
Clique cover and graph separation: New incompressibility results

Marek Cygan∗ Stefan Kratsch† Marcin Pilipczuk‡ Michał Pilipczuk§

Magnus Wahlström¶

Abstract

The field of kernelization studies polynomial-time preprocessing routines for hard problems in the framework
of parameterized complexity. Although a framework for proving kernelization lower bounds has been discovered in
2008 and successfully applied multiple times over the last three years, establishing kernelization complexity of many
important problems remains open. In this paper we show that, unless NP ⊆ coNP/poly and the polynomial hierarchy
collapses up to its third level, the following parameterized problems do not admit a polynomial-time preprocessing
algorithm that reduces the size of an instance to polynomial in the parameter:

• EDGE CLIQUE COVER, parameterized by the number of cliques,

• DIRECTED EDGE/VERTEX MULTIWAY CUT, parameterized by the size of the cutset, even in the case of two
terminals,

• EDGE/VERTEX MULTICUT, parameterized by the size of the cutset, and

• k-WAY CUT, parameterized by the size of the cutset.

The existence of a polynomial kernelization for EDGE CLIQUE COVER was a seasoned veteran in open problem
sessions. Furthermore, our results complement very recent developments in designing parameterized algorithms for
cut problems by Marx and Razgon [STOC’11], Bousquet et al. [STOC’11], Kawarabayashi and Thorup [FOCS’11]
and Chitnis et al. [SODA’12].

1 Introduction
In order to cope with the NP-hardness of many natural combinatorial problems, various algorithmic paradigms such
as brute-force, approximation, or heuristics are applied. However, while the paradigms are quite different, there is a
commonly used opening move of first applying polynomial-time preprocessing routines, before making sacrifices in
either exactness or runtime. The aim of the field of kernelization is to provide a rigorous mathematical framework for
analyzing such preprocessing algorithms. One of its core features is to provide quantitative performance guarantees
for preprocessing via the framework of parameterized complexity, a feature easily seen to be infeasible in classical
complexity (cf. [48]).

In the framework of parameterized complexity an instance x of a parameterized problem comes with an integer
parameter k. A kernelization algorithm (kernel for short) is a polynomial time preprocessing routine that reduces the
input instance x with parameter k to an equivalent instance of size bounded by g(k) for some computable function g.
If g is small, after preprocessing even an exponential-time brute-force algorithm might be feasible. Therefore small
kernels, with g being linear or polynomial, are of big interest.

Although polynomial kernels for a wide range of problems have been developed for the last few decades (e.g., [1,
8, 14, 23, 35, 67, 76]; see also the surveys of Guo and Niedermeier [47] and Bodlaender [6]), a framework for proving
kernelization lower bounds was discovered only three years ago by Bodlaender et al. [7], with the backbone theorem
∗Institute of Informatics, University of Warsaw, Poland, cygan@mimuw.edu.pl.
†Utrecht University, Utrecht, the Netherlands, s.kratsch@uu.nl.
‡Institute of Informatics, University of Warsaw, Poland, malcin@mimuw.edu.pl.
§Department of Informatics, University of Bergen, Norway, michal.pilipczuk@ii.uib.no.
¶Max-Planck-Institute for Informatics, Saarbrücken, Germany, wahl@mpi-inf.mpg.de.

1

ar
X

iv
:1

11
1.

05
70

v1
 [

cs
.D

S]
 2

 N
ov

 2
01

1

proven by Fortnow and Santhanam [36]. The crux of the framework is the following idea of a composition. Assume we
are able to combine in polynomial time an arbitrary number of instances x1, x2, . . . , xt of an NP-complete problem L
into a single instance (x, k) of a parameterized problem Q ∈ NP such that (x, k) ∈ Q if and only if one of the
instances xi is in L, while k is bounded polynomially in maxi |xi|. If such a composition algorithm was pipelined
with a polynomial kernel for the problem Q, we would obtain an OR-distillation of the NP-complete language L: the
resulting instance is of size polynomial in maxi |xi|, possibly significantly smaller than t, but encodes a disjunction
of all input instances xi (i.e., an OR-distillation is a compression of the logical OR of the instances). As proven by
Fortnow and Santhanam [36], existence of such an algorithm would imply NP ⊆ coNP/poly, which is known to cause
a collapse of the polynomial hierarchy to its third level [15, 80].

The astute reader may have noticed that the above description of a composition is actually using the slightly
newer notion of a cross-composition [9]. This generalization of the original lower bound framework will be the
main ingredient of our proofs. The framework of kernelization lower bounds was also extended by Dell and van
Melkebeek [30] to allow excluding kernels of particular exponent in the polynomial. Recently, Dell and Marx [29]
and, independently, Hermelin and Wu [49] simplified this approach and applied it to various packing problems.

The aforementioned (cross-)composition algorithm is sometimes called an OR-composition, as opposed to an
AND-composition, where we require that the output instance (x, k) is in Q if and only if all input instances belong
to L. Various problems have been shown to be AND-compositional, with the most important example being the
problem of determining whether an input graph has treewidth no larger than the parameter [7]. It is conjectured [7]
that no NP-complete problem admits an AND-distillation, which would be a result of pipelining an AND-composition
with a polynomial kernel. However, it is now a major open problem in the field of kernelization to support this claim
with a proof based on a plausible complexity assumption.

Although the framework of kernelization lower bounds has been applied successfully multiple times over the last
three years (e.g., [9, 10, 22, 24, 31, 34, 58, 59]), there are still many important problems where the existence of a
polynomial kernel is widely open. The reason for this situation is that an application of the idea of a composition (or
appropriate reductions, called polynomial parameter transformations [11]) is far from being automatic. To obtain a
composition algorithm, usually one needs to carefully choose the starting language L (for example, the choice of the
starting language is crucial for compositions of Dell and Marx [29], and the core idea of the composition algorithms
for connectivity problems in degenerate graphs [24] is to use GRAPH MOTIF as a starting point) or invent sophisticated
gadgets to merge the instances (for example, the colors and IDs technique introduced by Dom et al. [31] or the idea of
an instance selector, used mainly for structural parameters [9, 10]).

Our results. The main contribution of this paper is a proof of non-existence of polynomial kernels for four important
problems.

Theorem 1.1. Unless NP ⊆ coNP/poly, EDGE CLIQUE COVER, parameterized by the number of cliques, as well
as MULTIWAY CUT, MULTICUT and k-WAY CUT, parameterized by the size of the cutset, do not admit polynomial
kernelizations.

The common theme of our compositions is a very careful choice of starting problems. Not only do we select
particular NP-complete problems, but we also restrict instances given as the input, to make them satisfy certain con-
ditions that allow designing cross-compositions. Each time we constrain the set of input instances of an NP-complete
problem we need to prove that the problem remains NP-complete. Even though this paper is about negative results, in
our constructions we use intuition derived from the design of parameterized algorithms techniques, including iterative
compression (in case of EDGE CLIQUE COVER) introduced by Reed et al. [74] and important separators (in case of
MULTICUT) defined by Marx [64].

For the three cut problems listed in Theorem 1.1 our kernelization hardness results complement very recent devel-
opments in the design of algorithm parameterized by the size of the cutset [12, 21, 65, 77]. In the following we give
some motivation and related work for each of the four problems.

Edge clique cover. In the EDGE CLIQUE COVER problem the goal is to cover the edges of an input graph G
with at most k cliques all of which are subgraphs of G. This problem, NP-complete even in very restricted graph
classes [17, 50, 68], is also known as COVERING BY CLIQUES (GT17), INTERSECTION GRAPH BASIS (GT59) [38]

2

and KEYWORD CONFLICT [56]. It has multiple applications in various areas in practice, such as computational
geometry [3], applied statistics [43, 69], and compiler optimization [70]. In particular, EDGE CLIQUE COVER is
equivalent to the problem of finding a representation of a graph G as an intersection model with at most k elements
in the universe [33, 44, 75]. Therefore, an algorithm for EDGE CLIQUE COVER may be used to reveal a structure
in a complex real-world network [45]. Due to its importance, the EDGE CLIQUE COVER problem was studied from
various perspectives, including approximation upper and lower bounds [4, 62], heuristics [5, 43, 56, 57, 69, 70] and
polynomial-time algorithms for special graph classes [50, 51, 63, 68].

From the point of view of parameterized complexity, EDGE CLIQUE COVER was extensively studied by Gramm
et al. [42]. A simple kernelization algorithm is known that reduces the size of the graph to at most 2k vertices; the best
known fixed-parameter algorithm is a brute-force search on the 2k-vertex kernel. The question of a polynomial kernel
for EDGE CLIQUE COVER, probably first verbalized by Gramm et al. [42], was repeatedly asked in the parameterized
complexity community, for example on the last Workshop on Kernels (WorKer, Vienna, 2011). We show that EDGE
CLIQUE COVER is both AND- and OR-compositional (i.e., both an AND- and an OR-composition algorithm exist for
some NP-complete input language L), thus the existence of a polynomial kernel would both cause a collapse of the
polynomial hierarchy as well as violate the AND-conjecture. To the best of our knowledge, this is the first natural
parameterized problem that is known to admit both an AND- and an OR-composition algorithm.

Multicut and directed multiway cut. With MULTICUT and DIRECTED MULTIWAY CUT we move on to the family
of graph separation problems. The central problems of this area are two natural generalizations of the s − t cut
problem, namely MULTIWAY CUT and MULTICUT. In the first problem we are given a graph G with designated
terminals and we are to delete at most p edges (or vertices, depending on the variant) so that the terminals remain in
different connected components. In the MULTICUT problem we consider a more general setting where the input graph
contains terminal pairs and we need to separate all pairs of terminals.

As generalizations of the well-known s− t cut problem, MULTIWAY CUT and MULTICUT received a lot of atten-
tion in past decades. MULTIWAY CUT is NP-complete even for the case of three terminals [27], thus the same holds
for MULTICUT with three terminal pairs. Both problems were intensively studied from the approximation perspective
[16, 39, 40, 53, 66]. The graph separation problems became one of the most important subareas in parameterized
complexity after Marx introduced the concept of important separators [64]. This technique turns out to be very robust,
and is now a key ingredient in fixed-parameter algorithms for various problems such as variants of the FEEDBACK
VERTEX SET problem [20, 26] or ALMOST 2-SAT [73]. A long line of research on MULTIWAY CUT in the param-
eterized setting include [19, 25, 46, 64, 71, 72, 79]; the current fastest algorithm runs in O(2pnO(1)) time [25]. It is
not very hard to prove that MULTICUT, parameterized by both the number of terminals and the size of the cutset, is
reducible to MULTIWAY CUT [64]. Fixed-parameter tractability of MULTICUT parameterized by the size of the cutset
only, after being a big open problem for a few years, was finally resolved positively in 2010 [12, 65].

In directed graphs MULTIWAY CUT is NP-complete even for two terminals [40]. Very recently Chitnis et al. [21]
showed that DIRECTED MULTIWAY CUT is fixed-parameter tractable. The directed version of MULTICUT, param-
eterized by the size of the cutset, is W [1]-hard [65] (i.e., an existence of a fixed-parameter algorithm is unlikely).
The parameterized complexity of DIRECTED MULTICUT with fixed number of terminal pairs or with the number of
terminal pairs as an additional parameter remains open.

Although the picture of the fixed-parameter tractability of the graph separation problems becomes more and more
complete, very little is known about polynomial kernelization. Very recently, Kratsch and Wahlström came up with a
genuine application of matroid theory to graph separation problems. They were able to obtain randomized polynomial
kernels for ODD CYCLE TRANSVERSAL [61], ALMOST 2-SAT, and MULTIWAY CUT and MULTICUT restricted to a
bounded number of terminals, among others [60]. We are not aware of any other results on kernelization of the graph
separation problems.

We prove that DIRECTED MULTIWAY CUT, even in the case of two terminals, as well as MULTICUT, parameter-
ized by the size of the cutset, are OR-compositional, thus a polynomial kernel for any of these two problems would
cause a collapse of the polynomial hierarchy. In fact, we give two OR-composition algorithms for MULTICUT: the
constructions are very different and the presented gadgets may inspire other researchers in showing lower bounds for
similar problems.

3

The k-way cut problem. The last part of this work is devoted to another generalization of the s-t cut problem, but
of a bit different flavor. The k-WAY CUT problem is defined as follows: given an undirected graph G and integers k
and s, remove at most s edges from G to obtain a graph with at least k connected components. This problem has
applications in numerous areas of computer science, such as finding cutting planes for the traveling salesman problem,
clustering-related settings (e.g., VLSI design) or network reliability [13]. In general, k-WAY CUT is NP-complete [41]
but solvable in polynomial time for fixed k: a long line of research [41, 52, 54, 77] led to a deterministic algorithm
running in time O(mn2k−2). The dependency on k in the exponent is probably unavoidable: from the parameterized
perspective, the k-WAY CUT problem parameterized by k is W [1]-hard [32]. Moreover, the node-deletion variant is
also W [1]-hard when parameterized by s [64]. Somewhat surprisingly, in 2011 Kawarabayashi and Thorup presented
a fixed-parameter algorithm for (edge-deletion) k-WAY CUT parameterized by s [55]. In this paper we complete
the parameterized picture of the edge-deletion k-WAY CUT problem parameterized by s by showing that it is OR-
compositional and, therefore, a polynomial kernelization algorithm is unlikely to exist.

Organization of the paper. We give some notation and formally introduce the composition framework in Section
2. In subsequent sections we show compositions for the aforementioned four problems: we consider EDGE CLIQUE
COVER in Section 3, DIRECTED MULTIWAY CUT in Section 4, MULTICUT in Section 5 and Section 6 and k-WAY
CUT in Section 7. Section 8 concludes the paper.

Acknowledgements. We would like to thank Jakub Onufry Wojtaszczyk for some early discussions on the kernel-
ization of the graph separation problems.

2 Preliminaries
Notation. We use standard graph notation. For a graph G, by V (G) and E(G) we denote its vertex and edge set
(or arc set in case of directed graphs), respectively. For v ∈ V (G), its neighborhood NG(v) is defined by NG(v) =
{u : uv ∈ E(G)}, and NG[v] = NG(v) ∪ {v} is the closed neighborhood of v. We extend this notation to subsets of
vertices: NG[X] =

⋃
v∈X NG[v] and NG(X) = NG[X] \X . For X ⊆ V (G) by δG(X) we denote the set of edges

in G with one endpoint in X and the other in V (G)\X . For simplicity for a single vertex v we let δ(v) = δ({v}). We
omit the subscripts if no confusion is possible. For a set X ⊆ V (G) by G[X] we denote the subgraph of G induced
by X . For a set X of vertices or edges of G, by G \X we denote the graph with the vertices or edges of X removed;
in case of a vertex removal, we remove also all its incident edges. For sets X,Y ⊆ V (G), the set E(X,Y) contains
all edges of G that have one endpoint in X and the second endpoint in Y . In particular, E(X,X) = E(G[X]) and
E(X,V (G) \X) = δG(X). For a (directed) graph G by an st-path we denote any path that starts in s and ends in t.

For two disjoint vertex sets S, T by an S–T cut we denote any set of edges, which removal ensures that there is
no path from a vertex in S to a vertex in T in the considered graph. By minimum S–T cut we denote an S–T cut of
minimum cardinality.

Parameterized complexity. In the parameterized complexity setting, an instance comes with an integer parameter k
— formally, a parameterized problem Q is a subset of Σ∗ × N for some finite alphabet Σ. We say that the problem
is fixed parameter tractable (FPT) if there exists an algorithm solving any instance (x, k) in time f(k)poly(|x|)
for some (usually exponential) computable function f . It is known that a problem is FPT iff it is kernelizable: a
kernelization algorithm for a problem Q takes an instance (x, k) and in time polynomial in |x| + k produces an
equivalent instance (x′, k′) (i.e., (x, k) ∈ Q iff (x′, k′) ∈ Q) such that |x′| + k′ ≤ g(k) for some computable
function g. The function g is the size of the kernel, and if it is polynomial, we say that Q admits a polynomial kernel.

Kernelization lower bounds framework. We use the cross-composition technique introduced by Bodlaender et
al. [9] which builds upon Bodlaender et al. [7] and Fortnow and Santhanam [36].

Definition 2.1 (Polynomial equivalence relation [9]). An equivalence relation R on Σ∗ is called a polynomial equiva-
lence relation if (1) there is an algorithm that given two strings x, y ∈ Σ∗ decides whether R(x, y) in (|x| + |y|)O(1)

4

time; (2) for any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into at most (maxx∈S |x|)O(1)

classes.

Definition 2.2 (Cross-composition [9]). Let L ⊆ Σ∗ and let Q ⊆ Σ∗ × N be a parameterized problem. We
say that L cross-composes into Q if there is a polynomial equivalence relation R and an algorithm which, given t
strings x1, x2, . . . xt belonging to the same equivalence class of R, computes an instance (x∗, k∗) ∈ Σ∗ × N in time
polynomial in

∑t
i=1 |xi| such that (1) (x∗, k∗) ∈ Q iff xi ∈ L for some 1 ≤ i ≤ t; (2) k∗ is bounded polynomially

in maxt
i=1 |xi|+ log t.

Theorem 2.3 ([9], Theorem 9). If L ⊆ Σ∗ is NP-hard under Karp reductions and L cross-composes into the param-
eterized problem Q that has a polynomial kernel, then NP ⊆ coNP/poly.

Behind Theorem 2.3 stands the following result of Fortnow and Santhanam [36].

Definition 2.4 ([7]). A distillation algorithm for a problem L ⊆ Σ∗ into a set L′ ⊆ Σ∗ is a polynomial-time algorithm
that given t strings x1, x2, . . . , xt outputs a string y ∈ Σ∗ such that (1) y ∈ L′ iff xi ∈ L for some 1 ≤ i ≤ t; (2) |y|
is bounded polynomially in maxt

i=1 |xi|.

Theorem 2.5 ([36], Theorem 1.2). An NP-complete language does not admit a distillation algorithm into an arbitrary
set unless NP ⊆ coNP/poly.

By replacing the OR operation in Definition 2.4 by the AND operation we obtain the AND-conjecture.

Conjecture 2.6 (AND-conjecture [7]). A coNP-complete language does not admit a distillation algorithm into itself.

This conjecture motivates us to define the AND variant of a cross-composition algorithm.

Definition 2.7 (AND-cross-composition). Let L ⊆ Σ∗ and let Q ⊆ Σ∗ × N be a parameterized problem. We say
that L AND-cross-composes into Q if there is a polynomial equivalence relation R and an algorithm which, given t
strings x1, x2, . . . xt belonging to the same equivalence class of R, computes an instance (x∗, k∗) ∈ Σ∗ × N in time
polynomial in

∑t
i=1 |xi| such that (1) (x∗, k∗) ∈ Q iff xi ∈ L for each 1 ≤ i ≤ t; (2) k∗ is bounded polynomially

in maxt
i=1 |xi|+ log t.

Following the lines of the proof of Theorem 9 in [9] we obtain the following result (for sake of completeness we
include the formal proof).

Theorem 2.8. If L ⊆ Σ∗ is NP-complete under Karp reductions and L AND-cross-composes into a parameterized
problem Q, which has a polynomial kernel and whose unparameterized variant (i.e., with the parameter appended to
the instance in unary) is in NP, then the AND-conjecture fails.

Proof. In this proof we closely follow the lines of the proof of Theorem 9 of [9].
We show how the assumptions of the theorem lead to a distillation algorithm for the coNP-complete language

L̄ = Σ∗ \L. Let x1, x2, . . . , xt ∈ Σ∗ andm = maxt
i=1 |xi|. First note that if t > (|Σ|+1)m, then there are duplicates

in the input instances and we may remove them. Thus for the rest of the proof we assume that t ≤ (|Σ| + 1)m, in
particular log t = O(m).

Using the polynomial equivalence relation R assumed in the definition of the AND-cross-composition, in polyno-
mial time we partition the strings xi into r equivalence classes X1, X2, . . . , Xr. Note that r is bounded polynomially
in m.

For each class Xj we apply the assumed AND-cross-composition on the strings in Xj , obtaining an instance
(yj , kj) of the parameterized problem Q. We then apply the assumed kernelization algorithm to the instance (yj , kj),
obtaining (y′j , k

′
j). We note that |y′j | + k′j is bounded polynomially in kj , which is bounded polynomially in m. We

infer that the total size of all instances (y′j , k
′
j) for 1 ≤ j ≤ r is bounded polynomially in m.

As the unparameterized version of Q is in NP, we may transform each instance (y′j , k
′
j) into a boolean formula

φj of size polynomial in m such that φj is satisfiable iff (y′j , k
′
j) ∈ Q. Let φ =

∧r
j=1 φj . Note that |φ| is bounded

polynomially in m and φ is satisfiable if and only if xi ∈ L for all 1 ≤ i ≤ t. As L is NP-complete, in polynomial
time we may transform φ into an equivalent instance x of the language L, where |x| is bounded polynomially in m.
We conclude by noting that we obtained a distillation algorithm for L̄: x ∈ L̄ iff xi /∈ L for some 1 ≤ i ≤ t, that is,
xi ∈ L̄.

5

Observe that any polynomial equivalence relation is defined on all words over the alphabet Σ and for this rea-
son whenever we define a cross-composition, we should also define how the relation behaves on words that do not
represent instances of the problem. In all our constructions the defined relation puts all malformed instances into
one equivalence class, and the corresponding cross-composition outputs a trivial NO-instance, given a sequence of
malformed instances. Thus, in the rest of this paper, we silently ignore the existence of malformed instances.

3 Clique Cover

EDGE CLIQUE COVER
Input: An undirected graph G and an integer k.
Task: Does there exist a set of k subgraphs of G, such that each subgraph is a clique and each edge of G is contained
in at least one of these subgraphs?

In this section we present both the cross-composition and the AND-cross-composition of EDGE CLIQUE COVER
parameterized by k. We start with the AND-cross-composition since the construction we present is also used in the
cross-composition.

3.1 AND-cross-composition
Theorem 3.1. EDGE CLIQUE COVER AND-cross-composes to EDGE CLIQUE COVER parameterized by k.

Proof. For the equivalence relation R we take a relation that puts two instances (G1, k1), (G2, k2) of EDGE CLIQUE
COVER are in the same equivalence class iff k1 = k2 and the number of vertices inG1 is equal to the number of vertices
inG2. Therefore, in the rest of the proof we assume that we are given a sequence (Gi, k)t−1i=0 of EDGE CLIQUE COVER
instances that are in the same equivalence class of R (to avoid confusion we number everything starting from zero in
this proof). Let n be the number of vertices in each of the instances. W.l.o.g. we assume that n = 2hn for a positive
integer hn, since otherwise we may add isolated vertices to each instance. Moreover, we assume that t = 2ht for some
positive integer ht, since we may copy some instance if needed, while increasing the number of instances at most two
times.

Now we construct an instance (G∗, k∗), where k∗ is polynomial in n + k + ht. Initially as G∗ we take a disjoint
union of graphs Gi for i = 0, . . . , t − 1 with added edges between every pair of vertices from Ga and Gb for
a 6= b. Next, in order to cover all the edges between different instances with few cliques we introduce the following
construction. Let us assume that the vertex set of Gi is Vi = {vi0, . . . , vin−1}. For each 0 ≤ a < n, for each 0 ≤ b < n
and for each 0 ≤ r < ht we add to G∗ a vertex w(a, b, r) which is adjacent to exactly one vertex in each Vi, that is
vij where j = (a + bb i

2r c) mod n. By W we denote the set of all added vertices w(a, b, r). As the new parameter
k∗ we set k∗ = |W | + k = n2ht + k. Note that W is an independent set in G∗ and, moreover, each vertex in W is
non-isolated.

Let us assume that for each i = 0, . . . , t − 1 the instance (Gi, k) is a YES-instance. To show that (G∗, k∗) is
a YES-instance we create a set C of k∗ cliques. We split all the edges of G∗ into the following groups: (i) edges
incident to vertices of W , (ii) edges between two different graphs Gi,Gj and (iii) edges in each graph Gi. For each
vertex w ∈ W we add to C the subgraph G∗[N [w]], which is a clique since every two vertices from two different
graphs Gi, Gj are adjacent. Moreover, let Ci = {Ci

0, . . . , C
i
k−1} be any solution for the instance (Gi, k). For each

` = 0, . . . , k − 1 we add to C a clique G∗
[⋃t−1

i=0 C
i
`

]
. Clearly all the edges mentioned in (i) and (iii) are covered.

Consider any two vertices vix ∈ Vi and vjy ∈ Vj for i < j. Let r be the greatest integer such that (j − i) is divisible
by 2r. Note that 0 ≤ r < ht and z = b j

2r c − b
i
2r c ≡ 1 (mod 2) since otherwise (j − i) would be divisible by 2r+1.

Consequently, there exists 0 ≤ b < n satisfying the congruence bz ≡ y − x (mod n), since the greatest common

6

divisor of z and n is equal to one (recall that n is a power of 2). Therefore, when we set a = y − bb j
2r c we obtain

a+ b
⌊ i

2r
⌋
≡ b(

⌊ i
2r
⌋
−
⌊ j

2r
⌋
) + y ≡ y − bz ≡ x (mod n)

a+ b
⌊ j

2r
⌋
≡ y (mod n)

and both vix, v
j
y belong to the clique of C containing the vertex w(a, b, r).

Now let us assume that (G∗, k∗) is a YES-instance and let C be a set of at most k∗ cliques in G∗ that cover every
edge in G∗. We define C′ ⊆ C as the set of these cliques in C which contain at least two vertices from some set Vi.
Since W is an independent set in G∗, edges incident to two different vertices in W need to be covered by two different
cliques in C. Moreover, no clique in C′ contains a vertex from W , because each vertex in W is incident to exactly one
vertex in each Vi. Therefore, |C′| ≤ |C| − |W | ≤ k and a set Ci = {X ∩ Vi : X ∈ C′} for i = 0, . . . , t − 1 is a
solution for (Gi, k), as no clique in C \ C′ covers an edge between two vertices in Vi for any i = 0, . . . , t− 1. Hence
each instance (Gi, k) is a YES-instance.

As a consequence, by Theorem 2.8 we obtain the following result.

Corollary 3.2. There is no polynomial kernel for the EDGE CLIQUE COVER problem parameterized by k unless the
AND-conjecture fails.

3.2 Cross-composition
In this section we show cross-composition to EDGE CLIQUE COVER, which we obtain by extending the AND-cross-
composition gadgets from the previous section.

COMPRESSION CLIQUE COVER
Input: An undirected graph G, an integer k and a set C of k + 1 cliques in G covering all edges of G.
Task: Does there exist a set of k subgraphs of G, such that each subgraph is a clique and each edge of G is contained
in at least one of the subgraphs?

Lemma 3.3. COMPRESSION CLIQUE COVER is NP-complete with respect to Karp’s reductions.

Proof. Clearly COMPRESSION CLIQUE COVER is in NP.
To prove that COMPRESSION CLIQUE COVER is NP-hard we show a reduction from 3-COLOURING of 4-regular

planar graphs, which is NP-hard by [28]. Let a 4-regular planar graph G = (V,E) be an instance of 3-COLOURING.
By Brooks theorem we know that G is 4-colourable (since by planarity, G has no connected component isomorphic
to K5) and we may find 4-colouring of G in polynomial time [78]. Let Ḡ = (V, Ē) be the complement of G, that is
an edge e is in Ē iff e does not belong to E. To construct the graph G′ as the set of vertices we take two copies of
V , namely V1 = {v1 : v ∈ V }, V2 = {v2 : v ∈ V }. For each edge uv ∈ Ē we add to G′ four vertices wp,q

uv for
1 ≤ p, q ≤ 2 and edges wp,q

uv up, wp,q
uv vq , upvq . By W we denote the set of all vertices wp,q

uv in G′. Finally, for each
v ∈ V we add to G′ an edge v1v2 and set k = |W |+ 3 = 4|Ē|+ 3.

In order to make (G′, k) a proper instance of COMPRESSION CLIQUE COVER we need also to construct a set C
of k + 1 cliques covering all edges of G′. Observe that to cover edges incident to vertices of W we need at least |W |
cliques sinceW is an independent set inG′. Moreover, for eachw ∈W the setNG′ [w] is a clique inG′; hence w.l.o.g.
any set of cliques covering all edges of G′ contains |W | cliques of the form NG′ [w] for w ∈W and those |W | cliques
cover all the edges of G′ except for E′ = {v1v2 : v ∈ V }. Note that to cover two different edges u1u2, v1v2 ∈ E′
we need u1 and v2 to be adjacent in G′, that is, non-adjacent in G. Hence covering E′ with l cliques is equivalent to
colouringG in l colours. SinceG is 4-colourable in an efficient way, we can construct a set C of k+1 cliques covering
G′ obtaining an instance of COMPRESSION CLIQUE COVER, which is a YES-instance iff G is 3-colourable.

Now the goal is to adjust the construction from the proof of Theorem 3.1 in order to obtain a classical cross-
composition of COMPRESSION CLIQUE COVER into EDGE CLIQUE COVER. Observe that we cannot easily relax the
assumption that the clique cover of size k + 1 is given in the input to just promising its existence, as the composition

7

algorithm needs to be able to distinguish malformed instances from well-formed in the first place, which would not be
the case unless P = NP . Moreover, the COMPRESSION CLIQUE COVER problem is trivially NP-hard with respect
to Turing reductions; however, in order to make the composition work we need NP-completeness in Karp’s sense.

Theorem 3.4. COMPRESSION CLIQUE COVER cross-composes to EDGE CLIQUE COVER parameterized by k.

Proof. We define the polynomial equivalence relation R in exactly the same way as in the proof of Theorem 3.1, that
is we group instances according to their number of vertices and the value of k. Thus in the rest of the proof we assume
we are given a sequence (Gi, k,Ci)

t−1
i=0 of COMPRESSION CLIQUE COVER instances that are in the same equivalence

class of R. As in the proof of Theorem 3.1 we let n be the number of vertices in each of the instances and we assume
n = 2hn and t = 2ht .

Before we proceed to the proof let us give some intuition on what follows. We would like to use the construction
from Theorem 3.1 and extend it by adding exactly ht gadgets. We show that any solution w.l.o.g. behaves in only one
of two possible ways in every gadget. Intuitively, each choice for the j-th gadget relaxes the constraint of using only
k cliques for half of the instances. That is, choosing behaviour b, for b = 0, 1, allows using k + 1 cliques, which are
always sufficient by solution Ci given as a part of the input, for all instances with the j-th bit of the instance number
equal to b. Hence there is exactly one instance which is not relaxed by any of the ht gadgets, so intuitively the gadgets
may be viewed as an instance selector from t instances.

Construction We create the instance of clique cover (G∗, k∗) as in the proof of Theorem 3.1. To obtain an instance
(G′, k′) we set G′ as G∗ and for each j = 1, . . . , ht we add to G′ a gadget Dj containing exactly 6 vertices V (Dj) =

{dLj,1, dLj,2, dLj,3, dRj,1, dRj,2, dRj,3} and 12 edges
(
V (Dj)

2

)
\ {dLj,rdRj,r : 1 ≤ r ≤ 3}. In other words, Dj is a clique with

a perfect matching removed (see Fig. 3.2). Let V L
j be the union of all sets Vi = {via : 0 ≤ a < n} (recall that

Vi = V (Gi) is the set of vertices of the i-th instance) such that the j-th bit of the number i written in binary is equal
to zero, whereas similarly V R

j is the set of vertices of all instances having the j-th bit of their number equal to one.
We make each vertex of Lj = {dLj,r : 1 ≤ r ≤ 3} adjacent to each vertex of V L

j and we make each vertex of
Rj = {dLj,r : 1 ≤ r ≤ 3} adjacent to each vertex of V R

j in G′. Finally, in order to allow easy coverage of the edges
between V (Dj) and V L

j ∪ V R
j , for each 0 ≤ a < n, 1 ≤ r ≤ 3, and Z ∈ {L,R} we add to G′ a vertex s(a, r, Z)

adjacent to each vertex in {via ∈ V Z
j : 0 ≤ i < t} ∪ {dZj,r}. Let S be the set of all added vertices s(a, r, Z). As the

parameter we set k′ = k∗ + |S|+ 4ht = n2ht + 6nht + 4ht + k.

V L
j V R

j

dLj,1

dLj,2

dRj,1

dRj,2

dLj,3 dRj,3

Figure 1: The gadget Dj set to relax the left part. Different styles of picturing the edges (thick, dotted, dashed or
grayed) indicate, to which of the four cliques constructed for Dj the edge belongs to.

Analysis We split all the edges of G∗ into the following groups:

(i) edges incident to vertices of W ∪ S (recall that W is a set defined as in the proof of Theorem 3.1),

(ii) edges between two different graphs Gi,Gj ,

8

(iii) edges in each graph Gi,

(iv) edges within each gadget Dj .

First let us assume that for some 0 ≤ i0 < t the instance (Gi, k,Ci) of COMPRESSION CLIQUE COVER is a YES-
instance. We construct a set of cliques C. For each vertex x ∈ W ∪ S we add to C a clique NG′ [x]. Hence by using
|W |+|S| = n2ht+6nht cliques we cover all edges of (i) and (ii) (by the same analysis as in the proof of Theorem 3.1).
Let us assume that each set Ci is of the form Ci = {Ci

0, . . . , C
i
k} and also let us somewhat abuse the notation and

assume that the k cliques Ci0
0 , . . . , C

i0
k−1 form a solution for the YES-instances (Gi0 , k). Let (b0b1 . . . bht

)2 be the
binary representation of i0. Set Zj = L,Z ′j = R iff bj equals one and Zj = R,Z ′j = L otherwise, for j = 0, . . . , ht−

1. For each j = 0, . . . , ht − 1 we add to C exactly 4 cliques
{
d
Zj

j,1, d
Z′

j

j,2, d
Z′

j

j,3

}
,
{
d
Zj

j,2, d
Z′

j

j,1, d
Z′

j

j,3

}
,
{
d
Zj

j,3, d
Z′

j

j,1, d
Z′

j

j,2

}
,{

d
Zj

j,1, d
Zj

j,2, d
Zj

j,3

}
∪
(⋃t−1

i=0

(
Ci

k ∩ V
Zj

j

))
(see Fig. 3.2). It is easy to verify that the 4 added sets are indeed cliques in

G′ and that they cover edges of (iv). Note that the last of the four cliques contains the last clique of the solution Ci

for each instance i that has j-th bit equal to bj . Consequently, some of the edges of (iii) are covered. We add exactly
k more cliques to C, that is for each ` = 0, . . . , k − 1 we add to C a clique

⋃t−1
i=0 C

i
`. Since for each i = 0, . . . , t − 1

such that i 6= i0 there is a clique in C containing Ci
k and the first k cliques of Ci0 form a cover of Gi, we infer that all

edges of (iii) are covered and, therefore, (G′, k′) is a YES-instances of EDGE CLIQUE COVER.
In the other direction, assume that (G′, k′) is a YES-instance of EDGE CLIQUE COVER and let C be any solution

containing k′ cliques. Since W ∪ S is an independent set in G′ and each vertex in W ∪ S is not isolated, we infer that
there are at least |W |+ |S| cliques in C containing a vertex of W ∪S. Let C′ ⊆ C be the set of at most k′− |W | − |S|
cliques of C which have empty intersection with W ∪ S. Each vertex in W ∪ S is adjacent to exactly one vertex in
each Vi for 0 ≤ i < t and at most one vertex in V (Dj) for 0 ≤ j < ht, therefore cliques of C′ cover all edges of (iii)
and (iv). Moreover, |C′| ≤ k′ − |W | − |S| = 4ht + k. We use the following lemma which we prove afterwards.

Lemma 3.5. One can modify the set C′ maintaining coverage of edges of (iii) and (iv) and not incrementing its size,
while at the same time for each j = 0, . . . , ht − 1 obeying the following conditions:

(a) C′ contains exactly 3 cliques containing both a vertex of Lj and Rj (recall that Lj ∪Rj = V (Dj)),

(b) C′ contains exactly 1 clique C having exactly one of the two intersections C ∩ Lj ,C ∩Rj non-empty.

Before we prove Lemma 3.5 let us finish the proof of Theorem 3.4 assuming that Lemma 3.5 holds. Since no
two vertices from different gadgets Dj1 , Dj2 are adjacent, we infer that C′ contains exactly 4ht cliques containing a
vertex from some Dj for 0 ≤ j < ht. For each j = 0, . . . , ht − 1, let C be the clique from (b) of Lemma 3.5. If
C ∩Lj 6= ∅, we take Ij ⊆ {0, . . . , t− 1} to be the set of instance numbers that have the j-th bit equal to one, whereas
if C ∩Rj 6= ∅, then as Ij we take all the instance numbers that have the j-th bit equal to zero. Observe that

⋂ht−1
j=0 Ij

contains exactly one element and denote it by i0. By Lemma 3.5 every clique from C′, that contains a vertex of V (Dj)
for any j = 0, . . . , ht − 1, has to be disjoint with Vi0 . Indeed, cliques containing vertices from V (Dj) satisfy (a) or
(b) from Lemma 3.5; a clique from (a) contains both vertices of Lj and Rj and no vertex of Vi0 is incident to both Lj

and Rj , while a clique from (b) contains vertices of the one of the sets Lj , Rj which is not connected to anything in
Vi0 . Therefore, edges of Gi0 are covered by |C′| − 4ht ≤ k cliques, being intersections of the remaining cliques in C′

with Vi0 . Consequently, (Gi0 , k) is a YES-instance, which finishes the proof of Theorem 3.4.

Proof of Lemma 3.5. Let j be any index for which the lemma does not hold, i.e., the cliques containing vertices from
V (Dj) do not behave as in the lemma statement. We refine the set C′ repairing its behaviour on gadget Dj and not
spoiling the behaviour on other gadgets. By applying this reasoning to all the gadgets that need repairing, we prove
the lemma.

Let us denote by Hj the set of cliques from C′ that contain a vertex from V (Dj), while let Ij ⊆ Hj be the set of
these cliques from Hj , which have nonempty intersection with both Lj andRj . The goal is to obtain a situation, when
|Hj | = 4 and |Ij | = 3 for every j. During refining the set C′ we will change only the set Hj . As there are no edges
between the gadgets, the sets Hj are always disjoint, so our repairs do not spoil the behaviour of C′ on other gadgets.

9

Let C ∈ Hj . Observe that |C ∩ (Lj ∪ Rj)| ≤ 3, since C contains at most one of the vertices DL
j,p, D

R
j,p for

p = 1, 2, 3. Therefore, each clique in Hj covers at most 3 out of 12 edges of Dj and, consequently, |Hj | ≥ 4.
Consider two cases.

First assume that Hj \ Ij 6= ∅, i.e., there exists a clique C0 ∈ C′ which has an element of Lj ∪Rj , but has exactly
one of the two intersections C0 ∩ Lj , C0 ∩ Rj non-empty. By symmetry assume that (C0 ∩ (Lj ∪ Rj)) ⊆ Lj . Note
that C0 ∪Lj also forms a clique, hence w.l.o.g. we may assume that Lj ⊆ C0. We know that |Ij | ≥ 3, since C′ covers
all the 6 edges of E(Lj , Rj), whereas each clique in C′ covers at most two of them. Note that each clique from Ij is
entirely contained in Dj , since there is no vertex outside of Dj which is adjacent to both a vertex of Lj and a vertex
of Rj . Therefore, we may substitute the whole Ij with just 3 cliques:

C1 := {dLj,1, dRj,2, dRj,3} ,
C2 := {dLj,2, dRj,1, dRj,3} ,
C3 := {dLj,3, dRj,1, dRj,2} ,

maintaining the property that C′ covers all the edges. Observe that cliques C0, C1, C2, C3 already cover all the edges
in Dj . Finally, after this modification for any C ∈ C′ such that C 6∈ {C0, C1, C2, C3} we set C := C \ (Lj ∪Rj) and
satisfy both constraints (a) and (b) of the lemma for this particular j.

Now assume that for Ij = Hj . Similarly as in the previous case, for each clique C ∈ Ij we have C ⊆ (Lj ∪Rj).
As |Ij | = |Hj | ≥ 4, we may substitute the whole Ij = Hj with just 4 cliques:

C0 := {dLj,1, dLj,2, dLj,3} ,
C1 := {dLj,1, dRj,2, dRj,3} ,
C2 := {dLj,2, dRj,1, dRj,3} ,
C3 := {dLj,3, dRj,1, dRj,2},

out of which exactly one is not contained in the new Ij . As these cliques cover all the edges of Dj and every removed
clique was entirely contained in Dj , all the edges of G′ are still covered. In this way we make the modified set C′

satisfy both constraints (a) and (b) for the considered value of j.

Corollary 3.6. There is no polynomial kernel for the EDGE CLIQUE COVER problem parameterized by k unless
NP ⊆ coNP/poly.

4 Directed Multiway Cut
In the DIRECTED MULTIWAY CUT problem we want to disconnect every pair of terminals in a directed graph. The
problem was previously studied in the following two versions.

DIRECTED EDGE MULTIWAY CUT
Input: A directed graph G = (V,A), a set of terminals T ⊆ V and an integer p.
Task: Does there exist a set S of at most p arcs in A, such that in G \ S there is no path between any pair of terminals
in T ?

DIRECTED VERTEX MULTIWAY CUT
Input: A directed graph G = (V,A), a set of terminals T ⊆ V , a set of forbidden vertices V∞ ⊇ T and an integer p.
Task: Does there exist a set S of at most p vertices in V \ V∞, such that in G \ S there is no path between any pair
of terminals in T ?

As a side note, observe that by replacing each vertex of V∞ \ T with a p+ 1-clique (i.e., a graph on p+ 1 vertices
pairwise connected by arcs in both directions), one can reduce the above DIRECTED VERTEX MULTIWAY CUT version
to a version, where the solution is allowed to remove any nonterminal vertex. Moreover, it is well known, that given
an instance I of one of the two problems above, one can in polynomial time create an equivalent instance I ′ of the

10

other problem, where both the number of terminals and the value of p remain unchanged (e.g. see [21]). Therefore we
show cross-composition to DIRECTED VERTEX MULTIWAY CUT and as a corollary we prove that DIRECTED EDGE
MULTIWAY CUT also does not admit a polynomial kernel. The starting point is the following restricted variant of
DIRECTED VERTEX MULTIWAY CUT, which we prove to be NP-complete with respect to Karp reductions.

PROMISED DIRECTED VERTEX MULTIWAY CUT
Input: A directed graph G = (V,A), two terminals T = {s1, s2}, a set of forbidden vertices V∞ ⊇ T and an integer
p. Moreover, after removing any set of at most p/2 vertices of V \ V∞, both an s1s2-path and an s2s1-path remain.
Task: Does there exist a set S of at most p vertices in V \V∞, such that in G \S there is no s1s2-path nor s2s1-path?

The assumption that any set of size at most p/2 can not hit all the paths from s1 to s2 (and similarly from s2 to s1)
will help us in constructing cross-composition.

Lemma 4.1. PROMISED DIRECTED VERTEX MULTIWAY CUT is NP-complete with respect to Karp’s reductions.

Proof. Note that in order to show that the problem is in NP we need to argue that we can verify the condition concern-
ing removal of p/2 vertices. However, this can be checked by a polynomial-time algorithm computing min s1–s2 cut
and min s2–s1 cut. If any of those cuts is of size at most p/2, then the instance is not a proper instance of PROMISED
DIRECTED VERTEX MULTIWAY CUT.

To prove that the problem is NP-hard we use the NP-completeness result of Garg et al. [40] for DIRECTED VERTEX
MULTIWAY CUT with two terminals. Consider an instance I = (G,T = {s1, s2}, V∞, p) of DIRECTED VERTEX
MULTIWAY CUT. As the graph G′ we take G with z = p + 1 vertices {u1, . . . , uz} added. In G′ for i = 1, . . . , z
we add the following four arcs {(s1, ui), (ui, s1), (ui, s2), (s2, ui)}. Let I ′ = (G′, T, V∞, p + z) be an instance of
PROMISED DIRECTED VERTEX MULTIWAY CUT. Since after removal of less than z vertices in G′ at least one vertex
ui remains, we infer that I ′ is indeed a PROMISED DIRECTED VERTEX MULTIWAY CUT instance. To prove that
I is a YES-instance iff I ′ is a YES-instance it is enough to observe that any solution in I ′ contains all the vertices
{u1, . . . , uz}.

Equipped with the PROMISED DIRECTED VERTEX MULTIWAY CUT problem definition, we are ready to show a
cross-composition into DIRECTED VERTEX MULTIWAY CUT parameterized by p.

Theorem 4.2. PROMISED DIRECTED VERTEX MULTIWAY CUT cross-composes into DIRECTED VERTEX MULTI-
WAY CUT with two terminals, parameterized by the size of the cutset p.

Proof. For the equivalence relation R, we take a relation that groups the input instances according to the value of
p. Formally (Gi, Ti, V

∞
i , pi) and (Gj , Tj , V

∞
j , pj) are in the same equivalence class in R iff pi = pj . Therefore,

we assume that we are given a sequence Ii = (Gi, Ti = {si1, si2}, V∞i , p)ti=1 of PROMISED DIRECTED VERTEX
MULTIWAY CUT instances that are in the same equivalence class of R.

As the graph G′ we take disjoint union of all the graphs Gi. Moreover for each i = 1, . . . , t− 1, in G′ we identify
the vertices si2 and si+1

1 . Let I ′ = (G′, {s11, st2},
⋃t

i=1 V
∞
i , p) be an instance of DIRECTED VERTEX MULTIWAY

CUT. Note that
⋃t

i=1 V
∞
i contains both terminals from all input instances.

Let us assume that there exists 1 ≤ i0 ≤ t such that Ii0 is a YES-instance of PROMISED DIRECTED VERTEX
MULTIWAY CUT, and let S ⊆ V (Gi) \V∞i be any solution for Ii0 . Since any s11s

t
2-path and any st2s

1
1-path in G′ goes

through both si01 and si02 , we observe that G′ \ S is a solution for I ′ and, consequently, I ′ is a YES-instance.
In the other direction, let us assume that I ′ is a YES-instance. Let S ⊆ V (G) \

⋃t
i=1 V

∞
i by any solution for I ′.

Observe that if the set S contains at most p/2 vertices of V (Gi) \ V∞i for some 1 ≤ i ≤ t, then S \ V (Gi) is also a
solution for I ′, since after removing at most p/2 vertices of V (Gi) there is still a path both from si1 to si2 and from si2
to si1. Because |S| ≤ p, we infer that w.l.o.g. S contains only vertices of a single set V (Gi0) for some 1 ≤ i0 ≤ t.
Therefore, Ii0 is a YES-instance.

The equivalence of DIRECTED VERTEX MULTIWAY CUT and DIRECTED EDGE MULTIWAY CUT together with
Theorem 2.3 give us the following corollary.

Corollary 4.3. Both DIRECTED VERTEX MULTIWAY CUT and DIRECTED EDGE MULTIWAY CUT do not admit a
polynomial kernel when parameterized by p unless NP ⊆ coNP/poly, even in the case of two terminals.

11

5 Multicut
In this section we prove that both the edge and vertex versions of the MULTICUT problem do not admit a polynomial
kernel, when parameterized by the size of the cutset.

EDGE (VERTEX) MULTICUT
Input: An undirected graph G = (V,E), a set of pairs of terminals T = {(s1, t1), . . . , (sk, tk)} and an integer p.
Task: Does there exists a set S ⊆ E (S ⊆ V) such that no connected component of G \ S contains both vertices si
and ti, for some 1 ≤ i ≤ k?

It is known that the vertex version of the MULTICUT problem is at least as hard as the edge version.

Lemma 5.1 (folklore). There is a polynomial time algorithm, which given an instance I = (G,T, p) of EDGE MUL-
TICUT produces an instance I ′ = (G′,T′, p) of VERTEX MULTICUT, such that I is a YES-instance iff I ′ is a YES-
instance.

In order to show a cross-composition into the MULTICUT problem parameterized by p we consider the following
restricted variant of the MULTIWAY CUT problem with three terminals.

MULTIWAY CUT
Input: An undirected graph G = (V,E), a set of three terminals T = {s1, s2, s3} ⊆ V and an integer p.
Task: Does there exist a set S of at most p edges inE, such that inG\S there is no path between any pair of terminals
in T ?

PROMISED MULTIWAY CUT
Input: An undirected graph G = (V,E), a set of three terminals T = {s1, s2, s3} ⊆ V and an integer p. An instance
satisfies: (i) deg(s1) = deg(s2) = deg(s3) = d > 0, (ii) for each j = 1, 2, 3 and any non-empty set X ⊆ V \ T we
have |δ(X ∪ {sj})| > d, and (iii) d ≤ p < 2d.
Task: Does there exist a set S of at most p edges inE, such that inG\S there is no path between any pair of terminals
in T ?

Condition (i) ensures that degrees of all the terminals are equal, whereas condition (ii) guarantees that the set of
edges incident to a terminal sj is the only minimum size sj–(T \ {sj}) cut. Having both (i) and (ii), condition (iii)
verifies whether an instance is not a trivially YES- or NO-instance, because by (i) and (ii) there is no solution of size
less than d and removing all the edges incident to two terminals always gives a solution of size at most 2d.

Lemma 5.2. PROMISED MULTIWAY CUT is NP-complete with respect to Karp’s reductions.

Proof. To prove the lemma we may observe that the first NP-hardness reduction to the MULTIWAY CUT problem by
Dahlhaus et al. [27] in fact yields a PROMISED MULTIWAY CUT instance. For sake of completeness, we present here
how to reduce an arbitrary instance of the MULTIWAY CUT problem with three terminals to a PROMISED MULTIWAY
CUT instance.

Let I = (G,T = {s1, s2, s3}, p) be an instance of MULTIWAY CUT. As observed by Marx [64], we can assume
that for each terminal si the cut δ(si) is the only minimum cardinality si–(T \ {si}) cut, since otherwise w.l.o.g.
we may contract some edge incident to si obtaining a smaller equivalent instance. Therefore condition (ii) would be
satisfied if only degrees of terminals were equal. Let G1, G2, G3 be three copies of the graph G, where terminals in
the i-th copy are denoted by Ti = {si1, si2, si3}. Construct a graph G′ as a disjoint union of G1, G2 and G3. Next in G′

we identify vertices {s11, s22, s33} into a single vertex s′1, similarly identify vertices {s12, s23, s31} into a single vertex s′2,
and finally identify vertices {s13, s21, s31} into a single vertex s′3. Let I ′ = (G′, T ′ = {s′1, s′2, s′3}, p′ = 3p}. Observe
that due to the performed identification I ′ is a YES-instance of MULTIWAY CUT iff I is a YES-instance of MULTIWAY
CUT. Therefore, to finish the reduction it suffices to argue that I ′ satisfies (i), (ii) and (iii).

Let d =
∑3

i=1 degG(si). Note that in G′ for each i = 1, 2, 3 we have degG′(s′i) = d, hence condition (i) is
satisfied. Observe that if there exists 1 ≤ j ≤ 3 and s′j–(T ′ \ {s′j}) cut in G′ of size at most d, which is different
from δ(s′j), then there exists 1 ≤ r ≤ 3 and sr–(T \ {sr}) cut in G of size at most degG(sr) which is different
from δG(sr), a contradiction. Hence condition (ii) is satisfied. Unfortunately, it is possible that p′ ≤ d or p′ ≥ 2d.

12

However, if p′ ≥ 2d then clearly I ′ is a YES-instance (we can remove edges incident to two terminals), and hence I
is a YES-instance. On the other hand if p′ < d, then I ′ (and consequently I) is a NO-instance, since any s′1–{s′2, s′3}
cut has size at least d. Therefore, if condition (iii) is not satisfied, then in polynomial time we can compute the answer
for the instance I , and as the instance I ′ we set a trivial YES- or NO-instance.

Theorem 5.3. PROMISED MULTIWAY CUT cross-composes into EDGE MULTICUT parameterized the size of the
cutset p.

Proof. For the equivalence relation R, we take a relation where all well-formed instances are grouped according to
the values of p and d. Formally, (Gi, Ti, pi) and (Gj , Tj , pj) are in the same equivalence class in R iff pi = pj
and the degree of each terminal in Gi equals the degree of each terminal in Gj . Therefore, we assume that we are
given a sequence Ii = (Gi, Ti = {si1, si2, si3}, p)t−1i=0 of PROMISED MULTIWAY CUT instances that are in the same
equivalence class of R (note that we number instances starting from 0). Let d be the degree of each terminal in each
of the instances. W.l.o.g. we assume that t ≥ 5 is an odd integer, since we may copy some instances if needed, and
let h = (t− 1)/2.

Construction Let G′ be the disjoint union of all graphs Gi for i = 0, . . . , t− 1. For each i = 0, . . . , t− 1 we add d
parallel edges between vertices si2 and s(i+1) mod t

1 . To the set T we add exactly t pairs, that is for each i = 0, . . . , t−1

we add to T the pair (s′i = si3, t
′
i = s

(i+h) mod t
3). We set p′ = p + d and I ′ = (G′,T, p′) is the constructed EDGE

MULTICUT instance. Note that in order to avoid using parallel edges it is enough to subdivide them.

G0

s01s02

s03

G1 s11

s12

s13

G2

s21

s22

s23
G3

s31

s32

s33

G4

s41

s42 s43

Figure 2: Construction of the graph G′ for t = 5 and d = 3. Dashed edges represent pairs of vertices in T.

Analysis First assume that there exists 0 ≤ i0 < t such that Ii0 is a YES-instance of PROMISED MULTIWAY CUT

and let S ⊆ E(Gi0) be any solution for Ii0 . Let S1 be the set of edges inG′ between s(i0+h) mod t
2 and s(i0+h+1) mod t

1

(see Fig. 2). We prove that S′ = S ∪ S1 is a solution for I ′. Observe that |S′| = |S| + |S1| ≤ p + d. Consider any
pair (s′, t′) ∈ T such that s′, t′ 6= si03 . Note that inG′\S′ there is neither an si01 s

i0
2 -path, nor an s(i0+h) mod t

2 s
(i0+h+1) mod t
1 -

path. Therefore, there is no s′t′-path G′ \ S′. Moreover, in G′ \ S′ there is neither an si03 s
i0
1 -path, nor an si03 s

i0
2 -path.

Consequently, for each (s′, t′) ∈ T, where s′ = si03 or t′ = si03 , there is no s′t′-path in G′ \S′, so I ′ is a YES-instance
of EDGE MULTICUT.

13

Now assume that I ′ is a YES-instance and our goal is to show that for some 0 ≤ i < t the instance Ii is a YES-
instance. Let Ei = E(Gi) and let E′i be the set of edges between si2 and s(i+1) mod t

1 in G′. Let S′ ⊆ E(G′) be any
solution for I ′. Note that if for some E′i, where 0 ≤ i < t, the set S′ contains less than d edges from the set E′i,
then S′ \E′i is also a solution for I ′. By conditions (i) and (ii) of the PROMISED MULTIWAY CUT problem definition
we have the following: if for some 0 ≤ i < t the set S′ contains less than d edges from the set Ei, then S′ \Ei is also
a solution for I ′. Indeed, if S′ contains less than d edges from Ei, then in the graph G′ \ Ei all the vertices si1, si2, si3
are in the same connected component, since otherwise for some a ∈ Ti there would be an a–(Ti \ {a}) cut in Gi of
size smaller than d. Let us recall that |S′| ≤ p′ = p+ d < 3d. Therefore, w.l.o.g. we may assume that the set S′ has
non-empty intersection with at most two sets from the set E = {E0, . . . , Et−1, E

′
0, . . . , E

′
i−1}. Moreover we assume

that if S′ has non-empty intersection with some set from E, then this intersection is of size at least d.
Case 1. Consider the case, when S′ has an empty intersection with each of the setsEi for 0 ≤ i < t. Since |E′i| = d

and p′ ≥ 2d, w.l.o.g. S′ has a non-empty intersection with exactly two sets E′i0 , E′i1 for i0 6= i1. Since t is odd, in the
graph G′ \S′ either there is an si03 s

(i0−h) (mod t)
3 -path or an s(i0+1) mod t

3 s
(i0+1+h) mod t
3 -path. Hence a contradiction.

Case 2. Next assume that S′ has a non-empty intersection with some set Ei0 for 0 ≤ i0 < t. By symmetry w.l.o.g.
we may assume that i0 = 0. Since the set S′ hits all the s13s

h+1
3 -paths as well as all the sh3s

t−1
3 -paths in the graph G′,

we infer that S′ has non-empty intersection with exactly one of the sets Eh, E′h, Eh+1.
Case 2.1. In this case we assume that S′ has a non-empty intersection with E′h. Since S′ hits all s03s

h
3 -paths

in G′, in G0 \ S′ there is no s03s
0
2-path. Similarly, since S′ hits all s03s

h+1
3 -paths in G′, in G0 \ S′ there is no s03s

0
1-

path. Moreover, since S′ hits all st−13 sh−13 -paths in G′, in G0 \ S′ there is no s01s
0
2-path. Since |S′| ≤ p′ = p + d

and |S′ ∩ E′h| = d, we infer that |S′ ∩ E0| ≤ p, and, consequently, I0 is a YES-instance.
Case 2.2. Since S′ has a non-empty intersection with one of the sets Eh, Eh+1, by symmetry we assume that S′ ∩

Eh 6= ∅. Recall that t ≥ 5, and hence h > 1. Since S′ hits all s13s
h+1
3 -paths and all s13s

t+1−h
3 -paths in G′, we

infer that in G0 \ S′ there is no s01s
0
2-path and in Gh \ S′ there is no sh1s

h
2 -path. Moreover, S′ hits all s03s

h+1
3 -

paths and all sh3s
t−1
3 -paths in G′; therefore, in G0 \ S′ there is no s03s

0
1-path and in Gh \ S′ there is no sh3s

h
2 -path.

Finally since S′ hits all s03s
h
3 -paths in G′, either in G0 \ S′ there is no s03s

0
2-path, or in Gh \ S′ there is no sh3s

h
1 -path.

Since |S′| ≤ p+ d, |S′ ∩ E0| ≥ d and |S′ ∩ Eh| ≥ d, we infer that |S′ ∩ E0| ≤ p and |S′ ∩ Eh| ≤ p. Consequently,
either I0 or Ih is a YES-instance, which finishes the proof of Theorem 5.3.

6 Alternative cross-composition of Multicut
In this section we present an alternative proof of cross-composition to EDGE MULTICUT parameterized by the size
of the cutset. Despite the fact that the cross-composition presented in this section is more involved comparing to the
one presented in Section 5, we find the ideas used here more general, which might be helpful in designing future
cross-compositions for other problems.

Theorem 6.1. PROMISED MULTIWAY CUT cross-composes into EDGE MULTICUT parameterized the size of the
cutset p.

Proof. We start by defining a relation R on PROMISED MULTIWAY CUT instances, which groups instances according
to the size of the cutset p. Formally (G,T, p) is in relation R with (G′, T ′, p′) iff p = p′. Clearly, R is a polynomial
equivalence relation. Hence we assume that we are given t ≥ 1 instances Ii = (Gi, Ti = {si1, si2, si3}, p), for 1 ≤ i ≤
t, of the PROMISED MULTIWAY CUT problem (note that we number instances starting from 1).

Construction. Let M = p + 1 and M∞ = 6M + p + 1. In our construction each edge of EDGE MULTICUT
instance will have one of three possible weights {1,M,M∞}. We can implement those weights by putting 1, M
or M∞ parallel edges and subdividing them to obtain a simple graph (note that both M and M∞ are polynomially
bounded in p). Initially as the graph G′ we take a disjoint union of two cycles C1, C2, each containing exactly 3(t+1)
vertices. To simplify presentation, each vertex on each of the two cycles has two different names, that is Cj =

(xj0, x
j
1, . . . , x

j
t , y

j
1, y

j
2, . . . , y

j
t , y

j
0, z

j
0, z

j
1, . . . , z

j
t , x

j
0) for j = 1, 2, and at the same time Cj = (cj0, . . . , c

j
3t+2, c

j
0),

where cj0 = xj0 (see Fig. 3); note the position of yj0 between yjt and zj0 in favor of a uniform adjacency to the instances
later. We set weights of each edge on the cycle asM , except for three edges zjtx

j
0, xjty

j
1, yj0z

j
0, which have weightM∞.

14

For each i = 1, . . . , t we add to G′ the graph Gi (with edges of weight 1), and connected si1 with y1i by an edge of
weight M∞, and also add an edge of weight M∞ between si2 and x2i (see Fig. 3). To the set T we add the following
pairs:

1. for each j = 1, 2 and i = 0, . . . , 3t+ 2, add to T the pair (cji , c
j
(i+t+1) mod 3t+3),

2. for each i = 1, . . . , t add to T every pair of vertices from the set {si3, x1i , y2i }.

Finally as the target cutset size we set p′ = 6M + p, which is polynomially bounded in p. Our constructed instance of
EDGE MULTICUT is I ′ = (G′,T′, p′).

c10 = x1
0

c11 = x1
1

x1
2

x1
3

x1
4 x1

5

y1
1

y1
2

y1
3

y1
4

y1
5

y1
0

z10
z11z12

z13

z14

c117 = z15

∞

∞

∞

X1

Y1

Z1

c20 = x2
0

c21 = x2
1

x2
2

x2
3

x2
4 x2

5

y2
1

y2
2

y2
3

y2
4

y2
5

y2
0

z20
z21z22

z23

z24

c217 = z25

∞

∞

∞

X2

Y2

Z2

∞
∞

s31 s32

s33

G3

Figure 3: Construction of the graph G′ for t = 5. Dashed edges represent some of the pairs in the set T, in particular
the pair (x13, y

2
3) ∈ T, but it is not depicted to simplify the figure. Gray-marked edges belong to the set S′ constructed

in the proof of Theorem 6.1.

Analysis. First let us assume, that there is an index 1 ≤ i0 ≤ t, such that Ii0 is a YES-instance, and let S by any
solution for Ii0 . We show that I ′ is also a YES-instance. Let S′ := S and add to S′ the 6 edges cji0−1+r(t+1)c

j
i0+r(t+1)

for j = 1, 2 and r = 0, 1, 2 (see gray-marked edges in Fig. 3). Note that each of those 6 edges has weight exactly M .
We claim that S′ is a solution for I ′. First, observe that the total weight of edges in S′ is at most 6M + p = p′. Let us
analyze how connected components in G′ \ S′ look like. For 1 ≤ j ≤ 2, let Xj , Yj , Zj be the connected components
of G′ \S′ (not necessarily pairwise different), containing the edges zjtx

j
0, xjty

j
1, and yj0z

j
0 respectively. Note that those

are the edges of weight M∞ and they do not belong to S′. Next consider each graph Gi, for i = 1, . . . , t, and see
which parts of the cycles C1, C2 it connects. For 1 ≤ i < i0, the graph Gi connects Y1 with X2. For i0 < i ≤ t,
the graph Gi connects Z1 with Y2. Finally the graph Gi0 \ S′ does not connect any connected components, since
in Gi0 \ S′ each of the three terminals of Ti is in a different connected component. Therefore we know that for
each A ∈ {X1}, B ∈ {Y1, X2}, C ∈ {Z1, Y2}, D ∈ {Z2} the connected components A, B, C, D are pairwise
different. We analyze all the pairs in the set T and argue that the two elements of each pair are in different connected
components in G′ \ S′. Consider any j = 1, 2. Note that the connected components Xj , Yj , Zj are pairwise different,

15

and hence for i = 0, . . . , 3t+ 2 the vertex cji is in a different connected component that cj(i+t+1) mod 3t+3 in G′ \ S′.
Therefore it is enough to analyze pairs (si3, x

1
i), (si3, y

2
i), (x1i , y

2
i) ∈ T for i = 1, . . . , t.

1. For 1 ≤ i < i0, we have si3 ∈ Y1 = X2, while x1i ∈ X1 and y2i ∈ Y2 = Z1.

2. For i0 < i ≤ t, we have si3 ∈ Z1 = Y2, while x1i ∈ Y1 = X2 and y2i ∈ Z2.

3. For i = i0, the vertex si3 is in different connected component than all the vertices in the cycles C1, C2, since
in Gi0 \ S′ there are no si3s

i
1-paths, nor si3s

i
2-paths. At the same time x1i ∈ Y1 = X2 and y2i ∈ Y2 = Z1.

Consequently for each pair (s, t) ∈ T, vertices s and t are in different connected components of G′ \ S′, therefore I ′

is a YES-instance.
In the other direction, let us assume that I ′ is a YES-instance and let S′ be any solution for I ′. Observe that out of

each t + 1 consecutive edges on a cycle Cj , for j = 1, 2, the set S′ has to contain at least one edge, since otherwise
there would be a pair of vertices (cji , c

j
(i+1+1) mod 3t+3) ∈ T belonging to the same connected component of G′ \ S′.

However, |Cj | = 3(t + 1) and therefore the set S′ contains at least three edges of Cj . Moreover 7M > p′, hence S′

contains exactly three equidistant edges out of each cycle Cj , since otherwise there would be t+ 1 consecutive edges
not belonging to S′. Since M∞ > p′ there are exactly t layouts of three equidistant edges in each Cj which do not
contain any edge of weight M∞. Observe that because of the way we labeled vertices on each cycle, there exists an
index ij , such that xji and yji are in the same connected component ofG′\S′, namely 1 ≤ ij ≤ t, such that S′ contains
the edge xjij−1x

j
ij

.
We have to consider two cases, either i1 = i2 or i1 6= i2. Let S′′ ⊆ S′ be the subset of edges of S′ of weight 1.

Note that |S′′| ≤ p.
Case 1 (i1 6= i2). Since (si13 , x

1
i1

) ∈ T, and by the fact that x1i1 and y1i1 are in the same connected component
of G′ \ S′, there is no si13 s

i1
1 -path in Gi \ S′′. By properties (i), (ii), (iii) of PROMISED MULTIWAY CUT problem

definition, we infer |S′′ ∩ E(Gi1)| > p/2, since for d = degGi
(si11) we have |S′′ ∩ E(Gi1)| ≥ d and 2d > p.

Analogously, since (si23 , y
2
i2

) ∈ T, we have |S′′ ∩ E(Gi2)| > p/2, but then |S′′| > p, a contradiction.
Case 2 (i1 = i2). Let i0 = i1 = i2. By the definition of T, each pair of vertices of {si03 , x1i0 , y

2
i0
} belongs to

different connected component of G′ \ S′. Observe that si01 , y1i0 , x1i0 are in the same connected component of G′ \ S′,
since the edge si01 y

1
i0

is of weight M∞, and for this reason it does not belong to S′. Similarly si02 , x2i0 , y2i0 are in the
same connected component of G′ \ S′. Therefore there is no path between any pair of vertices of Ti0 in Gi0 \ S′′, and
since |S′′| ≤ p we infer that Ii0 is a YES-instance.

7 k-Way Cut
In this section we study the following graph separation problem.

k-WAY CUT
Input: An undirected connected graph G and integers k and s.
Task: Does there exist a set X of at most s edges in G such that G \X has at least k connected components?

The k-WAY CUT problem, parameterized by s, was proven to be fixed-parameter tractable by Kawarabayashi and
Thorup [55]. The problem is W [1]-hard when parameterized by k [32], as well as when we allow vertex deletions
instead of edge deletions, and parameterize by s [64].

Note that in the problem definition we assume that the input graph is connected and, therefore, for k > s + 1 the
input instances are trivial. However, if we are given an instance (G, k, s) where G has c > 1 connected components,
we can easily reduce it to the connected version: we add toG a complete graph on s+2 vertices (so that no two vertices
of the complete graph can be separated by a cut of size s), connect one vertex from each connected component of G
to all vertices of the complete graph, and decrease k by c − 1. Thus, by restricting ourselves to connected graphs G
we do not make the problem easier.

The main result of this section is that k-WAY CUT, parameterized by s, does not admit a polynomial kernel (unless
NP ⊆ coNP/poly). We show a cross-composition from the CLIQUE problem, well-known to be NP-complete.

16

CLIQUE
Input: An undirected graph G and an integer `.
Task: Does G contain a clique on ` vertices as a subgraph?

Theorem 7.1. CLIQUE cross-composes to k-WAY CUT parameterized by s.

Proof. We start by defining a relation R on CLIQUE input instances as follows: (G, `) is in relation R with (G′, `′)
if ` = `′, |V (G)| = |V (G′)| and |E(G)| = |E(G′)|. Clearly, R is a polynomial equivalence relation. Thus, in the
designed cross-composition, we may assume that we are given t instances (Gi, `) (1 ≤ i ≤ t) of the CLIQUE problem
and |V (Gi)| = n, |E(Gi)| = m for all 1 ≤ i ≤ t. Moreover, we assume that m ≥

(
`
2

)
and 1 < ` ≤ n, as otherwise

all input instances are trivial.
We first consider a weighted version of the k-WAY CUT problem where each edge may have a positive integer

weight and the cutset X needs to be of total weight at most s. The weights in our construction are polynomial in n
and m. At the end we show how to reduce the weighted version to the unweighted one.

We start by defining k = n− `+ 1, w1 = m, w2 = m
(
n
2

)
and s = w2(n− `) +w1

((
n
2

)
−
(
`
2

))
+m−

(
`
2

)
. Note

that s < w2(n− `+ 1) and s < w2(n− `) + w1(
(
n
2

)
−
(
`
2

)
+ 1).

For each graph Gi, 1 ≤ i ≤ t, we define a graph G′i as a complete graph on n vertices with vertex set V (Gi),
where the edge uv has weight w1 + 1 if uv ∈ E(Gi) and weight w1 otherwise. We construct a graph G as follows.
We take a disjoint union of all graphs G′i for 1 ≤ i ≤ t, add a root vertex r and for each 1 ≤ i ≤ t, v ∈ V (G′i) we add
an edge rv of weight w2.

Clearly G is connected, s is polynomial in n and m and the graph G can be constructed in polynomial time. We
claim that (G, k, s) is a weighted k-WAY CUT YES-instance if and only if one of the input CLIQUE instances (Gi, `)
is a YES-instance.

First, assume that for some 1 ≤ i ≤ t, the CLIQUE instance (Gi, `) is a YES-instance. Let C ⊆ V (Gi) be a
witness: |C| = ` and Gi[C] is a clique. Consider a set X ⊆ E(G) containing all edges of G incident to V (G′i) \ C.
Clearly, G \X contains k = n − ` + 1 connected components: we have one large connected component with vertex
set (V (G) \ V (G′i))∪C and each of n− ` vertices of V (G′i) \C is an isolated vertex in G \X . Let us now count the
total weight of edges in X . X contains n− ` edges of weight w2 that connect V (G′i) \ C to the root r. Moreover, X
contains

(
n
2

)
−
(
`
2

)
edges of G′i, of weight w1 or w1 + 1. Since Gi[C] is a clique, only m−

(
`
2

)
of the edges in X are

of weight w1 + 1. Thus the total weight of edges in X is equal to w2(n− `) + w1

((
n
2

)
−
(
`
2

))
+m−

(
`
2

)
= s.

In the other direction, let X ⊆ E(G) be a solution to the k-WAY CUT instance (G, k, s). Let Z be the connected
component of G \ X that contains the root r. Let Y ⊆ V (G) be the set of vertices that are not in Z. If v ∈ Y , X
contains the edge rv of weight w2. As s < w2(n − ` + 1), we have |Y | ≤ n − `. As k = n − ` + 1, we infer that
G \X contains n− `+ 1 connected components: Z and n− ` isolated vertices. That is, |Y | = n− ` and all vertices
in Y are isolated in G \X . Note that X includes n− ` edges of weight w2 that connect the root r with the vertices of
Y .

The next step is to prove that all vertices of Y are contained in one of the graphs G′i. To this end, let ai =
|Y ∩ V (G′i)| for 1 ≤ i ≤ t. Note that X ∩ E(G′i) contains at least

(
ai

2

)
+ ai(n − ai) edges of weight w1 or w1 + 1.

Thus, the number of edges of weight w1 or w1 + 1 contained in X is at least:

t∑
i=1

(
ai
2

)
+ ai(n− ai) =

(
n− 1

2

) t∑
i=1

ai −
1

2

t∑
i=1

a2i = (n− `)
(
n− 1

2

)
− 1

2

t∑
i=1

a2i

≥ (n− `)
(
n− 1

2

)
− 1

2

(
t∑

i=1

ai

)2

= (n− `)
(
n− 1

2

)
− 1

2
(n− `)2 =

(
n

2

)
−
(
`

2

)
.

As s < w2(n− `) + w1

((
n
2

)
−
(
`
2

)
+ 1
)

, we infer that the number of edges in X of weight w1 or w1 + 1 is exactly(
n
2

)
−
(
`
2

)
. This is only possible if

∑t
i=1 a

2
i = (

∑t
i=1 ai)

2. As ai are nonnegative integers, we infer that only one
value ai is positive.

17

Thus Y ⊆ V (G′i) for some 1 ≤ i ≤ t. Let C = V (Gi) \ Y . Note that |C| = `. The set X contains all
(
n
2

)
−
(
`
2

)
edges of G′i that are incident to Y . As the total weight of the edges of X is at most s, X contains at most m −

(
`
2

)
edges of weight w1 + 1. We infer that there are at least

(
`
2

)
edges in the graph Gi[C], Gi[C] is a clique and (Gi, `) is

a YES-instance of the CLIQUE problem.
To finish the proof, we show how to reduce the weighted version of the k-WAY CUT problem to the unweighted

one. We replace each vertex u with a complete graph Hu on s + 2 vertices and for each edge uv of weight w we
add to the graph w arbitrarily chosen edges between Hu and Hv (note that in our construction all weights are smaller
than s). Note that this reduction preserves the connectivity of the graph G. Let X be a solution to the unweighted
instance (G, k, s) constructed in this way. As no cut of size at most s can separate two vertices of Hu, each clique
Hu is contained in one connected component of G \X . Moreover, to separate Hu from Hv , X needs to include all w
edges between Hu and Hw. Thus, the constructed unweighted instance is indeed equivalent to the weighted one. Note
that in the presented cross-composition the edge weights were polynomial in n and m, so the presented reduction can
be performed in polynomial time.

By applying Theorem 2.3 we obtain the following corollary.

Corollary 7.2. k-WAY CUT parameterized by s does not admit a polynomial kernel unless NP ⊆ coNP/poly.

8 Conclusion and open problems
We have shown that four important parameterized problems do not admit a kernelization algorithm with a polynomial
guarantee on the output size unless NP ⊆ coNP/poly and the polynomial hierarchy collapses. We would like to
mention here a few open problems very closely related to our work.

• The 2k-vertex kernel for EDGE CLIQUE COVER [42] is probably close to optimal. Currently the fastest fixed-
parameter algorithm for EDGE CLIQUE COVER is a brute-force algorithm on the exponential kernel. Is this
double-exponential dependency on k necessary?

• The OR-composition for DIRECTED MULTIWAY CUT in the case of two terminals excludes the existence of a
polynomial kernel for most graph separation problems in directed graphs. There are two important cases not
covered by this result: one is the MULTICUT problem in directed acyclic graphs, and the second is DIRECTED
MULTIWAY CUT with deletable terminals. To the best of our knowledge, it is also open whether the first problem
is fixed-parameter tractable.

• Both our OR-compositions for MULTICUT use a number of terminal pairs that is linear in the number of input
instances. Is MULTICUT parameterized by both the size of the cutset and the number of terminal pairs similarly
hard to kernelize?

References
[1] Faisal N. Abu-Khzam. A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci., 76(7):524–531, 2010.
[2] Luca Aceto, Monika Henzinger, and Jiri Sgall, editors. Automata, Languages and Programming - 38th International Collo-

quium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part I, volume 6755 of Lecture Notes in Computer
Science. Springer, 2011.

[3] Pankaj K. Agarwal, Noga Alon, Boris Aronov, and Subhash Suri. Can visibility graphs be represented compactly? Discrete
& Computational Geometry, 12:347–365, 1994.

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi. Complexity and Approximation:
Combinatorial Optimization Problems and Their Approximability Properties. Springer, 1999.

[5] Michael Behrisch and Anusch Taraz. Efficiently covering complex networks with cliques of similar vertices. Theor. Comput.
Sci., 355(1):37–47, 2006.

[6] Hans L. Bodlaender. Kernelization: New upper and lower bound techniques. In Chen and Fomin [18], pages 17–37.
[7] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On problems without polynomial

kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.

18

[8] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and Dimitrios M. Thilikos. (Meta)
kernelization. In FOCS, pages 629–638. IEEE Computer Society, 2009.

[9] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Cross-composition: A new technique for kernelization lower
bounds. In Thomas Schwentick and Christoph Dürr, editors, STACS, volume 9 of LIPIcs, pages 165–176. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2011.

[10] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Preprocessing for treewidth: A combinatorial analysis through
kernelization. In Aceto et al. [2], pages 437–448.

[11] Hans L. Bodlaender, S. Thomasse, and A. Yeo. Analysis of data reduction: Transformations give evidence for non-existence
of polynomial kernels, 2008. Technical Report UU-CS-2008-030, Institute of Information and Computing Sciences, Utrecht
University, Netherlands.

[12] Nicolas Bousquet, Jean Daligault, and Stéphan Thomassé. Multicut is FPT. In Fortnow and Vadhan [37], pages 459–468.
[13] Michel Burlet and Olivier Goldschmidt. A new and improved algorithm for the 3-cut problem. Oper. Res. Lett., 21(5):225–

227, 1997.
[14] Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P. SIAM J. Comput., 22(3):560–572, 1993.
[15] J. Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and Mitsunori Ogihara. Competing provers yield improved

Karp-Lipton collapse results. Inf. Comput., 198(1):1–23, 2005.
[16] Gruia Calinescu, Howard J. Karloff, and Yuval Rabani. An improved approximation algorithm for multiway cut. J. Comput.

Syst. Sci., 60(3):564–574, 2000.
[17] Maw-Shang Chang and Haiko Müller. On the tree-degree of graphs. In Andreas Brandstädt and Van Bang Le, editors, WG,

volume 2204 of Lecture Notes in Computer Science, pages 44–54. Springer, 2001.
[18] Jianer Chen and Fedor V. Fomin, editors. Parameterized and Exact Computation, 4th International Workshop, IWPEC

2009, Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers, volume 5917 of Lecture Notes in Computer
Science. Springer, 2009.

[19] Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm for the minimum node multiway cut problem.
Algorithmica, 55(1):1–13, 2009.

[20] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter algorithm for the directed
feedback vertex set problem. J. ACM, 55(5), 2008.

[21] Rajesh Chitnis, Mohammadtaghi Hajiaghayi, and Dániel Marx. Fixed-parameter tractability of directed multiway cut param-
eterized by the size of the cutset. In SODA (to appear), 2012.

[22] Marek Cygan, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Ildikó Schlotter. Parameterized complexity of eulerian
deletion problems. In WG (to appear), 2011.

[23] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. An improved FPT algorithm and
quadratic kernel for pathwidth one vertex deletion. In Venkatesh Raman and Saket Saurabh, editors, IPEC, volume 6478
of Lecture Notes in Computer Science, pages 95–106. Springer, 2010.

[24] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Kernelization hardness of connectivity
problems in d-degenerate graphs. In Dimitrios M. Thilikos, editor, WG, volume 6410 of Lecture Notes in Computer Science,
pages 147–158, 2010.

[25] Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Wojtaszczyk. On multiway cut parameterized above
lower bounds. In IPEC (to appear), 2011. Available at http://arxiv.org/abs/1107.1585.

[26] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Subset feedback vertex set is fixed-
parameter tractable. In Aceto et al. [2], pages 449–461.

[27] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis Yannakakis. The complexity of
multiterminal cuts. SIAM J. Comput., 23(4):864–894, 1994.

[28] David P. Dailey. Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete. Discrete Mathe-
matics, 30(3):289293, 1980.

[29] Holger Dell and Dániel Marx. Kernelization of packing problems. In SODA (to appear), 2012.
[30] Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy

collapses. In Leonard J. Schulman, editor, STOC, pages 251–260. ACM, 2010.
[31] Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility through colors and IDs. In Susanne Albers, Alberto

Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas, editors, ICALP (1), volume 5555 of
Lecture Notes in Computer Science, pages 378–389. Springer, 2009.

[32] Rodney G. Downey, Vladimir Estivill-Castro, Michael R. Fellows, Elena Prieto, and Frances A. Rosamond. Cutting up is
hard to do: the parameterized complexity of k-cut and related problems. Electr. Notes Theor. Comput. Sci., 78:209–222, 2003.

[33] Paul Erdös, A. W. Goodman, and Lajos Posa. The representation of a graph by set intersections. Canadian Journal of

19

Mathematics, 18:106–112, 1966.
[34] Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Daniel Raible, Saket Saurabh, and Yngve Villanger. Kernel(s) for

problems with no kernel: On out-trees with many leaves. In Susanne Albers and Jean-Yves Marion, editors, STACS, volume 3
of LIPIcs, pages 421–432. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009.

[35] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimensionality and kernels. In Moses
Charikar, editor, SODA, pages 503–510. SIAM, 2010.

[36] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci.,
77(1):91–106, 2011.

[37] Lance Fortnow and Salil P. Vadhan, editors. Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011,
San Jose, CA, USA, 6-8 June 2011. ACM, 2011.

[38] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W.H.
Freeman, 1979.

[39] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate max-flow min-(multi)cut theorems and their applica-
tions. SIAM J. Comput., 25(2):235–251, 1996.

[40] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Multiway cuts in node weighted graphs. J. Algorithms, 50(1):49–
61, 2004.

[41] O. Goldschmidt and D. S. Hochbaum. A polynomial algorithm for the k-cut problem for fixed k. Math. Oper. Res., 19(1):24–
37, 1994.

[42] Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Data reduction and exact algorithms for clique cover. ACM
Journal of Experimental Algorithmics, 13, 2008.

[43] Jens Gramm, Jiong Guo, Falk Hüffner, Rolf Niedermeier, Hans-Peter Piepho, and Ramona Schmid. Algorithms for compact
letter displays: Comparison and evaluation. Computational Statistics & Data Analysis, 52(2):725–736, 2007.

[44] Jonathan L. Gross and Jay Yellen. Graph Theory and its Applications. CRC Press, 2006.
[45] Jean-Loup Guillaume and Matthieu Latapy. Bipartite structure of all complex networks. Inf. Process. Lett., 90(5):215–221,

2004.
[46] Sylvain Guillemot. FPT algorithms for path-transversal and cycle-transversal problems. Discrete Optimization, 8(1):61–71,

2011.
[47] Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem kernelization. SIGACT News, 38(1):31–45, 2007.
[48] Danny Harnik and Moni Naor. On the compressibility of NP instances and cryptographic applications. SIAM J. Comput.,

39(5):1667–1713, 2010.
[49] Danny Hermelin and Xi Wu. Weak compositions and their applications to polynomial lower-bounds for kernelization. In

SODA (to appear), 2012.
[50] D. N. Hoover. Complexity of graph covering problems for graphs of low degree. Journal of Combinatorial Mathematics and

Combinatorial Computing, 11:187–208, 1992.
[51] Wen-Lian Hsu and Kuo-Hui Tsai. Linear time algorithms on circular-arc graphs. Inf. Process. Lett., 40(3):123–129, 1991.
[52] Yoko Kamidoi, Noriyoshi Yoshida, and Hiroshi Nagamochi. A deterministic algorithm for finding all minimum k-way cuts.

SIAM J. Comput., 36(5):1329–1341, 2007.
[53] David R. Karger, Philip N. Klein, Clifford Stein, Mikkel Thorup, and Neal E. Young. Rounding algorithms for a geometric

embedding of minimum multiway cut. Math. Oper. Res., 29(3):436–461, 2004.
[54] David R. Karger and Clifford Stein. A new approach to the minimum cut problem. J. ACM, 43(4):601–640, 1996.
[55] Ken-ichi Kawarabayashi and Mikkel Thorup. Minimum k-way cut of bounded size is fixed-parameter tractable. In FOCS (to

appear), 2011.
[56] E. Kellerman. Determination of keyword conflict. IBM Technical Disclosure Bulletin, 16(2):544–546, 1973.
[57] L. T. Kou, L. J. Stockmeyer, and C.-K. Wong. Covering edges by cliques with regard to keyword conflicts and intersection

graphs. Communications of the ACM, 21(2):135–139, 1978.
[58] Stefan Kratsch. Co-nondeterminism in compositions: A kernelization lower bound for a ramsey-type problem. In SODA (to

appear), 2012.
[59] Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polynomial kernels. In Chen and Fomin

[18], pages 264–275.
[60] Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools for kernelization, 2011.

Unpublished manuscript.
[61] Stefan Kratsch and Magnus Wahlström. Compression via matroids: A randomized polynomial kernel for odd cycle transver-

sal. In SODA (to appear), 2012.

20

[62] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization problems. J. ACM, 41(5):960–981,
1994.

[63] S. Ma, W. D. Wallis, and J. Wu. Clique covering of chordal graphs. Utilitas Mathematica, 36:151–152, 1989.
[64] Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–406, 2006.
[65] Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the size of the cutset. In Fortnow

and Vadhan [37], pages 469–478.
[66] Joseph Naor and Leonid Zosin. A 2-approximation algorithm for the directed multiway cut problem. SIAM J. Comput.,

31(2):477–482, 2001.
[67] George L. Nemhauser and Leslie E. Trotter. Vertex packings: Structural properties and algorithms. Math. Program., 8:232–

248, 1975.
[68] J. B. Orlin. Contentment in graph theory: Covering graphs with cliques. Indagationes Mathematicae (Proceedings),

80(5):406–424, 1977.
[69] Hans-Peter Piepho. An algorithm for a letter-based representation of all-pairwise comparisons. Journal of Computational

and Graphical Statistics, 13(2):456–466, 2004.
[70] Subramanian Rajagopalan, Manish Vachharajani, and Sharad Malik. Handling irregular ILP within conventional VLIW

schedulers using artificial resource constraints. In CASES, pages 157–164, 2000.
[71] Igor Razgon. Computing multiway cut within the given excess over the largest minimum isolating cut. CoRR, abs/1011.6267,

2010.
[72] Igor Razgon. Large isolating cuts shrink the multiway cut. CoRR, abs/1104.5361, 2011.
[73] Igor Razgon and Barry O’Sullivan. Almost 2-SAT is fixed-parameter tractable. J. Comput. Syst. Sci., 75(8):435–450, 2009.
[74] Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res. Lett., 32(4):299–301, 2004.
[75] Fred S. Roberts. Applications of edge coverings by cliques. Discrete Applied Mathematics, 10(1):93 – 109, 1985.
[76] Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Transactions on Algorithms, 6(2), 2010.
[77] Mikkel Thorup. Minimum k-way cuts via deterministic greedy tree packing. In Cynthia Dwork, editor, STOC, pages 159–166.

ACM, 2008.
[78] Helge Tverherg. On Brooks’ theorem and some related results. Math. Scand., 52:37–40, 1983.
[79] Mingyu Xiao. Simple and improved parameterized algorithms for multiterminal cuts. Theory Comput. Syst., 46(4):723–736,

2010.
[80] Chee-Keng Yap. Some consequences of non-uniform conditions on uniform classes. Theor. Comput. Sci., 26:287–300, 1983.

21

	1 Introduction
	2 Preliminaries
	3 Clique Cover
	3.1 AND-cross-composition
	3.2 Cross-composition

	4 Directed Multiway Cut
	5 Multicut
	6 Alternative cross-composition of Multicut
	7 k-Way Cut
	8 Conclusion and open problems

