Skip to main content

The NOF Multiparty Communication Complexity of Composed Functions

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7391))

Abstract

We study the k-party ‘number on the forehead’ communication complexity of composed functions f ∘ g, where f:{0,1}n → {±1}, g : {0,1}k → {0,1} and for (x 1,…,x k ) ∈ ({0,1}n)k, f ∘ g(x 1,…,x k ) = f(…,g(x 1,i ,…,x k,i ), …). We show that there is an O(log3 n) cost simultaneous protocol for \(\textnormal{\textsc{sym}} \circ g\) when k > 1 + logn, \(\textnormal{\textsc{sym}}\) is any symmetric function and g is any function. Previously, an efficient protocol was only known for \(\textnormal{\textsc{sym}} \circ g\) when g is symmetric and “compressible”. We also get a non-simultaneous protocol for \(\textnormal{\textsc{sym}} \circ g\) of cost O((n/2k) logn + k logn) for any k ≥ 2.

In the setting of k ≤ 1 + logn, we study more closely functions of the form \(\textnormal{\textsc{majority}} \circ g\), \(\textnormal{\textsc{mod}}_m \circ g\), and \(\textnormal{\textsc{nor}} \circ g\), where the latter two are generalizations of the well-known and studied functions Generalized Inner Product and Disjointness respectively. We characterize the communication complexity of these functions with respect to the choice of g. As the main application of our results, we answer a question posed by Babai et al. (SIAM Journal on Computing, 33:137–166, 2004) and determine the communication complexity of \(\textnormal{\textsc{majority}} \circ \textnormal{\textsc{qcsb}}_k\), where \(\textnormal{\textsc{qcsb}}_k\) is the “quadratic character of the sum of the bits” function.

A full version can be found online [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ada, A., Chattopadhyay, A., Fawzi, O., Nguyen, P.: The NOF Multiparty Communication Complexity of Composed Functions. Technical report, In Electronic Colloquium on Computational Complexity (ECCC) TR11–155 (2011)

    Google Scholar 

  2. Babai, L., Gál, A., Kimmel, P.G., Lokam, S.V.: Communication complexity of simultaneous messages. SIAM Journal on Computing 33, 137–166 (2004)

    Article  Google Scholar 

  3. Babai, L., Kimmel, P.G., Lokam, S.V.: Simultaneous Messages vs. Communication. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 361–372. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  4. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. J. Comput. Syst. Sci. 45(2), 204–232 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beame, P., Huynh-Ngoc, D.-T.: Multiparty communication complexity and threshold circuit size of AC 0. In: Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp. 53–62. IEEE Computer Society, Washington, DC (2009)

    Chapter  Google Scholar 

  6. Beigel, R., Tarui, J.: On ACC. Computational Complexity 4, 350–366 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC 1983, pp. 94–99. ACM, New York (1983)

    Chapter  Google Scholar 

  8. Chattopadhyay, A., Ada, A.: Multiparty communication complexity of disjointness. Technical report. In: Electronic Colloquium on Computational Complexity (ECCC) TR08–002 (2008)

    Google Scholar 

  9. Chung, F.R.K., Tetali, P.: Communication complexity and quasi randomness. SIAM Journal on Discrete Mathematics 6(1), 110–123 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grolmusz, V.: The BNS lower bound for multi-party protocols is nearly optimal. Information and Computation 112, 51–54 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grolmusz, V.: Separating the communication complexities of MOD m and MOD p circuits. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 278–287 (1995)

    Google Scholar 

  12. Håstad, J., Goldmann, M.: On the power of small-depth threshold circuits. Computational Complexity 1, 610–618 (1991)

    Article  Google Scholar 

  13. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge university press (1997)

    Google Scholar 

  14. Lee, T., Schechtman, G., Shraibman, A.: Lower bounds on quantum multiparty communication complexity. In: Proceedings of the 24th Annual IEEE Conference on Computational Complexity (CCC), pp. 254–262 (2009)

    Google Scholar 

  15. Lee, T., Shraibman, A.: Disjointness is hard in the multiparty number-on-the-forehead model. Computational Complexity 18, 309–336 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee, T., Zhang, S.: Composition Theorems in Communication Complexity. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 475–489. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Pudlák, P.: Personal communication (2006)

    Google Scholar 

  18. Raz, R.: The BNS-Chung criterion for multi-party communication complexity. Computational Complexity 9(2), 113–122 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Razborov, A.: Quantum communication complexity of symmetric predicates. Izvestiya: Mathematics 67(1), 145–159 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sherstov, A.A.: The pattern matrix method for lower bounds on quantum communication. In: Proceedings of the 40th Symposium on Theory of Computing (STOC), pp. 85–94 (2007)

    Google Scholar 

  21. Sherstov, A.A.: The multiparty communication complexity of set disjointness. Technical report, In Electronic Colloquium on Computational Complexity (ECCC) TR11–145 (2011)

    Google Scholar 

  22. Shi, Y., Zhang, Z.: Communication complexities of symmetric XOR functions. Quantum Information and Computation 9, 255–263 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Shi, Y., Zhu, Y.: Quantum communication complexity of block-composed functions. Quantum Information and Computation 9, 444–460 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Yao, A.C.: Some complexity questions related to distributive computing (preliminary report). In: Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, pp. 209–213. ACM Press, New York (1979)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ada, A., Chattopadhyay, A., Fawzi, O., Nguyen, P. (2012). The NOF Multiparty Communication Complexity of Composed Functions. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics