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Abstract. Consider the following online version of the submodular max-
imization problem under a matroid constraint: We are given a set of
elements over which a matroid is defined. The goal is to incrementally
choose a subset that remains independent in the matroid over time. At
each time, a new weighted rank function of a different matroid (one per
time) over the same elements is presented; the algorithm can add a few
elements to the incrementally constructed set, and reaps a reward equal
to the value of the new weighted rank function on the current set. The
goal of the algorithm as it builds this independent set online is to max-
imize the sum of these (weighted rank) rewards. As in regular online
analysis, we compare the rewards of our online algorithm to that of an
offline optimum, namely a single independent set of the matroid that
maximizes the sum of the weighted rank rewards that arrive over time.
This problem is a natural extension of two well-studied streams of ear-
lier work: the first is on online set cover algorithms (in particular for the
max coverage version) while the second is on approximately maximizing
submodular functions under a matroid constraint.
In this paper, we present the first randomized online algorithms for this
problem with poly-logarithmic competitive ratio. To do this, we employ
the LP formulation of a scaled reward version of the problem. Then
we extend a weighted-majority type update rule along with uncrossing
properties of tight sets in the matroid polytope to find an approximately
optimal fractional LP solution. We use the fractional solution values as
probabilities for a online randomized rounding algorithm. To show that
our rounding produces a sufficiently large reward independent set, we
prove and use new covering properties for randomly rounded fractional
solutions in the matroid polytope that may be of independent interest.

1 Introduction

Making decisions in the face of uncertainty is the fundamental problem addressed
by online computation [5]. In many planning scenarios, a planner must decide
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on the evolution of features to a product without knowing the evolution of the
demand for these features from future users. Moreover, any features initially
included must be retained for backward compatibility, and hence leads to an
online optimization problem: given a set of features, the planner must phase the
addition of the features, so as to maximize the value perceived by a user at the
time of arrival. Typically, users have diminishing returns for additional features,
so it is natural to represent their utility as a submodular function of the features
that are present (or added) when they arrive. Furthermore, the set of features
that are thus monotonically added, are typically required to obey some design
constraints. The simplest are of the form that partition the features into classes
and there is a restriction on the number of features that can be deployed in
each class. A slight extension specifies a hierarchy over these classes and there
are individual bounds over the number of features that can be chosen from each
class. We capture these, as well as other much more general restrictions on the
set of deployed features, via the constraint that the chosen features form an
independent set of a matroid. Thus, our problem is to monotonically construct
an independent set of features (from a matroid over the features) online, so as
to maximize the sum of submodular function values (users) arriving over time
and evaluated on the set of features that have been constructed so far.

This class of online optimization problems generalizes some early work of
Awerbuch et al. [2]. They considered a set-cover instance, in which the restriction
is to choose at most k sets with the goal of maximizing the coverage of the
elements as they arrive over time. This is precisely the online maximization
version of the well-studied maximum coverage problem. Even this special case
of our problem already abstracts problems in investment planning, strategic
planning, and video-on-demand scheduling.

1.1 Problem Setting, Main Result and Techniques

In our setting5, we are given a universe of elements E, |E| = m, and a matroid
M = (E, I(M)) whose independent sets characterize the limitations on which
sets of elements we can choose. At every time step i, 1 ≤ i ≤ n, a client arrives
with a non-negative monotone submodular function fi : 2E → Z+ representing
her welfare function. The objective is to maintain a monotonically increasing
set F ∈ I(M) over time; that is, the set Fi−1 of elements (at time i − 1) can
only be augmented to Fi after seeing fi at time step i. The welfare of client i
is then fi(Fi), and our objective is to maximize

∑n
i=1 fi(Fi). We compare our

performance to the offline optimum maxO∈I(M)

∑n
i=1 fi(O).

In this paper, we are concerned with the case when each of the submodu-
lar functions fi is a weighted rank function of some matroid Ni, i.e., fi(S) =
maxI⊆S,I∈I(Ni)

∑
e∈I wi,e where wi : E → R+ is an arbitrary weight function.

This class of submodular functions is very broad and includes all the examples
discussed above; Furthermore, we believe it captures the difficulty of general

5 For preliminaries and basic definitions, please see Section 2.
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submodular functions even though we have not yet been able to extend our re-
sults to the general case. Nevertheless, there are submodular functions which
are not weighted rank functions of a matroid, for example, multi-set coverage
function [7].

Theorem 1. There exists a randomized polynomial time algorithm which is
O
(
log2 n logm log fratio

)
-competitive, for the online submodular function maxi-

mization problem under a matroid constraint over m elements, when each fi, 1 ≤
i ≤ n, is a weighted rank function of a matroid and fratio = 2

maxi,e fi({e})
mini,e|fi({e})6=0 fi({e})

.

In other words, the algorithm maintains monotonically increasing independent
sets Fi ∈ I(M) such that

E

[
n∑
i=1

fi(Fi)

]
≥ Ω

(
1

log2 n logm log fratio

)
· max
O∈I(M)

n∑
i=1

fi(O).

Our result should be contrasted with the lower bound proved in [2]6.

Lemma 1. [2] Any randomized algorithm for the submodular maximization prob-
lem under a matroid constraint is Ω(log n log(m/r))-competitive, where r is the
rank of the matroid. This lower bound holds even for uniform matroids and when
all fi are unweighted rank functions.

We note that the O(logm) factor in our analysis can be improved slightly to
anO(log(m/r)) factor with a more careful analysis. A lower bound ofΩ(log fratio)
also follows even when the functions fi are linear (see, for example, [6]).

Main Techniques. To prove our results, we combine techniques from online
computation and combinatorial optimization. The first step is to formulate an
integer linear programming formulation for the problem. Unfortunately, the nat-
ural linear program is not well-suited for the online version of the problem. Thus,
we formulate a different linear program in which we add an extra constraint that
each element e contributes roughly the same value to the objective of the optimal
solution. While this may not be true in general, we show that an approximate
optimal solution satisfies this requirement.

We note that the online setting we study is quite different from the online
packing framework studied by [6] and leads to new technical challenges. In par-
ticular, there are two obstacles in applying the primal-dual techniques in [6]
to our setting. First, the linear formulation we obtain (that is natural for our
problem) is not a strict packing LP and contains negative variables (See Sec-
tion 3). Second, the number of packing constraints is exponential, and hence the
techniques of [6] would give a linear competitive factor rather than a polylog-
arithmic one. Nevertheless, we present in Section 3 an online algorithm which
gives a fractional solution to the linear program having a large objective value.
One of the crucial ingredients is the uncrossing property of tight sets for any
feasible point in the matroid polytope.

6 The lower bounds in [2] relate even to a special case of uniform matroid and very
restricted sub-modular functions.
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To obtain an integral solution, we perform in Section 4 a natural randomized
rounding procedure to select fractionally chosen elements. But, we have to be
careful to maintain that the selected elements continue to form an independent
set. The main challenge in the analysis is to tie the performance of the random-
ized algorithm to the performance of the fractional algorithm. As a technical
tool in our proof, we show in Lemma 9 that randomly rounding a fractional
solution in the matroid polytope gives a set which can be covered by O(log n)
independent sets with high probability. This lemma may be of independent in-
terest and similar in flavor to the results of Karger [14] who proved a similar
result for packing bases in the randomly rounded solution.

1.2 Related results

Maximizing monotone submodular function under matroid constraints has been
a well studied problem and even many special cases have been studied widely
(see survey by Goundan and Schulz [13]). Fisher, Nemhauser and Wolsey [12]
gave a (1 − 1

e )-approximation when the matroid is the uniform matroid and
showed that the greedy algorithm gives a 1

2 -approximation. This was improved
by Calinescu at al [7] and Vondrák [20] who gave a (1− 1

e )-approximation for the
general problem. They also introduced the multi-linear extension of a submodu-
lar function and used pipage rounding introduced by Ageev and Sviridenko [1].
The facility location problem was introduced by Cornuejols et al. [9] and was the
impetus behind studying the general submodular function maximization prob-
lem subject to matroid constraints. The submodular welfare problem can be cast
as a submodular maximization problem subject to a matroid constraint and the
reduction appears in Fisher et al. [12] and the problem has been extensively stud-
ied [18, 16, 17, 15]. The result of Vondrák [20] implies a (1 − 1

e )-approximation
for the problem. Despite the restricted setting of our benefit functions, we note
that recent work in welfare maximization in combinatorial auctions [10] has fo-
cused on precisely the case when the valuations are matroid rank sums (MRS)
that we consider in our model.

A special case of our online problem was studied by Awerbuch et al. [2].
They studied an online variant of the max-coverage problem, where given n sets
covering m elements, the elements arrive one at a time, and the goal is to pick up
to k sets online to maximize coverage. They obtained a randomized algorithm
that is O(log n log(m/k))-competitive for the problem and proved that this is
optimal in their setting. Our results generalize both the requirement on the
cardinality of the chosen sets to arbitrary matroid constraints, and the coverage
functions of the arriving elements to monotone submodular functions that are
weighted rank functions of matroids.

Another closely related problem with a different model of uncertainty was
studied by Babaioff et al. [3]. They studied a setting in which elements of a
matroid arrive in an online fashion and the goal is to construct an independent set
that is competitive with the maximum weight independent set. They considered
the random permutation model which is a non-adversarial setting, and obtained
an O(log k)-competitive algorithm for general matroid, where k is the rank of
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the matroid, and constant competitive ratio for several interesting matroids.
Recently, Bateni et al. [4] studied the same model where the objective function
is a submodular function (rather than linear).

Chawla et al. [8] study Bayesian optimal mechanism design to maximize
expected revenue for a seller while allocating items to agents who draw their
values for the items from a known distribution. Their development of agent-
specific posted price mechanisms when the agents arrive in order, and the items
allocated must obey matroid feasibility constraints, is similar to our setting. In
particular, we use the ideas about certain ordering of matroid elements (Lemma
7 in their paper) in the proof that our randomized rounding algorithm give
sufficient profit.

2 Preliminaries

Given a set E, a function f : 2E → R+ is called submodular if for all sets
A,B ⊆ E, f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B). Given set E and a collection
I ⊆ 2E ,M = (E, I(M)) is a matroid if (i) for all A ∈ I and B ⊂ A implies that
B ∈ I and (ii) for all A,B ∈ I and |A| > |B| then there exists a ∈ A \ B such
that B ∪ {a} ∈ I. Sets in I are called independent sets of the matroid M. The
rank function r : 2E → R+ of matroid M is defined as r(S) = maxT∈I:T⊆S |T |.
A standard property of matroids is the fact that the rank function of any matroid
is submodular.

We also work with weighted rank functions of a matroid, defined as f(S) =
maxI⊆S,I∈I(M)

∑
e∈I we for some weight function w : 2E → R+. Given any

matroidM, we define the matroid polytope to be the convex hull of independent
sets P (M) = conv{1I : I ∈ I} ⊆ R|E|. Edmonds [11] showed that P (M) = {x ≥
0 : x(S) ≤ r(S) ∀ S ⊆ E}. We also use the following fact about fractional points
in the matroid polytope (The proof follows from standard uncrossing arguments.
See Schrijver [19], Chapter 40).

Fact 2 Given a matroidM = (E, I(M)) with rank function r and feasible point
x ∈ P (M), let τ = {S ⊆ E : x(S) = r(S)}. Then, τ is closed under intersection
and union and there is a single maximal set in τ .

3 Linear Program and the Fractional Algorithm

We now give a linear program for the online submodular function maximization
problem and show how to construct a feasible fractional solution online which is
O(logm log n log fratio)-competitive. Before we give the main theorem, we first
formulate a natural LP. Let O ⊆ E denote the optimal solution with the objec-
tive

∑n
i=1 fi(O). Since each fi is the weighted rank function of matroid Ni, we

have that fi(O) = wi(Oi) =
∑
e∈Oi wi,e where O ⊇ Oi ∈ I(Ni). For the sake

of simplicity, we assume that wi,e = 1 (In the full version we show that this
assumption can be removed with a loss of O(log fratio) factor in the competitive
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LP1 : max
∑n
i=1

∑
e∈E zi,e

s.t.

∀S ⊆ E
∑
e∈S xe ≤ r(S) (1)

∀1 ≤ i ≤ n, S ⊆ E
∑
e∈S zi,e ≤ ri(S) (2)

∀1 ≤ i ≤ n, e ∈ E zi,e ≤ xe (3)

∀1 ≤ i ≤ n, e ∈ E zi,e, xe ≥ 0

Fig. 1. LP for maximizing a sum of (unweighted) rank functions subject to matroid
constraint

LP2(α) : max
∑n
i=1

∑
e∈E zi,e

s.t.

∀S ⊆ E
∑
e∈S xe ≤ r(S) (4)

∀1 ≤ i ≤ n, S ⊆ E
∑
e∈S zi,e ≤ ri(S) (5)

∀1 ≤ i ≤ n, e ∈ E zi,e ≤ xe (6)

∀e ∈ E
∑n
i=1 zi,e ≤ αxe (7)

∀e ∈ E
∑n
i=1 zi,e ≥

αxe
2

(8)

∀1 ≤ i ≤ n, e ∈ E zi,e, xe ≥ 0

Fig. 2. A restricted LP for the submodular function maximization subject to matroid
constraint

ratio). Observe that in this case, fi(S) = ri(S), where ri is the rank function of
matroid Ni for any set S ⊆ E.

We next formulate a linear program where xe is the indicator variable for
whether e ∈ O and zi,e is the indicator variable for whether e ∈ Oi. Since
O ∈ I(M) and Oi ∈ I(Ni), we have that x ∈ P (M) and zi ∈ P (Ni) as
represented by constraints (1) and constraints (2), respectively in Figure 1.

We prove the following theorem.

Theorem 3. There exists a polynomial time algorithm A that constructs a fea-
sible fractional solution (x, z) online to LP1 which is O(log n logm)-competitive.
That is, the algorithm A maintains monotonically increasing solution (x, z) such

that
∑n
i=1

∑
e∈E zi,e = Ω(

∑n
i=1 fi(O)

logn logm ) where O is the optimal integral solution.

To prove Theorem 3, instead of working with the natural linear program LP1,
we formulate a different linear program. The new linear program is indexed by
an integer α and places the constraints that each e ∈ O occurs in [α2 , α] different
Oi’s as represented by constraints (7) and (8). The parameter α will be defined
later.
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The following lemma whose proof is omitted shows that if we pick O(log n)
different values of α then the sum of the integer solutions to the linear programs
LP2(α) perform as well as the optimal solution.7

Lemma 2. Let OPT denote the value of an optimal integral solution to linear
program LP1 and let OPTα denote the optimal value of an optimal integral
solution to the linear program LP2(α) for each α ∈ {1, 2, 4, . . . , 2dlogne}. Then
OPT ≤

∑
α∈{1,2,4,...,2dlogne}OPTα.

Using the above lemma, a simple averaging argument shows that for some
guess α, the optimal integral solution to LP2(α) is within a log n factor of the
optimal integral solution to LP1. Hence, we construct an algorithm which first
guesses α and then constructs an approximate fractional solution to LP2(α).

3.1 Online Algorithm for a Fractional LP Solution

Given a fractional solution x, we call a set S ⊆ E tight (with respect to x) if
x(S) = r(S).

Guessing Algorithm:

– Guess the value α ∈R {1, 2, 4 . . . , n}.
– Run AlgG with value α.

AlgG:

– Initialize xe ← 1/m2 (where m = |E|), set zi,e = 0 for each i, e.

– When function fi arrives, order the elements arbitrarily.

– For each element e in order:

– If ∀S|e ∈ S, x(S) < r(S) and zi(S) < ri(S)− 1/2:

xe ← min

{
xe · exp

(
8 logm

α

)
, min
S|e∈S

{r(S)− x(S \ {e})}
}

(9)

zi,e ← xe/2 (10)

Using an independence oracle for each of the matroids, each of the condi-
tions can be checked in polynomial time by reducing it to submodular function
minimization (See Schrijver [19], Chapter 40) and therefore the running time
of the algorithm is polynomial. Note that the fractional algorithm is carefully
designed. For example, it is very reasonable to update greedily the value of zi,e
even when the algorithm does not update the value xe (of course, ensuring that
zi ∈ P (Ni)). While such an algorithm does give the required guarantee on the
performance of the fractional solution, it is not clear how to round such a solu-
tion to an integral solution. In particular, our algorithm for finding a fractional

7 We assume that the algorithm knows the value of n. In the full version of the paper
we show how to deal with an unknown n losing an additional small factor.
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solution is tailored so as to allow us to use the values as rounding probabilities
in a randomized algorithm.

Before we continue, we define some helpful notation regarding the online
algorithm. Let xi,e(α) be the value of the variable xe after the arrival of user
i for some guess α. Let ∆xi,e(α) be the change in the value of xe when user
i arrives. Let xe(α) be the value of xe at the end of the execution. Similarly,
let zi,e(α) be the value of zi,e at the end of the execution. We start with the
following lemma that follows from the update rule (9). The proof is omitted.

Lemma 3. For any element e ∈ E, and guess α,

n∑
i=1

zi,e(α) ≥ α

48 logm

(
xe(α)− 1

m2

)
(11)

where xe(α) is the value at the end of the execution of AlgG.

Next we prove that the solution produced by AlgG is almost feasible with
respect to the optimal solution to LP2(α).

Lemma 4 (Feasibility Lemma). Let (x(α), z(α)) be the fractional solution
generated by AlgG at the end of the sequence. Then, it satisfies all constraints
of LP2(α) except constraints (8).

Proof. We prove that the solution is feasible.
Matroid constraints (4). Clearly, the algorithm never violates the matroid con-
straints by the second term in the equation (9) in the algorithm.
Constraints (5) and constraints (6). zi,e ← xi,e(α)/2 ≤ xe(α)/2, thus con-
straints (6) hold. Finally, by the algorithm behavior we only update zi,e if for all
S|e ∈ S, zi(S) < ri(S)− 1/2. Since by the above observations zi,e ≤ xe(α)/2 ≤
1/2, we never violate constraints (5) after the update.
Constraints (7). This constraint follows since

n∑
i=1

zi,e =
∑

i:∆xi,e>0

xi,e(α)/2 ≤ xe(α)|{i : ∆xi,e > 0}|

However, after α augmentations, xe(α) ≥ 1
m2 exp

(
8 logm
α · α

)
> 1. Thus, xe

must be in a tight set and so by design we never update xe and any zi,e.

In order to evaluate the performance of the algorithm we first show that the
size of the solution returned by the algorithm is large as compared to the optimal
integral solution. Later in Lemma 6, we relate the objective value of the solution
to its size. This lemma uses crucially the properties of the matroid. The proof is
omitted.

Lemma 5 (Large Fractional Size). Let (x∗(α), z∗(α)) be an optimal integral
solution to LP2(α). Let (x(α), z(α)) be the fractional solution generated by AlgG
at the end of the sequence. Then we have,

∑
e∈E xe(α) ≥ 1

16

∑
e∈E x

∗
e(α).



9

Finally, we prove a lemma bounding the performance of the algorithm.

Lemma 6. For any guess value α, the algorithm maintains a fractional solution
to LP2(α) such that:

∑
e∈E

n∑
i=1

zi,e(α) = Ω

(
OPTα
logm

)
,

where OPTα is objective of an optimal integral solution to LP2(α).

Proof. Let (x∗, z∗) denote the optimal integral solution to LP2(α). If x∗e = 0 for
each e, then the lemma follows immediately. We have the following∑

e∈E
∑n
i=1 zi,e(α) ≥ α

48 logm

∑
e∈E

(
xe(α)− 1

m2

)
(Lemma 3)

≥ α
48 logm

∑
e∈E

(
x∗e(α)
16 − 1

m2

)
(Lemma 5)

= Ω
(

1
logm

∑
e∈E

∑n
i=1 z

∗
i,e(α)

)
where the last equality follows since in LP2(α) for each element

∑n
i=1 z

∗
i,e(α) ≤

αx∗e and
∑
e∈E x

∗
e ≥ 1. This completes the proof of Lemma.

Finally, we get our main theorem.

Theorem 4. The online algorithm for the fractional LP solution (of LP1) is
O(logm log n)-competitive.

Proof. The proof follows by combining Lemma (4), Lemma (6), Lemma (2) and
the observation that there are O(log n) possible values of α each is guessed with
probability Ω(1/ log n).

4 Randomized Rounding Algorithm

In this section we present a randomized algorithm for the unweighted problem
that is O(log2 n logm)-competitive when each submodular function fi is a rank
function of a matroid. The algorithm is based on the fractional solution designed
in Section 3. Although our rounding scheme is extremely simple, the proof of
its correctness involves carefully matching the performance of the rounding al-
gorithm with the performance of the fractional algorithm. Indeed, here the fact
that LP2(α) has extra constraints not present in LP1 is used very crucially.

Theorem 5. The expected profit of the randomized algorithm is Ω
(

OPT
logm log2 n

)
.

The randomized algorithm follows the following simple rounding procedure.
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Matroid Randomized Rounding Algorithm:

– F ← ∅.
– Guess the value α ∈R {1, 2, 4 . . . , n}.
– Run AlgG with value α.
• Whenever xe increases by ∆xe, if F ∪{e} ∈ I(M) then F ← F ∪{e}

with probability ∆xe
4 .

In order to prove our main theorem, we prove several crucial lemmas. The
main idea is to tie the performance of the randomized algorithm to the per-
formance of the fractional solution that is generated. In the process we lose a
factor of O(log n). We first introduce some notation. All of the following nota-
tion is with respect to the execution of the online algorithm for a fixed value
of α and we omit it from the notation. Let Fi denote the solution formed by
the randomized algorithm at the end of iteration i and let F denote the final
solution returned by the algorithm. Let Y ie denote the indicator random variable
that element e has been selected till iteration i. Let ∆Y ie denote the indicator
random variable that element e is selected in iteration i. Let yie = Pr[Y ie = 1]
and ∆yie = Pr[∆Y ie = 1]. Finally, let ye denote the probability element e is
in the solution at the end of the execution. Recall that xi,e denotes the value
of the variable xe in the fractional solution after iteration i and let xe denote
the fractional value of element e at the end of the execution of the fractional
algorithm, and let ∆xi,e be the change in the value of e in iteration i.

Since the algorithm tosses a coin for element e in iteration i with probability
∆xi,e/4, therefore the probability that an element e is included in the solution
till iteration i is at most xi,e/4. Our first lemma states that the expected number
of elements chosen by the algorithm is at least half that amount in expectation
and is comparable to the total size of the fractional solution. Thus, Lemma 7
plays the role of Lemma 5 in the analysis of the randomized algorithm. The
proof is omitted.

Lemma 7. Let F be the solution returned by the randomized rounding algo-

rithm, then E[|F |] =
∑
e∈E ye ≥

∑
e∈E xe
8 .

Our second lemma relates the change in the probability an element is chosen
to the change in the fractional solution. This lemma shows that a crucial property
of the exponential update rule for the fractional solution is also satisfied by the
integral solution. The proof is omitted.

Lemma 8. For each element e and iteration i,
∆yie
yie
≤ ∆xi,e

xi,e
≤ 24 logm

α .

We next prove a general lemma regarding randomized rounding in any ma-
troid polytope. The proof of the lemma that utilizes a lemma proven in Chawla
et al. [8] is omitted.

Lemma 9. Given a matroid N = (E, I) and a solution z such that for all
S ⊆ E, z(S) ≤ r(S)/2, construct a set F by including in e ∈ F with probability
ze for each e ∈ E independently. Then, with high probability (1− 1

m2n2 ), F can
be covered by O(logm+ log n) independent sets where m = |N |.
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We now prove a relation between the profit obtained by the algorithm at
iteration i, denoted by the random variable ri(Fi), and the events that a partic-
ular set of elements are chosen in the solution. For any i, Let Hi denote the set
of elements such that zi,e > 0. Note that zi,e > 0 iff ∆xi,e > 0.

Lemma 10.
∑n
i=1E[ri(Fi)] ≥ 1

c logn

∑n
i=1

∑
e∈Hi y

i
e, where c is some constant.

Now we have all the ingredients to prove Theorem 5.
Proof of Theorem 5: We prove that the expected profit of the algorithm with

a guess α is at least Ω
(

OPTα
logm logn

)
. Since each α is guessed with probability

1/ log n and the value of OPT is the sum over all values α we get the desired.
The expected profit of the algorithm when we guess α is at least.∑n

i=1E[fi(Fi)] ≥ 1
c logn

∑n
i=1

∑
e∈Hi y

i
e (Lemma 10)

≥
∑n
i=1

∑
e∈Hi

α
c′ logm logn∆y

i
e (Lemma 8)

=
∑
e∈E

α
c′ logm lognye (

∑
i:e∈Hi ∆y

i
e = ye)

≥
∑
e∈E

α
8c′ logm lognxe (Lemma 7)

= Ω
(

α·nα
logm logn

)
= Ω

(
OPTα

logm logn

)
(Lemma 5)

�
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