchronization tree associated to a Γ-term tree. The Γ̃-algebraic
synchronization trees are Γ-algebraic.

Indeed we can transform an algebraic Γ̃-scheme into a Γ-scheme defining the same
synchronization tree by replacing every occurrence of a subterm of the form +n(t1, . . . , tn)
on the right-hand side of an equation by ((t1 + t2) + t3) . . .+ tn for n ≥ 3, every subterm of
the form t1 +

2 t2 by t1 + t2, and finally every subterm of the form +1(t1) by t1 + 0.

Example 2.12. The following ∆-regular recursion scheme

X = (X · a) + a (2.2)

has the infinitely branching tree
∑

i≥1 a
i depicted on Figure 3 as its initial solution. That

tree is therefore ∆-regular. Note that the tree
∑

i≥1 a
i is also Γ-algebraic because it is the

initial solution of the following Γ-algebraic recursion scheme

F1 = F2(a)

F2(v) = v + F2(a.v).

(Recall that we use a as an abbreviation of a.1.) The path language associated with the
tree

∑
i≥1 a

i is {ai | i ≥ 1}. Note that the subtrees of that tree whose roots are children of

the root of
∑

i≥1 a
i are pairwise inequivalent modulo language equivalence. So Γ-algebraic

recursion schemes can be used to define infinitely branching trees that have an infinite
number of subtrees, even up to bisimilarity [36, 39] or language equivalence.

Further examples of algebraic synchronization trees. Consider the labelled transition system
(LTS) on Figure 4. The synchronization tree associated with that LTS is Γ-algebraic because
it is defined by the recursion scheme below.

F1 = F2(1)

F2(v) = v + a.F2(b.F2(v))

The idea underlying the above definition is as follows. At any given vertex in the LTS on
Figure 4, the argument v of F2 denotes the subtree obtained by unfolding the LTS from that
vertex and not taking the a-labelled edge as a first step. F2(v) denotes the tree obtained
by unfolding the LTS at that vertex.

14 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

//'&%$!"#��������
a //'&%$!"#

a //

b
oo '&%$!"#

a //

b
oo '&%$!"#

a //

b
oo · · ·

b
oo

Figure 4: An LTS accepting the Dyck language

//'&%$!"#
a //

c

��

'&%$!"#

b
oo

a //

c

��

'&%$!"#
a //

b
oo

c

��

· · ·
b

oo

'&%$!"#�������� '&%$!"#
b

oo '&%$!"#
b

oo · · ·
b

oo

Figure 5: An LTS that cannot be expressed in BPA, but whose unfolding is an algebraic
synchronization tree

This algebraic recursion scheme over Γ corresponds to the regular recursion scheme over
∆,

G = 1 + a ·G · b ·G.

As another example, consider the LTS on Figure 5. This LTS is not expressible in
BPA modulo modulo bisimilarity—see [37, page 206, Example (c)]. On the other hand,
the synchronization tree associated with that LTS is Γ-algebraic because it is the unique
solution of the Γ-algebraic recursion scheme below.

G = F (1, 1)

F (v1, v2) = v1 + c.v2 + a.F (b.F (v1, v2), b.v2)

The idea underlying the above definition is as follows. At any given vertex in the LTS on
Figure 5, the argument v1 of F denotes the subtree obtained by unfolding the LTS from the
vertex and not taking the a-labelled or c-labelled edges as a first step. The argument v2
of F instead encodes the number of b-labelled edges that one must perform in a sequence
in order to terminate. F (v1, v2) denotes the tree obtained by unfolding the LTS from that
vertex.

In our arguments, we will often make use of the following Mezei-Wright theorem [10]:

Theorem 2.13. Suppose that h : C → D is a morphism of continuous categorical Σ-
algebras. If c is an algebraic (or regular) object of C, then h(c) is an algebraic (or regular)
object of D. Moreover, for every algebraic object d of D there is an algebraic object c of C
such that d is isomorphic to h(c), and similarly for regular objects.

2.7. Continuous ordered algebras. An important subclass of continuous categorical al-
gebras is formed by the continuous ordered algebras, which constitute the classical frame-
work for algebraic semantics [24, 26, 30, 31, 38, 41]. We say that a continuous categorical
Σ-algebra C is ordered if its underlying category is a poset category, so that there is at most
one morphism between any two objects. The objects of a continuous ordered algebra are
usually called its elements and, as usual, the categorical structure is replaced by a partial

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 15

order ≤. The assumptions that C has initial object and colimits of ω-diagrams correspond
to the requirements that there is a least element ⊥ and each ω-chain (an)n has a supremum,
denoted supn an. Thus, C is an ω-complete poset as is each finite power Cn of C, equipped
with the pointwise order. A continuous functor Cn → C is simply a function that pre-
serves the suprema of ω-chains. Every such continuous function preserves the partial order.
Continuous functions are ordered pointwise. As is well known, if C and D are ω-complete
posets, then so is the poset [C → D] of all continuous functions C → D.

Suppose that A is an alphabet and recall the definition of the signatures Γ and ∆. An
example of a continuous ordered ∆-algebra is the language semiring P (A∗) of all subsets of
A∗, ordered by set inclusion, where each letter a ∈ A denotes the set {a} and 0 and 1 are
interpreted as the empty set and the set {ǫ} containing only the empty word ǫ, and where
L1+L2 = L1∪L2 and L1 ·L2 = L1L2 is the concatenation of L1 and L2, for all L1, L2 ⊆ A∗.
Alternatively, we may view P (A∗) as a continuous ordered Γ-algebra with a(L) = {a} · L
for all a ∈ A and L ⊆ A∗.

The initial continuous Σ-algebra may be described as the algebra of Σ-term trees. A
term tree may be represented as (the isomorphism class of) a possibly infinite directed
ordered tree whose vertices are labelled with the letters in Σ such that a vertex labelled in
Σn has exactly n successors. In particular, vertices labelled in Σ0 are leaves. Finite term
trees over Σ may be identified with variable-free Σ-terms. As usual, we identify each symbol
in Σ0 with a term.

Let TωΣ denote the set of all Σ-term trees. We equip TωΣ with a partial order defined by
t ≤ t′ iff t′ can be constructed from t by replacing some leaves labelled ⊥ by some term trees
in TωΣ . It is well-known (see e.g. [24, 30, 31]) that this relation turns TωΣ into an ω-complete
partial order with least element ⊥. We may further turn TωΣ into a continuous ordered Σ-
algebra. For each σ ∈ Σn and term trees t1, . . . , tn, the tree σ(t1, . . . , tn) is defined as usual
as the tree whose root is labelled σ which has n subtrees isomorphic in order to t1, . . . , tn.
The following fact is known, see e.g. [10].

Proposition 2.14. For every continuous categorical Σ-algebra C there is, up to natural
isomorphism, a unique continuous categorical Σ-algebra morphism TωΣ → C.

Sometimes it is convenient to represent a term tree in TωΣ as a partial function t : N∗ → Σ
whose domain is a prefix closed nonempty subset of N∗, where N denotes the set of positive
integers, such that whenever t(u) ∈ Σn, then for each i ∈ N, t(ui) is defined if and only if
i ∈ [n]. The operations are defined in the usual way. For trees t, t′ ∈ TωΣ , we have t ≤ t′ if
and only if for all u ∈ N∗, either t(u) = t′(u) or t(u) = ⊥. See [31, 38, 41] for details.

Yet another representation of a term tree in TωΣ is by edge-labelled trees. To this end, let

Σ denote the ordinary alphabet whose letters are the symbols σi where σ ∈ Σn, n > 0 and
i ∈ [n]. When t is a Σ-term tree, each vertex u may be ‘addressed” by a word u ∈ Σ

∗
which

encodes the unique path from the root to that vertex. The edge-labelled tree corresponding
to t has as its vertex sets the addresses of its vertices, together with a vertex uσ whenever
u is the address of a leaf labelled σ. The edges are given as follows. Suppose that u and
v are vertices of t with associated addresses u and v, respectively. If v is the ith successor
of u and u is labelled σ ∈ Σn (so that n > 0 and i ∈ [n]), then there is an edge from u to
v labelled σi. Moreover, if u is a leaf vertex of t, labelled σ ∈ Σ0, then there is an edge
labelled σ from u to uσ.

Consider, for example, the following term tree over Γ.

16 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

+ ǫ

a+1

0+1a1

+ +2

a +2+1

0+2 +1 a1

a +2+2

1 +2 +2 a1

The resulting edge-labelled tree is
ǫ

+1

+1a1

+1a10

0

a1

+1

+2

+2+1

+2 +1 a1

+2 +1 a10

0

a1

+1

+2+2

+2 +2 a1

+2 +2 a11

1

a1

+2

+2

Remark 2.15. Suppose that C is a continuous categorical Σ-algebra and h is the essentially
unique continuous categorical Σ-algebra morphism TωΣ → C. Then, for each finite tree
t ∈ TωΣ , h(t) is uniquely determined up to isomorphism, since h preserves the operations.
Moreover, when t, t′ are finite with3 t ≤ t′, h(t ≤ t′) is determined by the conditions that
h(⊥) is initial and h preserves the operations. When t is an infinite tree, t is the supremum
of an ω-chain (tn)n of finite trees—say tn is the approximation of t obtained by removing
all vertices of t at distance greater than or equal to n from the root (and relabeling vertices
at distance n by ⊥). Then h(t) is the colimit of the ω-diagram (φn : h(tn) → h(tn+1))n,
where φn = h(tn ≤ tn+1). When Σ = Γ or Σ = ∆, and C = ST(A), the morphisms φn are
injective, and thus the colimit h(t) is the ‘union’ of the h(tn).

2.8. Morphisms. By Proposition 2.14, there is an (essentially) unique morphism of con-
tinuous categorical Γ-algebras TωΓ → ST(A), as well as an essentially unique continuous
categorical ∆-algebra morphism Tω∆ → ST(A). In the first part of this section, we provide
a combinatorial description of (the object part) of these morphisms. In the second part
of the section, we will consider morphisms from ST(A) to P (A∗), seen as a Γ-algebra or a
∆-algebra.

We start by describing the (object part of the) essentially unique continuous categorical
∆-algebra morphism Tω∆ → ST(A). We will call the image t′ of a term tree t under this
morphism the synchronization tree denoted by t, or the synchronization tree associated with
t.

Suppose that t is a ∆-term tree and u and v are leaves of t, labelled in A ∪ {1}. Let
p (resp. q) denote the sequence of vertices along the unique path from the root to u (resp.
v), including u (resp. v). We say that v ∈ St(u) if p and q are of the form p = rww1p

′ and
q = rww2q

′ with w labelled by · and successors w1, w2, ordered as indicated, such that

• every vertex appearing in p′ which is different from u is either labelled +, or if it is
labelled · then its second successor belongs to p′, and

3Here, we denote by t ≤ t′ also the unique morphism t → t′ in Tω
Σ seen as a category.

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 17

·
(v0)

a
(v1)

+

+

1
(v2)

a
(v3)

·

+

1
(v4)

1
(v5)

b
(v6)

(v0)

(v1)

(v2) (v3) (v4) (v5)

(v6)

(∗)

a

1
a 1

1

b b

ex ex

ex

ex

ex

a

ex

b

ex

b

Figure 6: The term tree a · ((1 + a) + ((1 + 1) · b)) (on the left), the associated graph G(t)
(in the middle) and the synchronization tree τ(t) (on the right).

• every vertex appearing in q′ which is different from v is either labelled +, or if it is
labelled · then its first successor belongs to q′.

We say that u ∈ M(t) if each vertex appearing in p which is different from u is either
labelled +, or if it is labelled ·, then its first successor belongs to p. Finally, we say that
u ∈ E(t) if each vertex appearing in p which is different from u is either labelled +, or if it
is labelled ·, then its second successor appears in p. Note that if u ∈M(t) then there is no
w such that u ∈ St(w), and similarly, if u ∈ E(t) then St(u) = ∅.

Now form the edge-labelled directed graph G(t) whose vertices are a new root vertex
v0, the leaves of t labelled in A∪ {1}, and the exit vertex denoted ∗. The edges of G(t) are
the following:

• For each u ∈ M(t), there is an edge from the root v0 to u, labelled by the label of
u in t.

• For all leaf vertices u and v of t labelled in A ∪ {1} such that v ∈ S(u), there is an
edge in G(t) from u to v whose label is the same as the label of v in t.

• Whenever u belongs to E(t), there is an edge in G(t) labelled ex from u to ∗.

Note that G(t) does not contain any cycle. We denote by τ(t) the synchronization tree
obtained by unfolding G(t) from v0 and then contracting edges labelled by 1.

In Proposition 2.16 below, we will prove that τ(t) = t′, the synchronization tree denoted
by t. However, before doing so, we find it instructive to give several examples.

As a first example, consider the term

t = a · ((1 + a) + ((1 + 1) · b)) .

As seen in Figure 6, the graph G(t) contains 8 vertices, the root v0, the exit vertex ∗, and
vertices v1, . . . , v6 corresponding to the 6 leaves of t. There is an a-labelled edge from v0 to
v1, edges from v1 to v2, v4 and v5 labelled 1, an edge from v1 to v3 labelled a, and edges
from v4 and v5 to v6 labelled b. Finally, there is an edge labelled ex from each of v2, v3 and
v6 to ∗. It is clear that τ(t) is the synchronization tree denoted by t.

In the second example illustrated in Figure 7, consider the term tree t defined by the
scheme

G = (a ·H) · c+ d

H = H · 1 .

18 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

+
(v0)

·

·

a
(u1)

·

·

1 (v3)

1 (v2)

c (v1)

d
(u2)

(v0)

(u1) (u2)
(v1)

(v2)

(v3)

(∗)

a d

c

1

ex
ex

a

ex

d

Figure 7: A term tree (on the left) and the associated graph G(t) (on the right).

·
(v0)

·

1(v1) ·

0 b
(v2)

1 (v3)

(v0)

(v1)
(v2) (v3)

(∗)

1
b ex

Figure 8: The term tree of t = (1 · (0 · b)) · 1 (on the left) and the associated graph G(t) (on
the right).

Now the root v0 of G(t) has two outgoing edges leading to different vertices u1 and u2, say.
These edges are labelled a and d, respectively. In addition, there is a sequence of vertices,
call them v1, v2, . . ., such that for each i ≥ 2 there is an edge from vi+1 to vi, which is
labelled 1, and there is a c-labelled edge from v2 to v1. Last, ∗ is a vertex, and there exist
edges from u2 and v1 to ∗ labelled ex. G(t) is infinite, but the tree τ(t) constructed from it
is finite since τ(t) = (a · 0) + d is the synchronization tree denoted by t.

In the last example illustrated in Figure 8, consider the term t = (1 · (0 · b)) · 1. The
vertices of G(t) are the root v0, vertices v1, v2, v3 corresponding respectively to the leaves
of t with nonzero label, and the exit vertex ∗. There are 3 edges, an edge labelled 1 from
v0 to v1, an edge labelled 1 from v2 to v3, and an edge labelled ex from v3 to ∗. Now τ(t)
contains only the root and no edges, so that τ(t) is the synchronization tree 0 denoted by t.

We still need to prove that the definition of τ(t) is correct.

Proposition 2.16. For every ∆-term tree t, the image t′ of t with respect to the essentially
unique continuous ∆-algebra morphism Tω∆ → ST(A) is τ(t).

Proof. Suppose first that t is finite. We will prove the claim by induction on the structure
of t. If t = 0, then G(t) has two vertices, the root and the exit vertex, and no edges. If t is
a symbol in A ∪ {1}, then G(t) has three vertices, the root v0, a vertex v1 and the vertex
∗. There is an edge from v0 to v1 and an edge from v1 to ∗. The first edge is labelled a if
t = a ∈ A, and 1 if t = 1. The second edge is labelled ex. In either case, τ(t) = t′.

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 19

In the induction step, first suppose that t = t1 + t2 for some terms t1, t2 denoting the
synchronization trees t′1 and t

′
2, respectively. Then G(t) is isomorphic to the disjoint union of

G(t1) and G(t2) with roots and exit vertices merged. Thus, τ(t) = τ(t1)+τ(t2) = t′1+t
′
2 = t′.

Suppose next that t = t1 · t2 with t1 denoting t′1 and t2 denoting t′2. Then G(t) can be
constructed from G(t1) and G(t2) as follows. For all edges from the root v2 of G(t2) to a
vertex v of G(t2) (which necessarily corresponds to a leaf vertex of t2 in M(t2)), and for
all u ∈ E(t1), add a new edge from u to v labelled by the symbol which is the label of the
edge from v2 to v in G(t2) (i.e., the label of v in t2). Then remove the edge from u to the
exit vertex of G(t1). Finally remove all edges originating in the root of G(t2). The vertices
of G(t) are the non-exit vertices of G(t1) and the non-root vertices of G(t2). It should be
clear that τ(t) is the sequential product of τ(t1) · τ(t2) and thus τ(t) = t′1 · t

′
2 = t′ by the

induction hypothesis.
Suppose now that t is infinite. For each n ≥ 0, let tn denote the approximation of t

obtained by relabelling each vertex of t of depth n by 0 and removing all vertices of depth
greater than n. For each leaf vertex u of t there is some n0 such that u is a vertex of tn with
the same label for all n ≥ n0. Moreover, for any two leaf vertices u, v of t with a nonzero
label, v ∈ St(u) iff there is some n0 such that v ∈ Stn(u) for all n ≥ n0. Similarly, for each
leaf u of t with a nonzero label, we have u ∈M(t) (u ∈ E(t)) iff there is some n0 such that
u ∈M(tn) (u ∈ E(tn), resp.) for all n ≥ n0. This implies that G(t) is the union (colimit) of
the G(tn) and then it follows that τ(t) is also the union (colimit) of the τ(tn). We conclude
that t′ = Colim t′n = Colim τ(tn) = τ(t), where for each n, t′n is the synchronization tree
denoted by tn.

Next we describe the essentially unique morphism of continuous categorical Γ-algebras
TωΓ → ST(A). Fix a Γ-term tree t ∈ TωΓ . We define a synchronization tree, denoted H(t),
which is essentially a representation of t as a synchronization tree in which leaves labelled
by 1 (in t) are added a dangling outgoing edge labelled by ex.

The vertices of the synchronization tree H(t) are the vertices of t together with a fresh
vertex u′ for each leaf u labelled by 1. If u is labelled by + in t then there is in H(t) an edge
labelled by +1 from u to its first successor and an edge labelled by +2 from u to its second
successor. If u is labelled by a ∈ A in t, then there is in H(t) an edge labelled by a from u to
its unique successor. Finally, for each leaf of u labelled by 1, there is an edge in H(t) from
u to u′ labelled by ex. The synchronization tree defined by t is the {+1,+2}-contraction of
H(t). This construction is illustrated for the Γ-term a.(c.0 + d.1) + 1 in Figure 9.

Let τ ′ denote the function that maps t to the {+1,+2}-contraction of H(t).

Proposition 2.17. For every t ∈ TωΓ , τ
′(t) is the synchronization tree in ST(A) denoted

by t.

We omit the proof which is essentially a simplification of that of Proposition 2.16.

Proposition 2.18. The function which maps a synchronization tree t ∈ ST(A) to its path
language in P (A∗) is the (object part) of a categorical Γ-algebra, as well as ∆-algebra,
morphism ST(A) → P (A∗).

Proof. It is clear that the empty tree is mapped to the empty language and the operations
are preserved. When there is a morphism t → t′ for synchronization trees t, t′ ∈ ST(A),
then the path language of t is included in the path language of t′. Finally, suppose that
(φn : tn → tn+1)n is an ω-diagram in ST(A) with colimit (ψn : tn → t)n. Then for every
branch of t ending in an edge labelled ex there is some n0 such that the branch is the image

20 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

+
(v0)

a(v1)

+(v3)

c(v4)

0(v6)

d (v5)

1 (v7)

1 (v2)

(v0)

(v1)

(v3)

(v4)

(v6)

c

+1
(v5)

(v7)

(v7′)

ex

d

+2

a

+1

(v2)

(v2′)

ex

+2

(v0)

(v3)

(v6)

c
(v7)

(v7′)

ex

d

a

(v2′)

ex

Figure 9: The term tree of t = a.(c.0 + d.1) + 1 (on the left) and the synchronization tree
H(t) (in the middle) and its {+1,+2}-contraction (on the right).

of a corresponding branch of tn0
with respect to the morphism ψn0

: tn0
→ t, and then

the same holds for each n ≥ n0. Using this fact, it follows easily that the path language
of t is the union of the path languages of the tn, proving that colimits of ω-diagrams are
preserved.

2.9. Basic Properties. In this section, we give some basic properties of synchronization
trees defined by first-order recursion schemes.

First, we remark that Γ-regular and Γ-algebraic functors are closed under the sequential
product. This closure property is immediate for ∆-regular and ∆-algebraic functors as the
sequential product is an operation of the continuous ∆-algebra ST(A) (which is not the case
for the continuous Γ-algebra ST(A)).

Proposition 2.19. If f, f ′ : ST(A)k → ST(A) are Γ-algebraic (resp. Γ-regular), then so is
f · f ′.

Proof. Suppose that f and f ′ are the first components of the initial solutions over ST(A)
of the Γ-recursion schemes E and E′. Without loss of generality, we may assume that E
and E′ have disjoint sets of functor variables. Let F1(x1, . . . , xk) and F

′
1(x1, . . . , xk) denote

the left-hand sides of the first equations of E and E′. Then replace each occurrence of
the symbol 1 on the right-hand-side term of each equation of E with F ′

1(x1, . . . , xk), and
consider the recursion scheme consisting of these equations together with the equations of
E′. The component of the initial solution of this scheme which corresponds to F1 is f ·f ′.

Example 2.20. The tree bω determined by single infinite branch with edges labelled b is
Γ-regular since it is the initial solution of the following Γ-regular recursion scheme

X = b.X.

We have already seen in Example 2.12 on page 13 that the tree
∑

i≥1 a
i is Γ-algebraic.

According to the above proposition, the tree (
∑

i≥1 a
i) · bω is also Γ-algebraic. Indeed, it is

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 21

the initial solution of the recursion scheme

F1 = F2(a.X)

F2(v) = v + F2(a.v)

X = b.X.

All our classes of synchronization trees are also closed under the contraction operation
for each non-empty subset of A.

Proposition 2.21. The classes of Γ-regular, Γ-algebraic, ∆-regular and ∆-algebraic syn-
chronization trees in ST(A) are closed under contraction for any non-empty subset of A.

Proof. Let B be a non-empty subset of A. Let t be a synchronization tree defined by an
algebraic Γ-scheme E and let t′ be the synchronization tree obtained by contracting t with
respect to B.

A Γ-scheme E′ defining t′ is easily obtained from E by replacing each equation of the
form F (v1 . . . vn) = t by the equation F (v1 . . . vn) = t where t is inductively defined by

0 = 0, 1 = 1, t1 + t2 = t1 + t2, G(t1, . . . , tk) = G(t1, . . . , tk), a(t) = a(t) if a ∈ A \ B and

b(t) = t for b ∈ B. Note that E′ is Γ-regular, if so is E.
The Γ-term defined by E′ is the contraction of the Γ-term defined by E from its root

with respect to B. It then follows, from the definition of the mapping τ ′ in 2.8 and Propo-
sition 2.17, that the synchronization tree defined by E′ is the contraction of the synchro-
nization tree defined by E with respect to B.

Let t be a synchronization tree defined by an algebraic ∆-scheme E and let t′ be the
synchronization tree obtained by contracting t with respect to B. Consider the ∆-scheme
E′ obtained by replacing in E all occurrences of a constant in B by the constant 1. (Note
that E′ is ∆-regular, if so is E.) The ∆-term defined by E′ is the ∆-term defined by E
in which each occurrence of a constant in B is replaced by the constant 1. It follows from
the definition of the mapping τ in 2.8 and Proposition 2.16, that the synchronization tree
defined by E′ is the contraction of the synchronization tree defined by E with respect to
B.

Finally, the Γ-regular synchronizations trees can be characterized by a syntactic sub-
family of the ∆-regular recursion schemes. This characterization is similar in spirit to the
characterization of regular languages by right-linear context-free grammars. A ∆-regular
scheme is said to be right-linear if the right-hand side of each equation is of the form

t0 +
∑

i∈[n]

ti ·Gi

up to commutativity and associativity of sum, where the Gi, i ∈ [n], are (constant) functor
variables and the tj, j ∈ {0, . . . , n} are terms over the signature ∆ not containing variables.
(The empty sum stands for 0.) It is rather standard to prove the following fact:

Proposition 2.22. A synchronization tree in ST(A) is Γ-regular iff it can be defined by a
right-linear ∆-regular scheme.

Proof. It is clear how to transform a Γ-regular recursion scheme into a right-linear ∆-scheme
by turning each prefixing operation into a sequential product.

We show how to transform a ∆-term t · G with t containing no functor variables into
a corresponding Γ-term t′(G), possibly containing G. We proceed by induction on the

22 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

structure of t. When t = 0, let t′(G) = 0, and when t = 1 let t′(G) = G. When t = a where
a ∈ A, define t′(G) = a.G. Suppose now that t = t1 + t2. Then let t′ = t′1(G) + t′2(G).
Finally, consider the case when t = t1 · t2. In this case define t′(G) as the term obtained by
substituting t′2(G) for each occurrence of G in t′1(G).

A routine calculation shows that for each evaluation of G in ST(A), the terms t ·G and
t′(G) yield the same synchronization tree. For an example of such calculation, we refer the
reader to the proof of Theorem 3.2 on page 23. Using this fact, we may transform a right-
linear ∆-scheme into a regular Γ-scheme by changing the right-hand side t0 +

∑
i∈[n] ti ·Gi

of each equation to t′0(1) +
∑

i∈[n] t
′
i(Gi), where t

′
0(1) is the term obtained by substituting

1 for G in t′0(G).

3. Comparison between the Γ-algebra and the ∆-algebra

In this section, we interpret recursion schemes over the continuous categorical algebra
ST(A), viewed either as a Γ-algebra or a ∆-algebra. We compare the resulting classes
of synchronization trees with respect to language equivalence, bisimulation equivalence and
isomorphism equivalence.

First for language equivalence, we show in Section 3.1 that the following hierarchy holds.

Γ-regular︸ ︷︷ ︸
regular languages

(∆-regular = Γ-algebraic︸ ︷︷ ︸
context-free languages

(∆-algebraic︸ ︷︷ ︸
indexed languages

(3.1)

Up to bisimulation or isomorphism, we show in Section 3.2 that the following hierarchy
holds.

Γ-regular (∆-regular (Γ-algebraic (∆-algebraic (3.2)

We conclude the section by a comparison with the classes of synchronization trees
defined by BPA and BPP.

3.1. Comparison up to language equivalence. As already mentioned in the introduc-
tion, the path languages of the different classes can be characterized as follows.

Proposition 3.1. The following properties holds.

(1) The path languages of the Γ-regular trees are the regular languages.
(2) The path languages of the ∆-regular trees and of the Γ-algebraic trees are the context-

free languages.
(3) The path languages of the ∆-algebraic languages are the indexed languages.

Proof. By the Mezei-Wright theorem, the path languages of the Γ-regular trees and the
∆-regular trees in ST(A) are just the Γ-regular and ∆-regular elements (objects) of P (A∗),
seen as a continuous Γ-algebra or ∆-algebra. By classic results (e.g. [33, Theorem 1.21,
page 116]), these in turn are the regular and context-free languages Similarly, the indexed
languages (or OI-macro languages) are exactly the ∆-algebraic elements of P (A∗), cf. [29],
i.e., the path languages of the ∆-algebraic trees by the Mezei-Wright theorem. By The-
orem 3.2, every ∆-regular tree is Γ-algebraic. Thus, to complete the proof, it remains to
show that the path language of a Γ-algebraic tree is context-free.

Suppose that L is the path language of a Γ-algebraic tree in ST(A), and let E denote
a Γ-algebraic scheme defining it. Then consider the term tree t ∈ TωΓ defined by E. By the

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 23

Mezei-Wright theorem, L is the image of t with respect to the unique continuous Γ-algebra
morphism h : TωΓ → P (A∗).

Suppose that v is a leaf of t labelled 1, and consider the branch of t from the root to
v. The label of this branch is a word wv over the alphabet A ∪ {+1,+2}. Let us consider
the image π(wv) of wv under the erasing morphism π : (A∪ {+1,+2})

∗ → A∗ that removes
the letters +1 and +2. Then L = h(t) ⊆ A∗ is the set of all such words π(wv) obtained by
considering all leaves v of t labelled 1.

It follows from Courcelle’s characterization of the algebraic term trees by deterministic
context-free languages [24, Theorem 5.5.1,page 157] (see also [22, 23]) that the set of all
words wv, where v is a leaf of t labelled 1, is a deterministic context-free language. Since
the image of a (deterministic) context-free language with respect to a homomorphism is
context-free, we conclude that L is a context-free language.

3.2. Comparison up to bisimulation and isomorphism. The aim of this section is to
establish the strict inclusions stated in Equation (3.2).

As noted in Remark 2.3 on page 8, a Γ-term can be transformed into an equivalent
∆-term by replacing for each letter a ∈ A, all occurrences of a subterm a(t) by a · t.
In particular, every Γ-regular tree is ∆-regular and every Γ-algebraic tree is ∆-algebraic.
This establishes the first and third inclusions of (3.2). These inclusions are strict up to
bisimulation and up to isomorphism as they are already strict with respect to language
equivalence (cf. (3.1)).

It only remains to establish the second strict inclusion of Equation (3.2). First we
establish the inclusion up to isomorphism in Theorem 3.2. In Corollary 3.4, we characterize
a syntactical subfamily of the Γ-algebraic schemes which captures exactly the ∆-regular
schemes.

Theorem 3.2. Every ∆-regular tree is Γ-algebraic.

Proof. Consider a regular ∆-recursion scheme E,

F1 = t1
...

Fn = tn,

which defines the ∆-regular tree s ∈ ST(A).
Let Φ = {F1, . . . , Fn} and Ψ = {G0, G1, . . . , Gn}, where each Fi is of rank 0, G0 is of

rank 0, and each Gi with i ≥ 1 is of rank 1.
Given a variable-free ∆∪Φ-term t, we define its translation t′ to be a Γ∪(Ψ−{G0})-term

in the variable v1.

• If t = Fi, for some i ∈ [n], then t′ = Gi(v1).
• If t = 0 then t′ = 0.
• If t = 1 then t′ = v1.
• If t = a then t′ = a.v1.
• If t = t1 + t2 then t′ = t′1 + t′2.
• If t = t1 ·t2 then t

′ = t′1(t
′
2), the term obtained by substituting t′2 for each occurrence

of v1 in t′1.

24 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

Note that
tST(A) : ST(A)n → ST(A)

and
t′ST(A) : [ST(A) → ST(A)]n → [ST(A) → ST(A)]

The two functors are related.
For a tree r ∈ ST(A), let r denote the functor ‘left composition with r’, r · (−) in

[ST(A) → ST(A)].
Claim 1. For each variable-free ∆∪Φ-term t and its translation t′, and for each sequence

of trees r1, . . . , rn in ST(A), it holds that

tST(A)(r1, . . . , rn) = t′ST(A)(r1, . . . , rn).

Indeed, when t = Fi, for some i ∈ [n], then t′ is Gi(v1) and both sides are equal to the
functor ri. If t = 0, then both sides are equal to the constant functor ST(A) → ST(A)

determined by the tree 0ST(A), and when t = 1, both sides are equal to the identity
functor ST(A) → ST(A). Indeed, seen tST(A)(r1, . . . , rn) = 1ST(A), left composition with

tST(A)(r1, . . . , rn) is the identity functor as is t′ST(A)(r1, . . . , rn) = v
ST(A)
1 (r1, . . . , rn). Sup-

pose now that t = a for some a. Then both sides are equal to the functor a, left composition
with a. Next let t = t1 + t2, and suppose that the claim holds for t1 and t2. Then

tST(A)(r1, . . . , rn) = t
ST(A)
1 (r1, . . . , rn) + t

ST(A)
2 (r1, . . . , rn)

= t
′ST(A)
1 (r1, . . . , rn) + t

′ST(A)
2 (r1, . . . , rn)

= t′ST(A)(r1, . . . , rn).

Last, suppose that t = t1 · t2, and that the claim holds for both terms t1 and t2. Then

tST(A)(r1, . . . , rn) = t
ST(A)
1 (r1, . . . , rn) ◦ t

ST(A)
2 (r1, . . . , rn)

is the composition of the functors t
ST(A)
1 (r1, . . . , rn) and t

ST(A)
2 (r1, . . . , rn) (where the second

functor is applied first), as is the functor

t′ST(A)(r1, . . . , rn) = t
′ST(A)
1 (r1, . . . , rn) ◦ t

′ST(A)
2 (r1, . . . , rn)

= t
ST(A)
1 (r1, . . . , rn) ◦ t

ST(A)
2 (r1, . . . , rn).

Claim 2. For each variable-free ∆∪Φ-term t and its translation t′, and for each sequence
of trees r1, . . . , rn in ST(A), it holds that

tST(A)(r1, . . . , rn) = (t′ST(A)(r1, . . . , rn))(1
ST(A))

Indeed, by Claim 1, we have

tST(A)(r1, . . . , rn) = (tST(A)(r1, . . . , rn))(1
ST(A)) = (t′ST(A)(r1, . . . , rn))(1

ST(A)).

Let E′ denote the Γ-algebraic scheme

G0 = G1(1)

G1(v1) = t′1
...

Gn(v1) = t′n

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 25

We claim that E′ is equivalent to E, i.e., E′ also defines s. To this end, let G denote the
recursion scheme consisting of the last n equations of E′. In order to compare the schemes
E and G, define

s0 = (s0,1, . . . , s0,n) = (0ST(A), . . . , 0ST(A))

si+1 = (si+1,1, . . . , si+1,n) = (t
ST(A)
1 (si), . . . , t

ST(A)
n (si))

g0 = (g0,1, . . . , g0,n) = (0[ST(A)→ST(A)], . . . , 0[ST(A)→ST(A)])

gi+1 = (gi+1,1, . . . , gi+1,n) = (t
′ST(A)
1 (gi), . . . , t

′ST(A)
n (gi))

For each i, define si = (si,1, . . . , si,n). We prove by induction on i that gi = si.

This is clear when i = 0, since for each j ∈ [n], g0,j = 0[ST(A)→ST(A)] = 0ST(A) = s0,j.
To prove the induction step, suppose that we have established our claim for some i ≥ 0.
Then for all j ∈ [n],

gi+1,j = t
′ST(A)
j (gi)

= t
′ST(A)
j (si)

= t
ST(A)
j (si), by Claim 1,

= si+1,j

For each j ∈ [n], let φ0,j denote the unique morphism 0ST(A) → s1,j. Then define

φ0 = (φ0,1, . . . , φ0,n)

φi+1 = (φi+1,1, . . . , φi+1,n) = (t
ST(A)
1 (φi), . . . , t

ST(A)
n (φi))

Next, let ψ0,j denote the unique natural transformation 0[ST(A)→ST(A)] → g1,j , for each
j ∈ [n]. Define

ψ0 = (ψ0,1, . . . , ψ0,n)

ψi+1 = (ψi+1,1, . . . , ψi+1,n) = (t
′[ST(A)→ST(A)]
1 (ψi), . . . , t

′[ST(A)→ST(A)]
n (ψi))

Thus, each ψi,j is a natural transformation from gi,j = si,j to gi+1,j = si+1,j, and each φi,j
is a morphism si,j → si+1,j. Define φi,j to be the natural transformation si,j → si+1,j such

that for any tree f , the corresponding component of φi,j is φi,j · f . Let φi = (φi,1, . . . , φi,n).

Claim 3. For each i, it holds that ψi = φi.
The proof is similar to the above argument. Using this claim, it follows that φi,j =

ψi,j(1
ST(A)) for each i, j, since

ψi,j(1
ST(A)) = φi,j(1

ST(A)) = φi,j.

It is now easy to complete the proof. By the Bekić identity,

|E′ST(A)| = |GST(A)|(1ST(A))

= Colim((ψi,1(1
ST(A)) : gi,1(1) → gi+1,1(1

ST(A)))i≥0)

= Colim((φi,1 : si,1 → si+1,1)i≥0)

= |E|ST(A),

up to isomorphism.

26 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

��������

ex

��

a
// ��������

b
��

a
// ��������

b
��

a
// ��������

b
��

a
// · · ·

�������� ��������

ex

��

��������

b
��

��������

b
��

· · ·

�������� ��������

ex

��

��������

b
��

· · ·

�������� ��������

ex

��

· · ·

�������� · · ·

Figure 10: The ∆-regular and Γ-algebraic tree from Example 3.3

Example 3.3. Suppose that E is given by the single equation

F = 1 + a · F · b

Then E′ is

G0 = G(1)

G(v) = v + a.(G(b.v))

Both of them define the tree depicted on Figure 10.

The translation given in the proof of Theorem 3.2 allows us to characterize ∆-regular
trees by a syntactic restriction on Γ-algebraic schemes.

Corollary 3.4. A tree is ∆-regular if and only if it is defined by an algebraic recursion
scheme G over Γ of the form

G0 = G1(1)

G1(v1) = p1
...

Gn(v1) = pn

where G0 has rank 0, each Gi with i ≥ 1 has rank 1, and where none of the terms pi has an
occurrence of the constant 1.

Proof. In the light of the proof of Theorem 3.2, it is enough to show that any such scheme
can be obtained from some regular recursion scheme E over ∆.

Let Ψ = {G1, . . . , Gn} and Φ = {F1, . . . , Fn}, where each Fi has rank 0. We give a
transformation of a Γ ∪ Ψ-term p in the variable v1, which contains no occurrence of the
constant 1, into a variable-free ∆∪Φ-term p̂ such that (p̂)′ = p, where (p̂)′ is defined in the
proof of Theorem 3.2.

(1) If p = 0 then p̂ = 0.
(2) If p = v1 then p̂ = 1.
(3) If p = p1 + p2 then p̂ = p̂1 + p̂2.
(4) If p = a.p1 then p′ = a · p̂1.
(5) If p = Gi(p1) then p̂ = Fi · p̂1.

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 27

Claim. Let p be a Γ∪Ψ-term in the variable v1 containing no occurrence of the constant
1. Then (p̂)′ = p.

We prove this claim by induction on the structure of p. When p = 0, p̂ = 0 and (p̂)′ = 0,
and when p = v1, p̂ = 1 and (p̂)′ = v1. Suppose that p is of the form p1 + p2 and that the
claim holds for p1 and p2. In this case p̂ = p̂1 + p̂2 and (p̂)′ = (p̂1)

′ + (p̂2)
′ = p1 + p2 = p,

by the induction hypothesis. Next let p = a.p1 where a ∈ A and suppose that the claim
holds for p1. Then p̂ = a · p̂1 and (p̂)′ = (a.v1)((p̂1)

′) = a.(p̂1)
′ = a.p1 = p. Last, suppose

that p = Gi(p1) for some i ∈ [n] and p1 satisfying the claim. Then we have p̂ = Fi · p̂1 and
(p̂)′ = Gi((p̂1)

′) = Gi(p1) = p. This completes the proof of the claim.
Now consider the regular ∆-scheme E

F1 = p̂1
...

Fn = p̂n

By the proof of Theorem 3.2, G corresponds to E. Thus, E and G define the same tree.

Remark 3.5. The restriction on the use of the constant 1 in Corollary 3.4 is necessary.
Indeed the proof of Proposition 3.6 to follow gives an example of Γ-algebraic scheme of rank
1 generating a tree that is not ∆-regular even up to bisimulation equivalence.

To establish Equation (3.2), it remains to show the strictness of the second inclusion
up to bisimulation equivalence.

Proposition 3.6. There exists a Γ-algebraic synchronization tree that is not bisimilar to
any ∆-regular tree.

Proof. Let A = {a, b}, and consider the synchronization tree T ∈ ST(A), defined by the
Γ-algebraic recursion scheme:

S = F (1 + b.1)

F (v1) = v1 + a.(F (1 + b.v1)) .

The tree T , depicted in Figure 11, has a single infinite branch whose edges are labelled
a, and the out-degree of each vertex on this branch is 3, since each such vertex is the source
of an edge labelled a, an edge labelled b, and an edge labelled ex. Since T is deterministic,
its vertices may be identified with the words in the prefix closed language

{anbm, anbmex | n ≥ 0 and m ≤ n+ 1}.

A key feature is that every vertex is the source of an edge labelled ex.
We are going to show that every ∆-regular scheme E defining a synchronization tree

bisimilar to T is equivalent to a right-linear one, modulo bisimilarity. By Proposition 2.22,
this would imply that T is Γ-regular, which yields a contradiction. Indeed, the tree T has
a countably infinite set of subtrees that are pairwise non-bisimilar.

Without loss of generality, we may assume that the equations of E are of one of three
forms:

(1) G = G1 +G2,
(2) G = G1 ·G2, and
(3) G = c for c ∈ {a, b} ∪ {0, 1} .

28 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

(ε)

(a)

(aa)

(aab)

(aabb)

(aabbb)

ex

b ex

b ex

b ex

a

(ab)

(abb)

ex

b ex

b ex

a

(b)

ex

b ex

Figure 11: The tree T .

In the following, we are interested in a particular family F of ‘subtrees” of T , containing,
for all k ≥ 0, the subtree Tk rooted at ak, and the trees obtained from Tk by removing the
exit edge originating in the root together with its target, or the edge labelled b originating
in the root together with all vertices and edges accessible from the end vertex of that edge,
or both. We denote these synchronization trees by Tk(1), Tk(b) and Tk(1, b), respectively.

Lemma 3.7. Suppose that a tree s ∈ F is bisimilar to a tree s1 · s2, where neither s1 nor
s2 is bisimilar to 1. Then for some k, s = Tk(1, b), s1 is bisimilar to a = a.1, and s2 is
bisimilar to Tk+1.

Proof. Suppose that s is bisimilar to s1 · s2 and neither s1 nor s2 is bisimilar to the tree
1. Note that s2 is not 0. Clearly, each vertex of s1, except possibly the root, must be the
source of an exit edge. Suppose that s contains and edge labelled a from x1 to x2 such both
x1 and x2 are sources of an exit edge. Then in the tree s1 · s2, they have successor vertices
y1 and y2 such that the subtrees rooted at y1 and y2 are isomorphic (and thus bisimilar)
and contain at least one edge. But T does not have such vertices connected by an edge
labelled a and therefore neither does s. For this reason, s1 cannot have two consecutive
edges labelled a either. This in turn yields that s2 has at least one edge labelled a and
therefore s1 cannot have an edge labelled b. We conclude that s1 is bisimilar to the tree
a = a.1 and then s2 is bisimilar to Tk+1 for some k.

Now, by Lemma 3.7, we may transform E into a right-linear scheme defining T up to
bisimilarity. First mark all those variables G such that the corresponding component in
the initial solution of E over ST(A) has an infinite branch. The first variable is clearly
marked. Suppose that G is marked. If the equation for G is G = G1 +G2, then G1 or G2

is marked. If one of them is not marked, then it can be replaced by a variable-free term. If
the equation for G is G = G1 ·G2 and the component in the initial solution of E over ST(A)
corresponding to one of the Gi is bisimilar to 1, then we may simply remove it. Otherwise
we apply Lemma 3.7 and replace G1 by a and mark G2 if it is not yet marked. Eventually,
we keep only the marked functor variables and obtain a right-linear scheme defining T up
to bisimilarity.

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 29

3.3. Comparison with BPA and BPP. The ∆-regular trees that can be defined using
regular ∆-recursion schemes that do not contain occurrences of the constants 0 and 1
correspond to unfoldings of the labelled transition systems denoted by terms in Basic Process
Algebra (BPA) with recursion, see, for instance, [3, 4, 6]. Indeed, the signature of BPA
contains one constant symbol a for each action as well as the binary + and · operation
symbols, denoting nondeterministic choice and sequential composition, respectively. In the
remainder of this paper, we write BPA for ‘BPA with recursion’.

Alternatively, following [37], one may view BPA as the class of labelled transition
systems associated with context-free grammars in Greibach normal form in which only
leftmost derivations are permitted.

The class of Basic Parallel Processes (BPP) is a parallel counterpart of BPA introduced
by Christensen [20]. BPP consists of the labelled transition systems associated with context-
free grammars in Greibach normal form in which arbitrary derivations are allowed. We refer
the interested readers to [37] for the details of the formal definitions, which are not needed
to appreciate the results to follow, and further pointers to the literature.

Proposition 3.8.

(1) Every synchronization tree that is the unfolding of a BPA process is Γ-algebraic.
(2) There is a Γ-algebraic synchronization tree that is neither definable in BPA modulo

bisimilarity nor in BPP modulo language equivalence.

Proof. The former claim follows easily from Theorem 3.2. In order to prove the latter
statement, consider the LTS depicted on Figure 12. This LTS is not expressible in BPA
modulo modulo bisimilarity and is not expressible in BPP modulo language equivalence (if
the states q are r are the only final states in the LTS)—see [37, page 206, Example (f)]. On
the other hand, the synchronization tree associated with that LTS is Γ-algebraic because it
is the unique solution of the recursion scheme below.

F1 = b+ c+ a.F2(b
2, c2)

F2(v1, v2) = v1 + v2 + a.F2(b.v1, c.v2)

So non-regular Γ-algebraic recursion schemes are more expressive than BPA modulo
bisimilarity and can express synchronization trees that cannot be defined in BPP up to
language equivalence, and therefore up to bisimilarity.

4. Comparison with the Caucal hierarchy

In this section, we compare the expressiveness of recursion schemes to that of the low classes
in the Caucal hierarchy [18]. Section 4.1 gives a general overview of the Caucal hierarchy.
Section 4.2 presents in more details the properties of the graphs and trees sitting in the
first levels of the hierarchy. Section 4.3 shows that the classes of synchronization trees we
introduced belong to the Caucal hierarchy. Finally Section 4.4 characterises the Γ-algebraic
synchronization trees as contractions of the synchronization trees in the class Tree2.

30 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

������������	
� ��������
b

oo ��������
b

oo · · ·
b

oo

// ��������

b

OO

a //

c

��

��������

b

OO

a //

c

��

��������

b

OO

a //

c

��

· · ·

������������	
� ��������
c

oo ��������
c

oo · · ·
c

oo

Figure 12: An LTS whose unfolding is an algebraic synchronization tree

4.1. The Caucal hierarchy. The Caucal hierarchy (also known as the pushdown hierar-
chy) is a hierarchy of classes of edge-labelled graphs. Following [15], the Caucal hierarchy
is

Tree0 ⊆ Graph0 ⊆ Tree1 ⊆ Graph1 ⊆ · · ·

where Tree0 and Graph0 denote the classes of finite, edge-labelled trees and graphs, re-
spectively. Moreover, for each n ≥ 0, Treen+1 stands for the class of trees isomorphic to
unfoldings of graphs in Graphn, and the graphs in Graphn+1 are those that can be obtained
from the trees in Treen+1 by applying a monadic interpretation (or transduction) [25]. As
shown by Caucal in [19], every graph in the Caucal hierarchy has a decidable theory for
monadic second order logic.

Remark 4.1. For a graph G ∈ Graphn and a vertex v of G, the graph H obtained by
restricting G to the set of vertices reachable from v is also a graph in Graphn [15]. In
particular, we can always assume that a tree in Treen+1 is obtained by unfolding a graph
in Graphn from one of its root.

Example 4.2. Figure 13 shows a sequence of transformations constructing the synchro-
nization tree

∑
i≥1 a

i starting from a finite graph. The vertices from which the graphs are
unfolded are signalled by an incoming arrow. The MSO-interpretation I1 adds an a-labelled
edge from a vertex u to a vertex v if u has no outgoing edges and there exist two vertices

s and t with s
e

−→ t, s
e

−→ v, t
e

−→ u. The MSO-interpretation I2 is the {e}-contraction
operation.

4.2. First levels of the hierarchy. The class Tree1 contains the regular trees of finite
outdegree (i.e., the trees of finite degree having finitely many non-isomorphic subtrees). It
is well known that Graph1 is the set of all prefix-recognizable graphs [19].

A prefix recognizable relation over a finite alphabet C is a finite union of relations of the
form4 U ·(V ×W), for some nonempty regular languages U, V,W ⊆ C∗. A prefix recognizable
graph over an alphabet B is an edge-labelled graph that is isomorphic to a graph of the

form (V, (
b

−→)b∈B), where for some alphabet C, V is a regular subset of C∗ and the edge

4 U · (V ×W) denotes the relation {(uv, uw) | u ∈ U, v ∈ V and w ∈ W }.

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 31

Graph0

e

aex

e

e

e

Tree1

e e

e e e

aex

Graph1

e e

e e e

aex a a

Tree2

e e

e e e

a a a

ex a a

ex a

ex

Graph2

a
a a

ex a a

ex a

ex

Unf

I1

Unf

I2

Figure 13: A construction of the synchronization tree
∑

i≥1 a
i in the Caucal hierarchy.

relations
b

−→ are prefix recognizable relations over C. (Of course, the alphabet C may be
fixed to be a 2-element alphabet.)

Proposition 4.3. For a labelled graph G, the following statements are equivalent:

• G belongs to Graph1,
• G is isomorphic to a prefix-recognizable graph [18],
• G can be MSO-interpreted in the full binary tree ∆2 [12].

Proposition 4.4. Let G be a graph in Graph1 labelled in A, and let r be a root of G. The
graph G is isomorphic to the B-contraction of a deterministic graph H ∈ Graph1 labelled in
A ⊎B from one of its root r′.

Moreover H can be chosen such that for any a ∈ A and any two vertices u and v

belonging to the B-contraction from r′, there exists at most one path from u to v labelled by
a word in B∗a.

Proof. Let G = (V, (Ra)a∈A) be a prefix-recognizable graph labelled in A. We may assume,
without loss of generality, that the vertices in V are words over the alphabet C = {0, 1}.
Moreover we may assume that the relations Ra, a ∈ A, can be expressed as the disjoint
union of relations Ua,1 · (Va,1×Wa,1), . . . , Ua,na · (Va,na ×Wa,na). In addition, we may require
that First(Va,i) ∩ First(Wa,i) ⊆ { ε }, for all i ∈ [na] where First(L) = {a ∈ C | au ∈
L for some u ∈ C∗}∪{ε | ε ∈ L} [16, Proposition 2.1]. These assumptions guarantee that if

32 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

(x, y) belongs to Ra, then there exists a unique i ∈ [na] and a unique decomposition x = uv

and y = uw such that u ∈ Ua,i, v ∈ Va,i and w ∈Wa,i.
Before proceeding with the construction, we need to introduce some notations. Let

a ∈ A and let i ∈ [na]. We take Aa,i = (Qa,i, qi,a, Fa,i, δa,i) to be a complete DFA accepting
the reverse of Va,i and Ba,i = (Q′

a,i, q
′
i,a, F

′
a,i, δ

′
a,i) to be a complete DFA accepting Wa,i.

We assume that the sets of states of these automata are pairwise disjoint and we take
Q =

⋃
a∈A,i∈[na]

Qa,i and Q
′ =

⋃
a∈A,i∈[na]

Q′
a,i.

We are now going to define a prefix-recognizable graph H = (V ′, (R′
a)a∈A∪B) satisfying

the properties stated above.
The set of labels B is B = {e0, e1, e2} ∪ {ea,i | a ∈ A and i ∈ [na]}. The vertices of H

are words over the alphabet {0, 1} ∪Q ∪Q′ ∪ {(a, i) | a ∈ A and i ∈ [na]} ∪ {⋆}.
Intuitively, the graph H is constructed in such a way that a path labelled by a word

in B∗a from a vertex x ∈ V to a vertex y ∈ V simulates the relation Ra,i for a ∈ A and
i ∈ [na]. For a fixed a ∈ A and i ∈ [na], the simulation is done using two sets of vertices
Va,i = {0, 1}∗Qa,i(a, i) and V ′

a,i = {0, 1}∗Q′
a,i(a, i). Starting from a vertex x ∈ V , the

vertices in Va,i are used to remove a suffix v of x belonging to Va,i and the vertices in V ′
a,i

are used to add a suffix w in Wa,i. When moving from the vertices in Va,i to the vertices
in V ′

a,i, we check that the remaining prefix u belongs to Ua,i. This guarantees that x and y
can be respectively written as uv and uw with u ∈ Ua,i, v ∈ Va,i and w ∈Wa,i.

Formally, from a vertex x ∈ V , there is an edge labelled ea,i to the vertex xqa,i(a, i) (cf.

(1) below). For all words u, v ∈ {0, 1}∗ and for all q ∈ Qa,i, uvq(a, i)
e
|v|
0−→
H

uδa,i(q, u)(a, i)

(cf. (2) below). If u ∈ {0, 1}∗ belongs to Ua,i and q ∈ Fa,i, uq(a, i)
e1−→
H

uq′a,i(a, i) (cf. (3)

below). For all words u, v ∈ {0, 1}∗ and for all q ∈ Q′
a,i, uq(a, i)

e∗0−→
H

uvδ′a,i(q, v)(a, i) (cf.

(4) below). Finally, for u ∈ {0, 1}∗ and q ∈ F ′
a,i, we have uq(a, i)

e2−→
H

u ⋆ (a, i)
a

−→
H

u (cf.

(5) and (6) below).
The set of vertices V ′ is taken to be V ∪

⋃
a∈ADom(R′

a)∪ Im(R′
a). The edges of H are

defined, for all a ∈ A, i ∈ [na], q ∈ Qa,i, q
′ ∈ Q′

a,i, u ∈ {0, 1}∗ and b ∈ {0, 1}∗, by:

u
ea,i
−→
H

u qa,i(a, i) for u ∈ V (1)

u bq(a, i)
e0−→
H

u δa,i(q, b) for b ∈ {0, 1} (2)

u q(a, i)
e1−→
H

u q′a,i(a, i) if q ∈ Fi,a and u ∈ U (3)

u q′(a, i)
e0−→
H

ub δ′a,i(q, b)(a, i) for b ∈ {0, 1} (4)

u q′(a, i)
e2−→
H

u ⋆ (a, i) if q′ ∈ F ′
a,i (5)

u ⋆ (a, i)
a

−→
H

u for u ∈ V (6)

The graph H is a deterministic prefix-recognizable graph. We have already seen that:

Claim 4.5. For all x, y ∈ {0, 1}∗, if x
a

−→
G

y then there exists a path in H labelled in B∗a

from x to y.

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 33

·
(v0)

+(v1)

a(v3) 0 (v4)

c (v2)

(ε)

(v0)

(v01)

(v01v1)

(v01v11)

(v01v11v3)

a

1
(v01v12)

(v01v11v4)

0

2

+

1
(v02)

(v02v2)

c

2

·

Figure 14: The representation of the ∆-term (a+ 0) · c as a labelled tree following [18]

It remains to show the other direction.

Claim 4.6. For all x, y ∈ {0, 1}∗, if there exists a path from x to y in H labelled in B∗a

then this path is unique and x
a

−→
G

y.

Proof. Let x, y ∈ {0, 1}∗ be such that there exists a path from x to y in H labelled in B∗a.
By the construction of H, there exist i ∈ [na], and u, v and w ∈ {0, 1}∗ with x = uv and
y = uv such that the path is of the form

x
ea,i
−→
H

xqa,i
e
|u|
0−→
H

uδ(qa,i, u)(a, i)
e1−→

uq′a,i(a, i)
e
|w|
0−→
H

uwδ′a,i(q
′
a,i, w)

e2−→
u

w ⋆ (a, i)
a

−→
H

uw

with δ(qa,i, u) ∈ Fa,i, δ(q
′
a,i, w) ∈ F ′

a,i and u ∈ Ua,i. It follows that (x, y) belongs to Ra,i. As
remarked before, the index i is unique and so is the decomposition into u, v and w. Hence
the uniqueness of the path follows.

From the above two claims, it follows that the B-contraction of H is equal to G.

As first remarked in [42], the graphs in Graph1 can be obtained by a form of contraction5

of the configurations graph of pushdown automata [15].
Let us now consider the class Tree2. The main property of the class Tree2 is that it

contains the Σ-term trees defined by any Σ-algebraic recursion scheme for any signature Σ.
As Tree2 only contains labelled trees, we need to fix a representation of Σ-term trees as

labelled trees. We follow the one from [18] which is slightly different from the one presented
in Section 2.8 (see also Remark 4.8). A Σ-term tree t is represented by a tree t′ labelled by
Σ ∪ {1, . . . ,m} where m is the maximum rank of a symbol of Σ.

The vertices of t′ are prefixes of sequences of the form u0d0 · · · un−1dn−1un where u0 is

the root of t, un is a leaf of t and for all i ∈ [n], ui is the di−1-th successor of ui−1. Let u be
a vertex of t labelled by a ∈ Σ, if w and wu are vertices of t′ then there is an edge from w

to wu labelled by a. Let i ∈ [m], if w and wi are vertices of t′ then there is an edge from w

to wi labelled by i. This representation is illustrated in Figure 14 for the ∆-term (a+0) · c.

5In [42], the notion of B-contraction keeps the vertices that are the source of an edge in A and adds an
edge labelled by a ∈ A between two such vertices whenever there is a path labelled in aB∗.

34 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

(r)

e e

a a

e

(r)

a

a

(r)

a a

a

a a

a

Figure 15: A graph G (on the left), the unfolding from r of its {e}-contraction from r (in
the middle) and the {e}-contraction of its unfolding from r (on the right).

Theorem 4.7 ([17, 18]). Let Σ be a signature. A Σ-term tree is defined by some Σ-algebraic
recursion scheme if and only if the tree representing it belongs to Tree2.

Remark 4.8. It immediately follows that the synchronization tree H(t) associated to a
Γ-term tree t defined in Section 2.8 belongs to Tree2 (resp. Tree1) whenever t is defined
by a Γ-algebraic (resp. Γ-regular) recursion scheme. Indeed the transformation going from
the presentation of [18] to ours is an MSO-interpretation that commutes with the unfolding
operation.

We conclude with some properties of the trees of Tree2 and their contractions.

Proposition 4.9. The following properties hold:

(1) The contraction of a tree in Tree2 is bisimilar to some tree in Tree2.
(2) Every tree in Tree2 can be obtained as the contraction of a deterministic tree in

Tree2.

Proof. As illustrated in Figure 15, the contraction operation does not in general commute
with the unfolding operation. However, it is easy to show that the contraction of the
unfolding from a root r and the unfolding of the contraction from the same root are bisimilar.

For the first property, let t be a tree in Tree2 which is obtained by unfolding a graph
G in Graph1 from one of its roots r. Let t′ be the B-contraction of t from its root. The
B-contraction G′ of G from r also belongs to Graph1 (as the B-contraction is a particular
case of MSO-interpretation). From the previous remark, we have that t′ is bisimilar to
Unf(G′, r) which belongs to Tree2 as G belongs to Graph1.

For the second property, let t be a tree in Tree2 which is obtained by unfolding a graph
G in Graph1 from one of its root r. Furthermore assume that both t and G are labelled
by A. By Proposition 4.4, G can be obtained by B-contraction of a deterministic graph
H ∈ Graph1 from one of its roots r.

For the B-contraction to commute with the unfolding, it is enough that the graph
H satisfies, for any label a ∈ A and any two vertices u and v of H belonging to the B-
contraction, that there exists at most one path labelled in B∗a from u to v. This is the case
for the graph H obtained from Proposition 4.4. Hence t is isomorphic to the B-contraction
of Unf(H, r′), which is a deterministic tree in Tree2.

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 35

4.3. Synchronization trees in the Caucal hierarchy. The Γ-regular synchronization
trees, being the regular trees with potentially infinite degree, belong to Graph1. As Tree1
only contains the regular trees of finite degree, it does not contain the class of Γ-regular
synchronization trees. In this section, we show that the classes of ∆-regular and Γ-algebraic
synchronization trees are included in Graph2 but not in Tree2. Similarly, we establish that
the class of ∆-algebraic trees is included in Graph3 but not in Tree3.

Proposition 4.10. The Γ-algebraic (and hence the ∆-regular) synchronization trees are
contractions of trees in Tree2 and hence belong to Graph2.

Proof. Let E be a Γ-algebraic recursion scheme defining a Γ-term tree t and a synchroniza-
tion tree t′. From Proposition 2.17, t′ is obtained by contraction of the synchronization
tree H(t) with respect to {+1,+2}. From [18, Theorem 3.5] (cf. Remark 4.8), we know
that H(t) belongs to Tree2, and, as the contraction operation is a particular case of MSO-
interpretation, t′ belongs to Graph2.

Proposition 4.11. There is a ∆-regular synchronization tree which is not in Tree2.

Proof. Consider the following ∆-regular recursion scheme:

G = 1 + a ·G · (1 + 1).

The synchronization tree t defined by it has a single infinite branch u0, u1, . . . (with edges
labelled a). The out-degree of each vertex ui is 2i + 1 since it is the source of 2i edges
labelled ex.

Assume, towards a contradiction, that t belongs to Tree2. Hence t is isomorphic to the
unfolding of some graph H in Graph1 from a vertex v0. By Remark 4.1, we can assume
that all vertices are reachable from v0 and hence that they all have finite out-degree. This
implies that H contains a path v0, v1 . . . along which the out-degree of the vertices grows
exponentially (i.e. the out-degree of vi is 2i + 1). The following lemma shows that this is
not possible in Graph1.

Lemma 4.12. Let G be a graph in Graph1 whose vertices have finite out-degree. Let (ui)i≥0

be an infinite path in G, possibly with repetitions. Then there exists a constant C ≥ 0 such
that for all i ≥ 0, the out-degree of ui is at most C(i+ 1).

Proof. By Proposition 4.3, we can assume without loss of generality that G is a prefix-
recognizable graph. Let U1(V1 × W1), . . . , Un(Vn × Wn) be the relations involved in the
definition of G. As the vertices of G have finite out-degree, without loss of generality we
may assume that all the Wj are finite sets. Let d denote the length of the longest word
appearing in the Wj, and let W denote the number of words appearing in the Wj . Then
clearly |ui+1| ≤ |ui|+ d for all i ≥ 0, where for a word u we denote its length by |u|. Thus,
introducing the notation d′ = max{d, |u0|}, we have |ui| ≤ d′(i + 1) for all i ≥ 0. As the
out-degree of a vertex u of G is at most (|u| + 1)W , we conclude that the out-degree of ui
is at most C(i+ 1) for all i ≥ 0 with C = (d′ + 1)W .

Proposition 4.13. All the ∆-algebraic synchronization trees are in Graph3 and therefore
have a decidable MSO-theory.

Proof. Let E be an algebraic scheme over ∆. Let t be the ∆-term defined by E, and t′ be
the synchronization tree defined by E. By the Mezei-Wright theorem and Proposition 2.16,

36 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

we have that t′ = τ(t). More precisely, the tree t′ is obtained by unfolding the graph G(t)
(as defined in Section 2.8) from the vertex v0 and then applying a contraction with respect
to {1}. The graph G(t) can be interpreted in the tree representing t, which belongs to
Tree2 (by Theorem 4.7), and hence G(t) belongs to Graph2. The unfolding of G(t) from
v0 belongs to Tree3 and its contraction t′ to Graph3 (as contractions are particular cases of
MSO-interpretations).

Proposition 4.14. There exists a ∆-algebraic synchronization tree which does not belong
to Tree3.

Proof. In this proof, we consider {a, b}-labelled trees of a particular shape illustrated in
Figure 16. These trees have a unique infinite branch whose edges are labelled a. In addition
the vertex at depth n along this branch has d(n) outgoing edges labelled b, for some mapping
d : N → N. Up to isomorphism, the tree is entirely characterized by the mapping d and is
denoted td.

In [13, Theorem 4.5.3], Braud gives a necessary condition for a tree of this form6 to
belong to Graph2. Namely, if a tree td, for d : N → N belongs to Graph2 then there exists a
constant c > 0 such that d(n) < 2c(n+1) for all n ≥ 0.

Our proof goes as follows. We first show that for the mapping d0 : n 7→ 22
n

, the tree
td0 , depicted in Figure 16, is ∆-algebraic. Towards a contradiction, we assume that td0
belongs to Tree3. We then show there would exist a mapping d1 satisfying d1(n) ≥ 22

n−1

,
n ≥ 1 such that td1 belongs to Graph2. This statement contradicts Braud’s condition as

there cannot exist a constant c such that 22
n−1

< 2c(n+1), for all n ≥ 1.
Consider the ∆-algebraic scheme

S = G(1 + 1)
G(v) = a ·G(v · v) + v · (b · 0)

The tree defined by this scheme is isomorphic to the tree td0 with d0(n) = 22
n

for all n ≥ 0.

a a

b b b b b b b b

d0(2) = 16

Figure 16: The tree td0 where d0(n) = 22
n
for all n ≥ 0.

Assume now, towards a contradiction, that td0 belongs to Tree3. Consider the graph G
in Graph2 from which t can be obtained by unfolding from one of its roots r.

For all n ≥ 0, we denote by an the unique vertex in G such that r
an
−→ an and by Vn

the set of vertices {v | r
anb
−→ v}. As Unf(G, r) ≈ td0 , we must have an 6= am for n 6= m and

|Vn| = 22
n

for all n ≥ 0. The set of vertices of G is therefore equal to {an | n ≥ 0}∪∪n≥0Vn
and its set of edges is:

{(an, a, an+1) | n ≥ 0}
∪ {(an, b, v) | n ≥ 0 and v ∈ Vn}

6Actually the condition holds for a larger class of graphs called #-graph-combs which encompasses all
trees td.

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 37

Note that the sets Vn are not necessarily pairwise disjoint and that in particular, G is
not necessarily a tree, as illustrated in Figure 17.

a a

b b
b
b b b

b

b

a a

b b b b b

Figure 17: An example of a possible graph G whose unfolding is isomorphic to td0 (on the
left) and of the tree I(G) (on the right).

Consider the MSO-interpretation I that erases the b-labelled edges (u, v) whenever

there exists a vertex s such that s
a+
−→ u and s

b
−→ v and keeps all other edges unchanged.

By applying I to G (as illustrated in Figure 17, we obtain a tree I(G) ∈ Graph2 with the
same set of vertices as G. This tree has a unique infinite branch (an)n≥0 and, for all n ≥ 0,
the vertex an has outgoing edges labelled b to the vertices in

V ′
n = Vn \ (∪m<nVm)

The tree I(G) is hence isomorphic to td1 where d1(n) = |V ′
n| for all n ≥ 0. To obtain a

contradiction with [13, Theorem 4.5.3], we remark that for all n ≥ 1, we have:

d1(n) = |V ′
n| ≥ 22

n
−

∑n−1
m=0 2

2m

≥ 22
n

− n · 22
n−1

≥ 22
n−1

(22
n−1

− n)

≥ 22
n−1

.

4.4. Contractions of synchronization trees in Tree2. In this section, we prove Theo-
rem 4.16 which states that Γ-algebraic synchronization trees are the contractions of trees
in Tree2. We start by showing that the synchronization trees in Tree2 are Γ-algebraic.

Proposition 4.15. Synchronization trees in Tree2 are Γ-algebraic.

Proof. Let t be a synchronization tree in Tree2. By the first property of Proposition 4.9, t
is the B-contraction of a deterministic tree t′ ∈ Tree2 labelled by A ∪ {ex}. As Γ-algebraic
synchronization trees are closed under contraction (see Proposition 2.21), it is enough to
show that t′ is Γ-algebraic.

We are going to show that a tree t′′ representing a Γ̃-term tree defining t′ belongs
to Tree2. Recall that Γ̃ is the signature {+n | n ≥ 1} ∪ A ∪ {0, 1} allowing for sums of
arbitrary arity that was introduced in Remark 2.11 on page 12. Thanks to Theorem 4.7,
this implies that t′′ is defined by a Γ̃-algebraic recursion scheme. In turn this implies that
t′ is Γ̃-algebraic and hence Γ-algebraic (see Remark 2.11).

Let < be an arbitrary total order on A. The tree t′′ is obtained by applying a trans-
duction T to t′. This transduction T does the following:

• Whenever a vertex v is the target of an edge labelled in A and is not the source of
an edge, then the transduction adds a new edge labelled 0 from v to a new vertex
introduced by the transduction.

38 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

• For every vertex u with k ≥ 1 outgoing edges labelled a1 < . . . < ak ∈ A, respec-
tively, going to vertices u1, . . . , uk, the transduction adds new vertices v, v1, . . . , vk,

v′1, . . . , v
′
k and edges u

+k

−→ v, v
i

−→ vi and vi
ai−→ v′i. If u has an outgoing edge

labelled by ex to a vertex v then the transduction adds a vertex v′ and two edges

u
k+1
−→ v′ and v′

1
−→ v.

• All the edges of the original structure are removed.

The tree t′′ obtained by applying T to t′ represents a term tree that defines t′. As t′

belongs to Tree2, it is (up to isomorphism) obtained by unfolding a graph G ∈ Graph1 from
one of its roots r. Furthermore it can be checked that the transduction T commutes with
the unfolding operation. Hence the tree t′′ is isomorphic to Unf(T (G), r) and therefore
belongs to Tree2 (as T (G) belongs to Graph1).

Theorem 4.16. The contractions of the synchronization trees in Tree2 are the Γ-algebraic
synchronization trees.

Proof. By Propositions 4.15 and 2.21, we have that each contraction of a synchronization
tree in Tree2 is Γ-algebraic. For the converse, a Γ-algebraic synchronization tree is defined as
the contraction with respect to {+1,+2} of the Γ-term tree defined by an algebraic scheme
over Γ. From [18, Theorem 3.5], such a Γ-term tree belongs to Tree2. Moreover, it may be
seen as a synchronization tree over the alphabet which contains, in addition to the letters
in A, the symbols +1 and +2.

Thanks to the second property of Proposition 4.9, we have the following corollary.

Corollary 4.17. Every Γ-algebraic tree is bisimilar to a tree in Tree2.

5. Branch languages of bounded synchronization trees

Call a synchronization tree bounded if there is a constant k such that the outdegree of each
vertex is at most k. Our aim in this section will be to offer a language-theoretic charac-
terization of the expressive power of Γ-algebraic recursion schemes defining synchronization
trees. We shall do so by following Courcelle—see, e.g., [24]—and studying the branch lan-
guages of synchronization trees whose vertices have bounded outdegree. More precisely, we
assign a family of branch languages to each bounded synchronization tree over an alphabet
A and show that a bounded tree is Γ-algebraic if, and only if, the corresponding language
family contains a deterministic context-free language (DCFL). Throughout this section, we
will call Γ-algebraic trees just algebraic trees, and similarly for regular trees.

Definition 5.1. Suppose that t = (V, v0, E, l) is a bounded synchronization tree over the
alphabet A. Denote by k the maximum of the outdegrees of the vertices of t. Let B denote
the alphabet A × [k]. A determinization of t is a tree t′ = (V, v0, E, l

′) over the alphabet
B which differs from t only in the labelling as follows. Suppose that v ∈ V with outgoing
edges (v, v1), . . . , (v, vℓ) labelled a1, . . . , aℓ ∈ A∪{ex} in t. Then there is some permutation
π of the set [ℓ] such that the label of each (v, vi) in t

′ is (ai, π(i)).
Consider a determinization t′ of t. Let v ∈ V and let v0, v1, . . . , vm = v denote the

vertices on the unique path from the root to v. The branch word corresponding to v in t′

is the alternating word
k0(a1, i1)k1 . . . km−1(am, im)km

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 39

//'&%$!"#��������

c

��

a //'&%$!"#

c

��

a //

b
oo '&%$!"#

c

��

a //

b
oo '&%$!"#

c

��

a //

b
oo · · ·

b
oo

'&%$!"#

d

OO

a //

c

��

'&%$!"#

d

OO

a //

b
oo

c

��

'&%$!"#

d

OO

a //

b
oo

c

��

'&%$!"#

d

OO

c

��

a //

b
oo · · ·

b
oo

'&%$!"#

d

OO

a //

c

��

'&%$!"#

d

OO

a //

b
oo

c

��

'&%$!"#

d

OO

a //

b
oo

c

��

'&%$!"#

d

OO

a //

b
oo

c

��

· · ·
b

oo

...

d

OO

...

d

OO

...

d

OO

...

d

OO

...

Figure 18: An LTS whose unfolding is not an algebraic synchronization tree. The initial
node as outdegree 3 (recall that there is an implicit outgoing edge labelled by
ex), the other nodes on the top-most row and on the left-most column also have
outdegree 3 and all other ”internal” nodes have outdegree 4.

where k0, . . . , km denote the outdegrees of the vertices v0, . . . , vm, and for each j ∈ [m],
(aj , ij) is the label of the edge (vj−1, vj) in t

′. The branch language L(t′) corresponding to
a determinization t′ of t consists of all branch words of t′.

Finally, the family of branch languages corresponding to t is:

L(t) = {L(t′) | t′ is a determinization of t}.

By way of example, consider the LTS depicted in Figure 18. This LTS describes the
behaviour of a bag over a four-letter alphabet, when we consider b to stand for the output
of an item that was input via a, and d to signal the output of an item that was input via c.
The synchronization tree tbag that is obtained by unfolding this LTS from its start state is
bounded. In fact, the outdegree of each non-leaf node is three or four. The branch words
corresponding to the nodes of any determinization of the tree tbag have the form

k0(a1, i1)k1 . . . km−1(am, im)km,

where k0 = 3, km ∈ {3, 4, 0}, ki ∈ {3, 4} for each i ∈ [m−1], each ij ∈ [kj−1] for j ∈ [m] and
a1 . . . am is a word with the property that, in any of its prefixes, the number of occurrences
of the letter a is greater than or equal to the number of occurrences of the letter b, and the
number of occurrences of the letter c is greater than or equal to the number of occurrences
of the letter d. Moreover, for each j ∈ [m], aj = ex if and only if j = m and km = 0. (Note
that, when am = ex, the number of a’s in a1 . . . am−1 equals the number of b’s, and similarly
for c and d.)

Theorem 5.2. A bounded synchronization tree t is algebraic (respectively, regular) iff L(t)
contains a DCFL (respectively, regular language).

40 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

In the proof, we make use of the following construction. Suppose that t = (V, v0, E, l)
is a bounded synchronization tree over A. Let k be defined as above, and let Σ be the
signature containing the symbol +i of rank i for each i ∈ [k], the constant symbols 0
and 1, and the letters of A as symbols of rank 1. We will sometimes write +0 for 0.
Then each determinization t′ of t naturally corresponds to an ‘alternating’ term tree Tt′ in
the initial continuous categorical Σ-algebra TωΣ . As a partial function N∗ → Σ, the term
tree Tt′ is defined as follows. Consider a vertex v ∈ V with corresponding branch word
k0(a1, i1) . . . (an, in)kn. Then Tt′ is defined on both words i11 . . . in1 and i11 . . . 1in, and

Tt′(i11 . . . in1) = +kn

Tt′(i11 . . . 1in) =

{
an if an ∈ A

1 if an = ex.

In addition, Tt′ is defined on the empty word ǫ and Tt′(ǫ) = +k0 , where k0 is the outdegree
of the root.

Lemma 5.3. Suppose that t ∈ ST(A) is bounded and has a determinization t′ such that the
Σ-term tree Tt′ is algebraic (regular, resp.). Then t is algebraic (regular, resp.).

Proof. We can turn ST(A) into a continuous categorical Σ-algebra by defining

+i(t1, . . . , ti) = t1 + · · ·+ ti

for each i ∈ [k] and t1, . . . , ti ∈ ST(A), and similarly for morphisms between trees in
ST(A). Now up to natural isomorphism, there is a unique categorical Σ-algebra morphism
hΣ : TωΣ → ST(A). For any t ∈ ST(A) and for any determinization t′ of t, h maps Tt′ to a
tree isomorphic to t. Since, by the Mezei-Wright theorem [10], hΣ preserves algebraic and
regular objects, if Tt′ is algebraic or regular, then so is t.

Lemma 5.4. Suppose that t ∈ ST(A) is bounded and algebraic (regular, resp.). Then t has
a determinization t′ such that the Σ-term tree Tt′ is algebraic (regular, resp.).

Proof. Suppose that t is algebraic and bounded by k. Then, by the Mezei-Wright theorem
[10], there is an algebraic term tree T0 ∈ TωΓ such that hΓ(T0) is isomorphic to t, where
hΓ denotes the essentially unique continuous categorical Γ-algebra morphism TωΓ → ST(A).
We want to show that there is an alternating algebraic Σ-term tree T1 ∈ TωΣ such that
hΣ(T1) is isomorphic to t, where hΣ is the essentially unique continuous categorical Σ-
algebra morphism TωΣ → ST(A). Since such a term tree T1 is Tt′ for some determinization
t′ of t, this completes the proof.

We construct T1 from T0 in two steps. First, we replace all maximal subterms all of
whose vertices are labelled + or 0 by a single vertex labelled 0 to obtain a Γ-term tree T ′

0.
Second, we consider vertices of T ′

0 labelled + whose parent, if any, is labelled in A. Since
t is bounded by k, the subterm rooted at such a vertex can be written as s0(S1, . . . , Sn),
where s0 is a finite term all of whose vertices are labelled + or 0 or a variable in the set
{v1, . . . , vn} for some n ≤ k, whose frontier word is v1 · · · vn, and each Si is a Γ-term tree
whose root is labelled in A ∪ {1}. We replace each such vertex by a vertex labelled +n

having n outgoing edges labelled 1, . . . , n connecting this vertex to the roots of S1, . . . , Sn,
respectively.

The first transformation is a monadic colouring [13, 15] (a special case of monadic
interpretation, which is also known as monadic marking [15]), since there is a monadic
second-order formula φ(x) characterizing those vertices x of T0 such that all vertices of the

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 41

subterm rooted at x are labelled + or 0, but any other subterm containing x has a vertex
labelled in A ∪ {1}:

∀y.(x ≤ y ⇒ (l+(y) ∨ l0(y)) ∧ ∀y.(y < x⇒ (∃z.y ≤ z ∧
∨

a∈A∪{1}

la(z))

(Here, x ≤ y denotes that there is a path from x to y and x < y stands for x ≤ y ∧ x 6= y.
Moreover, la(z) denotes that z is labelled a.) Thus, the first transformation gives a Γ-
algebraic term tree, since algebraic term trees (and in fact deterministic algebraic trees in
the Caucal’s pushdown hierarchy) are closed under monadic colourings [15, Proposition 1].

In order to prove that the second transformation also gives an algebraic term tree, we
argue on the level of graphs. Suppose that T ′

0 is the algebraic term tree obtained after the
first step. Since T ′

0 is algebraic, it is the unfolding of a (deterministic) prefix recognizable
graph G from its root r, see [15, 18]. Without loss of generality we may assume that
every vertex of G is accessible from r. Our aim is to define a monadic transduction which,
when applied to G, produces a graph G′ whose unfolding from vertex r is T1. Since, by
Proposition 1 in conjunction with Lemma 2 in [15], prefix recognizable graphs are closed
under monadic transductions, it follows that T1 is algebraic.

We start by considering G together with a disjoint copy of G, whose vertices are ordered
pairs (v, 1), where v is vertex of G. The label of a vertex (v, 1) is the label of v in G. The
edges are the edges of G and an edge v → (v, 1) labelled # for each vertex v of G. Edges
in G retain their label.

Then we drop all vertices of the form (v, 1), where the label of v is different from +,
using the formula

∃y.E#(y, x) ∧ ¬l+(x)

where the meaning of E#(y, x) is that there is an edge labelled # from y to x, which is
satisfied by exactly those vertices (v, 1) labelled +. Moreover, we define new edges. First
of all, we keep all edges v → v′ of G such that v is labelled in A, or v is labelled + but v′

is not. Each such edge retains its label. Second, whenever v and v′ are both labelled + in
G we introduce an edge v → (v′, 1) and an edge (v, 1) → (v′, 1) whose label is the same as
that of the edge v → v′ in G. For this purpose, we use the formulas in the free variables
x, y,

l+(x) ∧ l+(y) ∧ ∃y′.(E#(y
′, y) ∧ (Ei(x, y

′) ∨ ∃x′.(E#(x
′, x) ∧ Ei(x

′, y′))))

where i = 1, 2. Last, for each edge v → v′ of G such that v is labelled + but v′ is not,
we introduce an edge (v, 1) → v′ whose label is that of the edge v → v′. This is done by
utilizing the formula

l+(x) ∧ ¬l+(y) ∧ ∃x′.(E#(x
′, x) ∧ Ei(x

′, y))

where again i = 1, 2.
Note that the unfolding of the graph constructed above from the vertex r is T ′

0. Next,
consider any vertex v labelled + together with all the paths originating in v leading to a
vertex labelled in A ∪ {1}. Since t′ is bounded by k, each such path is simple and the
number of such paths is at most k. Let v1, . . . , vn denote the (not necessarily different) end
vertices of these paths, ordered ‘lexicographically’. We relabel v by +n and introduce a new
edge v → vi labelled i for each i. This is accomplished by using the following formulas. Let
Path(x,X, y) denote a formula that says that the set of vertices X forms a path from x to
y, the label of each vertex in X other than y is different from +, and the label of y is in

42 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

A ∪ {1}. Then for each n, the formula

∃X1 . . . Xn,∃x1, . . . , xn.
∧

i<j

¬(Xi = Xj) ∧
∧

i

Path(x,Xi, xi)

expresses that there are at least n different paths from x to some vertex y labelled in A∪{1},
all of whose vertices different from y are labelled +. With the help of these formulas we can
also express that there are exactly n such paths from x. Finally, when Path(x,X, y) and
Path(x,X ′, y′) with X 6= X ′, we can express the fact that X is lexicographically less than
X ′ by the formula

∃Y,Z,Z ′.∃z0, z, z
′(X = Y ∪ Z ∧X ′ = Y ∪ Z ′ ∧ Path(x, Y, z0)∧

(z = y ∨ Path(z, Z, y)) ∧ (z′ = y′ ∨ Path(z′, Z ′, y′)) ∧ E0(z0, z) ∧ E1(z0, z
′)

In addition to these new edges, we keep all edges originating from a vertex labelled in
A (that are necessarily labelled 1). All vertices of the form (v, 1) become inaccessible from
r. The unfolding of the new graph from vertex r is almost an alternating term. In order
to make it alternating, we have to add a new root labelled +1 if r is labelled in A together
with an edge to r, and replace each edge v → v′ where both v and v′ are labelled in A

by new edges v → u and u → v, where u is a new vertex labelled +1. These edges are
labelled 1. The new graph is still obtained by monadic transduction, and its unfolding is
the alternating term T1.

The same argument works in the regular case using the fact that regular terms are
unfoldings of finite (deterministic) graphs, and that finite graphs are closed under monadic
transduction.

Proof of Theorem 5.2. Suppose that t ∈ ST(A) is bounded. If t is algebraic, then by
Lemma 5.4 there is some determinization t′ of t such that Tt′ is algebraic. By Courcelle’s
theorem, the branch language of Tt′ is a DCFL. But the branch language of Tt′ is essentially
L(t′).

Suppose now that t has a determinization t′ such that L(t′) is a DCFL. Then the branch
language of Tt′ is a DCFL, and thus by Courcelle’s theorem, Tt′ is algebraic. The proof is
completed by using Lemma 5.3.

A similar reasoning applies in the regular case.
The language-theoretic characterization of the class of bounded algebraic synchroniza-

tion trees offered in Theorem 5.2 can be used to prove that certain trees are not algebraic.

Proposition 5.5. The synchronization tree tbag associated with the bag over a binary al-
phabet depicted on Figure 18 is not algebraic, even up to language equivalence.

Proof. Recall that the branch words corresponding to the nodes of any determinization of
the tree tbag have the form

k0(a1, i1)k1 . . . km−1(am, im)km,

where k0 = 3, km ∈ {3, 4, 0}, ki ∈ {3, 4} for each i ∈ [m−1], each ij ∈ [kj−1] for j ∈ [m] and
a1 . . . am is a word with the property that, in any of its prefixes, the number of occurrences
of the letter a is greater than or equal to the number of occurrences of the letter b, and the
number of occurrences of the letter c is greater than or equal to the number of occurrences
of the letter d. Moreover, aj = ex if and only if j = m and km = 0. The words accepted
by that LTS are those that in addition satisfy that the total number of occurrences of the
letter a in a1 . . . am is equal to the number of occurrences of the letter b, and the number

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 43

of occurrences of the letter c in a1 . . . am is equal to the number of occurrences of the letter
d and which end in 0.

If the language associated with any determinization of tbag were context-free, then so
would the language obtained by applying to each word in it the morphism that erases the
letters kj and renames each (aj , ij) to aj. However, that language is not context free.
Therefore, Theorem 5.2 yields that tbag is not algebraic.

The above proposition is a strengthening of a classic result from the literature on process
algebra proved by Bergstra and Klop in [6]. Indeed, in Theorem 4.1 in [6], Bergstra and
Klop showed that the bag over a domain of values that contains at least two elements is not
expressible in BPA. Moreover, by Proposition 3.8, the collection of synchronization trees
that are definable in BPA is strictly included in the set of Γ-algebraic ones (Theorem 3.2).
Therefore, Proposition 5.5 is stronger than the above-mentioned inexpressibility result by
Bergstra and Klop, and offers an alternative proof for it. Up to bisimilarity, we shall offer
an even stronger statement in Section 6.1 (see Proposition 6.3).

As a final result, we can use Theorem 5.2 to characterize the synchronization trees of
bounded degree in Tree2.

Corollary 5.6. The synchronization trees of bounded-degree in Tree2 are the Γ-algebraic
synchronization trees of bounded-degree.

Proof. The direct inclusion is immediate. For the converse inclusion, we know by Theo-
rem 5.2 that a Γ-algebraic synchronization tree of bounded-degree t has a determinization t′

whose branch language is a deterministic context-free language. In particular, this implies
that t′ belongs to Tree2. Indeed from a deterministic pushdown automaton accepting the
branch language of t′, we can construct a deterministic graph G ∈ Graph1 whose unfolding
from some root r is isomorphic to t′. Let A = {x1, . . . , xk} be the alphabet labelling G.
Consider the transduction T defined as follows:

• for every vertex u, the transduction introduces new vertices u1, . . . , uk;
• for every edge from u to v labelled by xℓ = (a, i), the transduction adds edges from
each of the uj , j ∈ [k], to vℓ labelled by a.

Unfolding the graph T (G) from any of the vertices added by the transduction T for the
root r gives a tree isomorphic to t.

Note that in the previous proof, T cannot simply rename the edges labelled (a, i) to
a. Consider for instance the case where G consists of two vertices r and s and two edges

r
(a,1)
−→ s and r

(a,2)
−→ s. Applying such a transduction would lead to a graph with only one

edge.

6. Synchronization trees and logic

In this section, we investigate the consequences of the decidability of monadic second-order
logic for our synchronization trees.

44 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

6.1. A synchronization tree with an undecidable monadic theory. In this subsec-
tion we point out that the synchronization tree associated with the bag process depicted
on Figure 18 has an undecidable monadic theory (even without the root being the source
of an exit edge). Hence that tree is not in the Caucal hierarchy and therefore, by Proposi-
tion 4.13, is not ∆-algebraic not even up to bisimilarity (Proposition 6.3). A similar result
was obtained in [21, Section 6.6.2] for a slightly richer structure. For completeness sake, we
give below a detailed proof of this result.

Proposition 6.1. The synchronization tree tbag associated with the bag process has an
undecidable MSO-theory.

Proof. Consider a 2-counter machine whose program P is given as a sequence of instructions
I1, . . . , In where each Ij has one of the following forms:

z := z + 1, k z := z − 1, k, z = 0?, k1, k2

where z is one of the counters x, y and k, k1, k2 are integers between 1 and n. At any
moment of time, the value of the counters x and y is described by an ordered pair (m,n) of
non-negative integers. The meaning of the above instructions is standard, where k denotes
the index of the instruction to be performed after execution of the given instruction, if the
instruction is an increment or decrement, and k1 and k2 denote the indices of the instructions
to be performed depending on the outcome of the test, if the instruction is of the last form.
The machine with program P halts if a decrement instruction z := z− 1, k is executed, but
the current value of the counter z is 0. A well-known undecidable question for 2-counter
machines asks whether a 2-counter machine started with (0, 0) ever halts.

We encode the halting program for a counter machine with program P in monadic
second order logic as follows. Let X1, . . . ,Xn be a set of variables associated with the
instructions of P . Then, for each instruction Ii, we consider the formula ϕi(u) in the free
first-order variable u in the language with four binary predicates associated with the edge

relations
e
→, e ∈ {a, b, c, d}.

• If Ii is of the form z := z+1, k, then ϕi(u) expresses that Xk(v) holds for all v such

that u
e
→ v, where e is a if z = x and c if z = y.

• If Ii is of the form z := z − 1, k, then ϕi(u) expresses that there exists a v with

u
e
→ v, and Xk(v) holds for all such v, where e is b if z = x and d if z = y.

• If Ii is of the form z = 0?, k1, k2, then ϕi(u) expresses that Xi(v1) and Xk1(v2) hold

for all v1, v2 such that u
a
→ v1 and v1

b
→ v2, provided that there is no v with u

e
→ v,

and that Xi(v1) and Xk2(v2) hold for all such v1, v2 otherwise, where again e is b if
z = x and d if z = y.

Now we assign to the machine with program P the formula

ϕP = ∃X1 . . . ∃Xn[ψ1 ∧ ψ2 ∧ ∀u(X1(u) → ϕ1(u) ∧ . . . ∧Xn(u) → ϕn(u))]

where ψ1 asserts that the X1, . . . ,Xn are pairwise disjoint and jointly form an infinite path
starting with the root, and ψ2 says that the root belongs to X1. Then the machine does
not halt iff the synchronization tree defined by the process on Figure 18 is a model of ϕP .

Remark 6.2. Thomas showed in [43, Theorem 10] that the monadic second-order theory
of the infinite two-dimensional grid is undecidable. However, we cannot use that result to
prove that the synchronization tree tbag has an undecidable monadic second-order theory.
Indeed, the unfolding of the infinite two-dimensional grid is the full binary tree, which has
a decidable monadic second-order theory by Rabin’s celebrated Tree Theorem [40].

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 45

Proposition 6.3. The synchronization tree tbag is not ∆-algebraic up to bisimilarity.

Proof. This statement follows from the more general remark that any synchronization tree
t that is bisimilar to a deterministic synchronization tree t0 having an undecidable MSO-
theory also has an undecidable MSO-theory. Given a formula ϕ with no free variables,
consider the formula

ϕ∗ = ∃X ϕdet(X) ∧ ϕ′

where ϕ′ is the formula ϕ in which all quantifications are relativized to X and ϕdet(X)
states that if a node has a successor by an a-labelled edge then it has one and only one
successor by an a-labelled edge which belongs to X. If the formula ϕdet(X) is satisfied on
t for some set of vertices U then t restricted to the vertices in U is a deterministic tree
isomorphic to t0 (cf. Lemma 2.5 on page 9). Clearly ϕ∗ holds on t if and only if ϕ holds on
t0. This implies that the MSO-theory of t is undecidable.

The argument used in this proof can also be used to show that tbag does not belong to
the Caucal hierarchy up to bisimilarity.

6.2. Minimization. It is well known that, for each bisimulation equivalence class C of
synchronization trees in ST(A), there is a tree tC ∈ C such that for all t ∈ C there is a
surjective morphism ϕ : t→ tC , and, moreover, the relation

R = ϕ ∪ ϕ−1 = {(u, v), (v, u) : ϕ(u) = v}

is a bisimulation between t and tC . Furthermore, tC is unique up to isomorphism. When
t ∈ C, we call tC the minimization of t.

The minimization of a tree t ∈ ST(A) can be constructed in the following way. We
define an increasing sequence V0, V1, . . . of sets of vertices of t, where V0 is a singleton set
containing only the root of t. The construction will guarantee that, for each i, the set Vi
contains only vertices of depth at most i, and whenever a vertex v belongs to Vi and there
is a path from a vertex u to v, then u is also in Vi. Given Vi and u ∈ Vi of depth i, consider
the set S(u) of successors of u. We may divide S(u) into equivalence classes according to
the bisimulation equivalence classes of the corresponding subtrees and the label of the edge
coming from u. To this end, we define v ∼ v′, for v, v′ ∈ S(u), if the subtrees rooted at v and

v′ are bisimilar and if u
a

−→ v and u
a

−→ v′ for some a ∈ A. Then we select a representative
of each ∼-equivalence class. The set Vi+1 consists of all vertices in Vi together with those
vertices in S(u) of depth i+ 1 selected above, where u ranges over the set of all vertices in
Vi of depth i. Finally, let V =

⋃
i≥0 Vi. The ‘subtree” of t spanned by the vertices in V is

the minimization of t.
It is known, see e.g. [8], that the minimization of a Γ-regular synchronization tree is

Γ-regular. In contrast with this result, we have:

Proposition 6.4. There exists a Γ-algebraic synchronization tree whose minimization does
not have a decidable MSO-theory, and hence does not belong to the Caucal hierarchy and is
neither a Γ-algebraic nor a ∆-algebraic synchronization tree.

Proof. Let A = {a, b, c, d, e, f}. Consider the following Γ-algebraic scheme:

S = F (0, 0)

F (x, y) = a.F (f.x, y) + b.F (x, f.y) + c.F (0, y) + d.F (x, 0) + e.x+ e.y .

46 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

Let t be the synchronization tree defined the above scheme. For a word u ∈ {a, b, c, d}∗, we
designate by ||u ||a (resp. ||u ||b) the number of a’s (resp. b’s) in the longest suffix of u that
does not contain any occurrence of the letter c (resp. d). Intuitively, the tree t consists of a
full quaternary deterministic tree t with edges labelled in {a, b, c, d} such that every vertex
of t is also the origin of two additional parallel disjoint branches. Since t is deterministic, we
may identify each vertex of t with a word u ∈ {a, b, c, d}∗. The two additional branches at
vertex u of t are such that their edge labels form the words ef ||u ||a and ef ||u ||b , respectively.

The minimization t′ of t is obtained by removing one of the two branches labelled ef ||u ||a

for all vertices u of t such that ||u ||a = ||u ||b.
The fact that t′ has an undecidable MSO-theory is based on a reduction from the halting

problem for 2-counter machines with increment, reset and equality test [46]. The idea is, as
usual, to define, for every such machine M , a closed MSO-formula ϕM such that t′ |= ϕM
if and only if M does not halt.

When constructing the formula ϕM , we associate to a vertex u in {a, b, c, d}∗ repre-
senting a possible history of the computation of M from its initial state, the integer ||u ||a
as the current value of the first counter, and the integer ||u ||b as the current value of the
second counter of the machine. Assuming that the current values of the counters are given
by vertex u, we show how to simulate the various operations of the machine. The increment
of the first (resp. second) counter is obtained by moving to vertex ua (resp. ub). The
reset of the first (resp. second) counter is obtained by moving to uc (resp. ud). Finally,
the test for equality between the two counters is performed by testing that vertex u has
only one outgoing edge labelled e. The details of the construction are similar to those in
Section 6.1.

The above result yields that the collection of synchronization trees in the Caucal hierar-
chy is not closed under minimization. Indeed, there is a Γ-algebraic tree whose minimization
is not in the Caucal hierarchy. This leaves open the corresponding question for ∆-regular
synchronization trees.

7. Open questions

There are several questions that we leave open in this paper and that lead to interesting
directions for future research.

• Is there a strict expressiveness hierarchy for Γ- and ∆-algebraic recursion schemes
that is induced by the maximum rank of the functor variables used in defining
recursion schemes?

• Is the minimal synchronization tree that is bisimilar to a ∆-regular synchronization
tree also ∆-regular? If not, is it in the Caucal hierarchy?

• The Γ-algebraic scheme we use in the proof of Proposition 6.4 uses a binary functor
variable. Is the minimal synchronization tree that is bisimilar to a tree defined by
a Γ-algebraic scheme involving only unary functor variables Γ-algebraic?

References

[1] S. Abramsky. A domain equation for bisimulation. Inform. and Comput., 92 (1991), no. 2, 161–218.
[2] A.V. Aho. Indexed grammars — an extension of context-free grammars. Journal of the ACM 15 (1968),

647–671.

ALGEBRAIC SYNCHRONIZATION TREES AND PROCESSES 47

[3] J.C.M. Baeten, T. Basten, and M.A. Reniers. Process Algebra: Equational Theories of Communicating

Processes, volume 50 of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, November 2009.

[4] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical Computer Science,
18. Cambridge University Press, Cambridge, 1990.

[5] J.W. de Bakker. Recursive Procedures. Mathematical Centre Tracts, No. 24. Mathematisch Centrum,
Amsterdam, iv+108 pp., 1971.

[6] J.A. Bergstra and J.W. Klop. The algebra of recursively defined processes and the algebra of regular
processes. Proceedings of ICALP 1984, LNCS 172, pp. 82–94, Springer, 1984.

[7] S.L. Bloom, Z. Ésik and D. Taubner. Iteration theories of synchronization trees. Inform. and Comput.,
102 (1993), no. 1, 1–55.

[8] S.L. Bloom and Z. Ésik. Iteration Theories. Springer, 1993.

[9] S.L. Bloom and Z. Ésik. The equational theory of regular words. Information and Computation, 197
(2005), 55–89.

[10] S.L. Bloom and Z. Ésik. A Mezei-Wright theorem for categorical algebras. Theoretical Computer Science,
411 (2010), 341–359.

[11] S.L. Bloom, J. W. Thatcher, E. G. Wagner and J. B. Wright. Recursion and iteration in continuous
theories: The “M -construction”. J. Comput. System Sci., 27 (1983), 148–164.

[12] A. Blumensath. Prefix recognizable graphs and monadic second order logic. Technical Report AIB-06-
2001, RWTH Aachen, 2001.

[13] L. Braud. The structure of linear orders in the pushdown hierarchy. PhD thesis, Institut Pascal Monge,
2010.

[14] F. van Breugel. An introduction to metric semantics: Operational and denotational models for pro-
gramming and specification languages. Theoretical Computer Science, 258(2001), 1–98.

[15] A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms of logic and higher-order
pushdown automata. Proceedings of FSTTCS 03, LNCS 2914, pp. 112–123, Springer, 2003.

[16] Arnaud Carayol Regular sets of higher-order pushdown stacks. Proceedings of MFCS 2005, LNCS 3618,
pp. 168–179, Springer, 2005.

[17] A. Carayol. Automates infinis, logique et langages. PhD thesis, Université Rennes I, 2006.
[18] D. Caucal. On infinite terms having a decidable monadic theory. Proceedings of MFCS 02, LNCS 2420,

165–176, Springer, 2002.
[19] D. Caucal. On infinite transition graphs having a decidable monadic theory. Theoretical Computer

Science 290(2003), 79–115.
[20] S. Christensen. Decidability and decomposition in process algebras. PhD thesis ECS-LFCS-93-278,

Department of Computer Science, University of Edinburgh, 1983.
[21] T. Colcombet. Propriétés et représentation de structures infinies. PhD thesis, Université Rennes I,

March 2004.
[22] B. Courcelle. A representation of trees by languages I. Theoretical Computer Science 6 (1978), 255–279.
[23] B. Courcelle. A representation of trees by languages II. Theoretical Computer Science 7 (1978), 25–55.
[24] B. Courcelle. Fundamental properties of infinite trees, Theoretical Computer Science 25 (1983), 69–95.
[25] B. Courcelle. Monadic second-order definable graph transductions: A survey. Theoretical Computer

Science, 126 (1994), 53–75.
[26] B. Courcelle and M. Nivat. Algebraic families of interpretations. In 17th Annual Symposium on Foun-

dations of Computer Science, IEEE Computer Society, 1976, 137–146.
[27] H.D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.

[28] Z. Ésik. Continuous additive algebras and injective simulations of synchronization trees. Fixed Points
in Computer Science, 2000 (Paris). Journal of Logic and Computation, 12 (2002), 271–300.

[29] M.J. Fischer, Grammars with macro-like productions, In 9th Annual Symp. Switching and Automata
Theory, Schenedtady, NY, USA, 1968, IEEE Press, 1968, 131–142.

[30] J.A. Goguen, J.W. Thatcher, E.G. Wagner and J.B. Wright. Initial algebra semantics and continuous
algebras. Journal of the ACM 24 (1977), 68–95.

[31] I. Guessarian, Algebraic Semantics. LNCS 99, Springer, 1981.
[32] S. Milius and L. Moss. The category-theoretic solution of recursive program schemes. Theoretical Com-

puter Science 366 (2006), 3–59.
[33] D. Mandrioli and C. Ghezzi. Theoretical foundations of Computer Science. John Wiley and Sons, 1988.

48 L. ACETO, A. CARAYOL, Z. ÉSIK, AND A. INGÓLFSDÓTTIR

[34] R. Milner. An algebraic definition of simulation between programs. In Proceedings 2nd Joint Conference
on Artificial Intelligence, pages 481–489. BCS, 1971. Also available as Report No. CS-205, Computer
Science Department, Stanford University.

[35] R. Milner. A Calculus of Communicating Systems. LNCS 92, Springer, 1980.
[36] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[37] F. Moller. Infinite results. Proceedings of CONCUR ’96, Concurrency Theory, 7th International Con-

ference, LNCS 1119, pp. 195–216, Springer, 1986
[38] M. Nivat, On the interpretation of recursive polyadic program schemes. Symposia Mathematica XV

(1975), 255 -281.
[39] D.M.R. Park. Concurrency and automata on infinite sequences. In Theoretical Computer Science, 5th

GI-Conference, LNCS 104, pp. 167–183, Springer, 1981.
[40] M.O. Rabin. Decidability of second-order theories and automata on infinite trees. Transactions of the

American Mathematical Society 141 (1969), 1–35.
[41] D.S. Scott. The lattice of flow diagrams. In Symposium on Semantics of Algorithmic Languages 1971,

Lecture Notes in Mathematics, vol. 188, Springer, 1971, pp. 311–366.
[42] C. Stirling. Decidability of bisimulation equivalence for pushdown processes. Technical Report EDI-

INF-RR-0005, School of Informatics, University of Edinburgh, 2000.
[43] W. Thomas. A short introduction to infinite automata. In Developments in Language Theory, LNCS

2295, pp. 130–144, Springer, 2001.
[44] W. Thomas. Constructing infinite graphs with a decidable MSO-theory. In Proceedings of the 28th

International Symposium on Mathematical Foundations of Computer Science, LNCS 2747, pp. 113–
124, Springer, 2003.

[45] G. Winskel. Synchronization trees. Theoretical Computer Science 34 (1984), no. 1–2, 33–82.
[46] A. Wojna. Counter machines. Information Processing Letters 71 (1991), 193–197.

	1. Introduction
	2. Categorical semantics of first-order recursion schemes
	2.1. Continuous categorical algebras
	2.2. Synchronization trees
	2.3. Edge-labelled graphs
	2.4. Monadic second-order logic on edge labelled graphs.
	2.5. Graph transformations
	2.6. Algebraic objects and functors
	2.7. Continuous ordered algebras
	2.8. Morphisms
	2.9. Basic Properties

	3. Comparison between the -algebra and the -algebra
	3.1. Comparison up to language equivalence
	3.2. Comparison up to bisimulation and isomorphism
	3.3. Comparison with BPA and BPP

	4. Comparison with the Caucal hierarchy
	4.1. The Caucal hierarchy
	4.2. First levels of the hierarchy
	4.3. Synchronization trees in the Caucal hierarchy
	4.4. Contractions of synchronization trees in Tree2

	5. Branch languages of bounded synchronization trees
	6. Synchronization trees and logic
	6.1. A synchronization tree with an undecidable monadic theory
	6.2. Minimization

	7. Open questions
	References

