Skip to main content

Modeling and Adaptive Control for Flapping-Wing Micro Aerial Vehicle

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7389))

Abstract

Flight quality of flapping-wing micro aerial vehicle (FMAV) depends much upon efficient control of flight attitude. So, an accurate model of flight attitude is of utmost importance. The fly mechanism of birds and big insects, especially the motion rule of wings were investigated to establish a complete dynamic model and mathematical model for flight attitude of FMAV. The design of attitude controller is challenging due to the complexity of the flight process, and the difficulty is system uncertainty, nonlinearity, multi-coupled parameters, and all kinds of disturbances. To control the attitude movement effectively, a global adaptive H∞ control strategy was constructed that the controller synthesis was based on Lyapunov function instead of solving the Hamilton-Jacobi-Isaacs (HJI) partial differential equation. The method overcomes the impact of time-varying parameters and unknown disturbances to the system. Simulation results support the effectiveness of the dynamic model and the control strategy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wzorek, M., Conte, G., Rudol, P., Merz, T., Duranti, S., Doherty, P.: From Motion Planning to Control – A Navigation Framework for an Autonomous Unmanned Aerial Vehicle. In: Proc. of the 21st Bristol International UAV Systems Conference (2006)

    Google Scholar 

  2. Le, B.F., Mahony, R., Hamel, T., Binetti, P.: Adaptive Filtering and Image Based Visual Servo Control of a Ducted Fan Flying Robot. In: Proc. of the 45th IEEE Conference on Decision & Control, San Diego, CA, USA, December 13-15, pp. 1751–1757 (2006)

    Google Scholar 

  3. Scherer, S., Singh, S., Chamberlain, L.J., Saripalli, S.: Flying Fast and Low Among Obstacles. In: Proc. of the International Conference on Robotics & Automation, Roma, Italy, April 10-14, pp. 2023–2029 (2007)

    Google Scholar 

  4. La, C.M., Papageorgiou, G., William, C.M., Kanade, T.: Integrated Modeling and Robust Control for Full-envelope Flight of Robotic Helicopters. In: Proc. of the 2003 IEEE International Conference on Robotics & Automation, Taipei, Taiwan, September 14-19, pp. 552–557 (2003)

    Google Scholar 

  5. Pounds, P., Mahony, R., Hynes, P., Roberts, J.: Design of a Four Rotor Aerial Robot. In: Australian Conference on Robotics & Automation, Auckland, November 27-29, pp. 145–150 (2002)

    Google Scholar 

  6. Lasek, M., Pietrucha, J., Zlocka, M., Sibilski, K.: Analogies Between Rotary and Flapping Wings From Control Theory Point of View. AIAA-2001–4002 (2001)

    Google Scholar 

  7. Sanjay, P.S., Michael, H.D.: The Aerodynamic Effects of Wing Rotation and A Revised Quasi-steady Model of Flapping Flight. Journal of Experimental Biology 205, 1087–1096 (2002)

    Google Scholar 

  8. Yan, J., Wood, R.J., Avadhanula, S., Sitti, M., Fearing, R.S.: Towards Flapping Wing Control for a Micromechanical Flying Insect. In: Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea, May 21-26, pp. 3901–3908 (2001)

    Google Scholar 

  9. Schenato, L., Campolo, D., Sastry, S.: Controllability Issues in Flapping Flight for Biomimetic Micro Aerial Vehicles (MAVs). In: Proceedings of the 42nd IEEE International Conference on Decision & Control, Maui, Hawaii, USA, pp. 6441–6447 (December 2003)

    Google Scholar 

  10. Deng, X.Y., Schenato, L., Sastry, S.S.: Model Identification and Attitude Control for a Micromechanical Flying Insect Including Thorax and Sensor Models. In: Proc. of IEEE International Conference on Robotics & Automation, Teipei, Taiwan, September 14-19, pp. 1152–1157 (2003)

    Google Scholar 

  11. Liu, Z.L., Svobode, J.: A New Control Scheme for Nonlinear Systems with Disturbances. IEEE Transactions on Control Systems Technology 14(1), 176–181 (2006)

    Article  Google Scholar 

  12. Magni, L., Nijmeijer, H., van der Schaft, A.J.: A Receding-horizon Approach to the Nonlinear H∞ control problem. Automatica 37, 429–435 (2001)

    Article  MATH  Google Scholar 

  13. Aliyu, M.D.S.: A Transformation Approach for Solving the Hamilton-Jacobi-Bellman equation in H2 deterministic and stochastic optimal control of affine nonlinear systems. Automatica 39, 1243–1249 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Aliyu, M.D.S.: An Approach for Solving the Hamilton-Jacobi-Isaacs Equation (HJIE) in Nonlinear H∞ control. Automatica 39, 877–884 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Aguilar, L.T., Orlov, Y., Acho, L.: Nonlinear H∞-control of Nonsmooth Time-varying Systems with Application to Friction Mechanical Manipulators. Automatica 39, 1532–1542 (2003)

    Article  MathSciNet  Google Scholar 

  16. Chang, Y.C.: An Adaptive H∞ Tracking Control for a Class of Nonlinear Multiple-Input -Multiple-Output (MIMO) systems. IEEE Transactions on Automatic Control 46(9), 1432–1437 (2001)

    Article  MATH  Google Scholar 

  17. Su, W., Souza, C., Xie, L.: H∞ Control for Asymptotically Stable Nonlinear Systems. IEEE Transactions on Automatic Control 44(5), 989–993 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Q., Duan, H. (2012). Modeling and Adaptive Control for Flapping-Wing Micro Aerial Vehicle. In: Huang, DS., Jiang, C., Bevilacqua, V., Figueroa, J.C. (eds) Intelligent Computing Technology. ICIC 2012. Lecture Notes in Computer Science, vol 7389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31588-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31588-6_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31587-9

  • Online ISBN: 978-3-642-31588-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics