
ar
X

iv
:1

11
1.

32
44

v4
 [

cs
.D

S]
 2

5
Ju

n
20

13

FASTER FULLY COMPRESSED PATTERN MATCHING BY RECOMPRESSION

ARTUR JEŻ

Abstract. In this paper, a fully compressed pattern matching problem is studied. The compression is
represented by straight-line programs (SLPs), i.e. a context-free grammars generating exactly one string;
the term fully means that both the pattern and the text are given in the compressed form. The problem
is approached using a recently developed technique of local recompression: the SLPs are refactored, so
that substrings of the pattern and text are encoded in both SLPs in the same way. To this end, the
SLPs are locally decompressed and then recompressed in a uniform way.

This technique yields an O((n + m) logM) algorithm for compressed pattern matching, assuming
that M fits in O(1) machine words, where n (m) is the size of the compressed representation of the
text (pattern, respectively), while M is the size of the decompressed pattern. If only m+ n fits in O(1)
machine words, the running time increases to O((n+m) logM log(n+m)). The previous best algorithm
due to Lifshits had O(n2m) running time.

Pattern matching, Compressed pattern matching, Straight-line programms, Lempel-Ziv compression,
Algorithms for compressed data

1. Introduction

Compression and Straight-Line Programms. Due to ever-increasing amount of data, compression methods
are widely applied in order to decrease the data’s size. Still, the stored data is accessed and processed.
Decompressing it on each such an occasion basically wastes the gain of reduced storage size. Thus
there is a large demand for algorithms dealing directly with the compressed data, without the explicit
decompression.

Processing compressed data is not as hopeless, as it may seem: it is a popular outlook, that compression
basically extracts the hidden structure of the text and if the compression rate is high, the data has a lot
of internal structure. And it is natural to assume that such a structure helps devising methods dealing
directly with the compressed representation. Indeed, efficient algorithms for fundamental text operations
(pattern matching, equality testing, etc.) are known for various practically used compression methods
(LZ, LZW, their variants, etc.) [4, 5, 6, 7, 8, 9, 10, 11, 24].

The compression standards differ in the main idea as well as in details. Thus when devising algorithms
for compressed data, quite early one needs to focus on the exact compression method, to which the
algorithm is applied. The most practical (and challenging) choice is one of the widely used standards,
like LZW or LZ. However, a different approach is also pursued: for some applications (and most of theory-
oriented considerations) it would be useful to model one of the practical compression standard by a more
mathematically well-founded and ‘clean’ method. This idea lays at the foundations of the notion of
Straight-Line Programms (SLP), which are simply context-free grammars generating exactly one string.
Other reasons of popularity of SLPs is that usually they compress well the input text [18, 23] and that
they are closely related to the LZ compression standard: each LZ compressed text can be converted into
an equivalent SLP of size O(n log(N/n)) and in O(n log(N/n)) time [26, 2, 27, 12] (where N is the size
of the decompressed text), while each SLP can be converted to an equivalent LZ of O(n) size in linear
time. Lastly, a the greedy grammar compression can efficiently implemented and thus can be used as a
preprocessing to lsower compression methods, like those based on Burrows-Wheeler transform [16].

Problem statement. The problem considered in this paper is the fully compressed membership problem
(FCPM), i.e. we are given a text of length N and pattern of length M , represented by SLPs (i.e. context-
free grammars in Chomsky normal form generating exactly one string) of size n and m, respectively. We
are to answer, whether the pattern appears in the text and give a compact representation of all such
appearances in the text.

1998 ACM Computing Classification System. F.2.2 Nonnumerical Algorithms and Problems.
Key words and phrases. Pattern matching, Compressed pattern matching, Algorithms for compressed data, Straight-line

programms, Lempel-Ziv compression.
Supported by NCN grant number 2011/01/D/ST6/07164, 2011–2014.

1

http://arxiv.org/abs/1111.3244v4

2 ARTUR JEŻ

Previous and related results. The first algorithmic result dealing with the SLPs is for the compressed
equality testing, i.e. the question whether two SLPs represent the same text. This was solved by
Plandowski in 1994 [24], with O(n4) running time. The first solution for FCPM by Karpiński et al.
followed a year later [17]. Next, a polynomial algorithm for computing various combinatorial properties
of SLP-generated texts, in particular pattern matching, was given by Gąsieniec et al. [8], the same au-
thors presented also a faster randomised algorithm for FCPM [9]. In 1997 Miyazaki et al. [22] constructed
O(n2m2) algorithm for FCPM. A faster O(mn) algorithm for a special sub-case (restricting the form of
SLPs) was given in 2000 by Hirao et al. [11]. Finally, in 2007, a state of the art O(mn2) algorithm was
given by Lifshits [19].

Concerning related problems, fully compressed pattern matching was also considered for LZW com-
pressed strings [10] and a linear-time algorithm was recently developed [7]. Apart from that there is a
large body of work dealing with the compressed pattern matching, i.e. when the pattern is given explic-
itly, for practically used compression standards. We recall those for LZ and LZW as those compression
standards are related to SLPs: for LZW a linear-time algorithm was recently given [4] and the case of
multiple pattern was also studied [6], with running time O(n logM +M) (alternatively: O(n+M1+ǫ)).
For the LZ-compressed text, for which the problem becomes substantially harder than in LZW case, in
2011 an O(n log(N/n) +m) algorithm, which is in some sense optimal, was proposed [5].

Our results and techniques. We give an O((n + m) logM) algorithm for FCPM, i.e. pattern matching
problem in which both the text and the pattern are supplied as SLPs. It assumes that numbers of size
M can be manipulated in constant time. When this is not allowed and only numbers of O(n +m) time
can, the running time increases to O((n+m) logM log(n+m)). Since M ≤ 2m this outperforms in any
case the previously-best O(mn2) algorithm [19].

Theorem 1. Assuming that numbers of size M can be manipulated in constant time, algorithm FCPM

returns a O(n + m) representation of all pattern appearances, where n (m) is the size of the SLP-
compressed text (pattern, respectively) and M is the size of the decompressed pattern. It runs in O((n +
m) logM) time.

If numbers of size n+m can be manipulated in constant time, the running time and the representation
size increase by a multiplicative log(n+m) factor.

This representation allows calculation of the number of pattern appearances, and if N fits in O(1)
codewords, also the position of the first, last etc. pattern.

Our approach to the problem is different than all previously applied for compressed pattern matching
(though it does relate to dynamic string equality testing considered by Mehlhorn et al. [21] and its
generalisation to pattern matching by Alstrup et al. [1]). We do not consider any combinatorial properties
of the encoded strings. Instead, we analyse and change the way strings are described by the SLPs in the
instance. That is, we focus on the SLPs alone, ignoring any properties of the encoded strings. Roughly
speaking, our algorithm aims at having all the strings in the instance compressed ‘in the same way’. To
achieve this goal, we decompress the SLPs. Since the compressed text can be exponentially long, we do
this locally: we introduce explicit letters into the right-hand sides of the productions. Then, we recompress
these explicit strings uniformly: roughly, a fixed pair of letters ab is replaced by a new letter c in both
the string and the pattern; such a procedure is applied for every possible pair of letters. The compression
is performed within the rules of the grammar and often it is needed to modify the grammar so that this
is possible. Since such pieces of text are compressed in the same way, we can ‘forget’ about the original
substrings of the input and treat the introduced nonterminals as atomic letters. Such recompression
shortens the pattern (and the text) significantly: roughly one ‘round’ of recompression in which every
pair of letters that was present at the beginning of the ‘round’ is compressed shortens the encoded strings
by a constant factor. The compression ends when pattern is reduced to one letter, in which case the text
is a simple SLP-like representation of all pattern appearances.

Remark 1. Notice, that in some sense we build an SLP for both the pattern and string in a bottom-up
fashion: pair compression of ab to c is in fact introducing a new nonterminal with a production c → ab.
This justifies the name ‘recompression’ used for the whole process. This is explained in details later on.

Similar techniques. While application the idea of recompression to pattern matching is new, related
approaches were previously employed: most notably the idea of replacing short strings by a fresh letter
and iterating this procedure was used by Mehlhorn et al. [21] in their work on data structure for equality
testing for dynamic strings In particular their method can be straightforwardly applied to equality testing
for SLPs, yielding a nearly cubic algorithm (as observed by Gawrychowski [3]). However, the inside
technical details of the construction makes extension to FCPM problematic: while this method can be

FASTER FULLY COMPRESSED PATTERN MATCHING BY RECOMPRESSION 3

used to build ‘canonical’ SLPs for the text and the pattern, there is no apparent way to control how these
SLPs actually look like and how do they encode the strings. An improved implementation of a similar
data structure by Alstrup et al. [1] solves those problems and allows a pattern matching. Due to different
setting the transitions to SLPs is not straightforward (for instance, the running time is proportional to
the number of appearances), but it yields a nearly cubic algorithm [3].

In the area of compressed membership problems [25], from which the recompression method emerged,
recent work of Mathissen and Lohrey [20] already implemented the idea of replacing strings with fresh
letters as well as modifications of the instance so that such replacement is possible. However, the replace-
ment was not iterated, and the newly introduced letters were not be further compressed.

Lastly, a somehow similar algorithm, in which replaces pairs and blocks, was proposed by Sakamoto
in connection with the (approximate) construction of the smallest grammar for the input text [27]. His
algorithm was inspired by the RePair algorithm [18], which is a practical grammar-based compressor.
However, as the text in this case is presented explicitly, the analysis is much simpler and in particular it
does not introduce the technique of modification of the grammar according to the applied compressions
Other applications of the technique. A variant of recompression technique has been used in order to
establish the computational complexity of the fully compressed membership problem for NFAs [13]. This
method can also be applied in the area of word equations, yielding simpler proofs and faster algorithms of
many classical results in the area, like PSPACE algorithm for solving word equations, double exponential
bound on the size of the solution, exponential bound on the exponent of periodicity, etc. [15]. Furthermore,
a more tuned algorithm and detailed analysis yields a first linear-time algorithm for word equations
with one variable (and arbitrary many appearances of it) [14]. Lastly, the method can be straight-
forwardly applied to obtain a simple algorithm for construction of the (aproximation of) smallest gramamr
generating a given word [12].

Computational model. Our algorithm uses RadixSort and we assume that the machine word is of size
Ω(log(n+m)). RadixSort can sort n+m numbers of size O((n +m)c) in time O(c(n +m)).

We assume that the alphabet of the input is {1, 2, . . . , (n + m)c} for some constant c. This is not
restrictive, as we can sort the letters of the input and replace them with consecutive numbers, starting
with 1, in total O((n+m) log(n+m)) time.

The position of the first appearance of the pattern in the text might be exponential in n, so we need
to make some assumptions in order to be able to output such a position. Assuming that N fits in a
constant amount of codewords, our algorithm can also output the position of the first, last etc. position
of the pattern.

We assume that the rules of the grammar are stored as lists, so that insertion and deletion of characters
can be done in constant time (assuming that a pointer to an element is provided).

Organisation of the paper. As a toy example, we begin with showing that the recompression can be used
to check the equality of two explicit strings, see Section 2. This introduces the first half of main idea
of recompression: iterative replacement of pairs and blocks, as well as some key ideas of the analysis.
On the other hand, it completely ignores the (also crucial) way the SLP is refactored to match the
applied recompression. In the next section it is explained, how this approach can be extended to pattern
matching, we again consider only the case in which the text and pattern are given explicitly. While the
main is relatively easy, the method and the proof involve a large case inspection.

Next, in Section 4 we show how to perform the equality testing in case of SLPs. This section in-
troduces the second crucial part of the technique: modification of SLP in the instance according to the
compressions. This section is independent form Section 3 and can be read beforehand. In the following
section it is showed how to merge the results of Section 3 and Section 4, yielding and algorithm for fully
compressed pattern matching.

In the last Section 6 we comment how to improve the running time from O((n+m) logM log(n+m))
to O((n+m) logM) when M fits in O(1) machine words.

2. Toy example: equality testing

In this section we introduce the recompression technique and apply it in the trivial case of equality test-
ing of two explicit strings, i.e. their representation is not compressed. This serves as an easy introduction.
In the next section we take this process a step further, by explaining, how to perform a pattern matching
for explicit strings using recompression. To stress the future connection with the pattern matching, we
shall use letters p and t to denote the two strings for which we test the equality.

In case of equality testing, our approach is similar to the one of Mehlhorn et al. [21] from their work
on equality testing for the dynamic strings. In that setting, we were given a set of strings, initially empty,

4 ARTUR JEŻ

and a set of operations that added new strings to the set. We are to create a data structure that could
answer whether two strings in this collection are equal or not.

The method proposed by Mehlhorn et al. [21] was based on iterative replacement of strings: they
defined a schema, which replaced a string s with a string s′ (where |s′| ≤ c|s| for some constant c < 1)
and iterated the process until a length-1 string was obtained. Most importantly, the replacement is
injective, i.e. if s1 6= s2 then they are replaced with different strings1. In this way, for each string we
calculate its unique signature and two strings are equal if and only if their signatures are.

The second important property of this schema is that the replacement is ‘local’: s is partitioned into
blocks of a constant amount of letters and each of them is replaced independently.

The recompression, as presented in this section, is a variant of this approach, in which a different
replacement schema is applied. To be more specific, our algorithm is based on two types of ‘compressions’
performed on strings:

pair compression of ab: For two different letters ab appearing in p or t replace each of ab in p
and t by a fresh letter c.

a’s block compression: For each maximal block aℓ, with ℓ > 1, that appears in p, replace all aℓs
in p and t by a fresh letter aℓ.

By a fresh letter we denote any letter that does not appear in p or t. We adopt the following notational
convention throughout rest of the paper: whenever we refer to a letter aℓ, it means that the block
compression was done for a and aℓ is the letter that replaced aℓ. The a-block aℓ is maximal, when it
cannot be extended by a letter a to the left, nor to the right.

Clearly, both compressions preserve the equality of strings

Lemma 1. Let p′, t′ be obtained from p and t by a pair compression (or block compression). Then p = t
if and only if p′ = t′.

Using those two operations, we can define the algorithm for testing the equality of two strings

Algorithm 1 SimpleEqualityTesting: outline

1: while |p| > 1 and |t| > 1 do
2: L← list of letters appearing in t and p
3: P ← list pairs appearing in t and p
4: for each a ∈ L do compress blocks of a

5: for each ab ∈ P do compress pair ab

6: Naively check the equality and output the answer.

We call one iteration of the main loop a phase.
The crucial property of SimpleEqualityTesting is that in each phase the lengths of p and t shorten by

a constant factor

Lemma 2. When |p|, |t| > 1 then one phase shortens those lengths by a constant factor.

Proof. Consider two consecutive letters a and b of p (the proof for t is the same). We claim that at least
one of them is compressed in a phase.

Claim 1. Consider any two consecutive letters in p or t at the beginning of the phase. Then at least one
of those letters is compressed till the end of the phase.

Proof. If they are the same, then they are compressed during the blocks compression. So suppose that
they are different. Then ab ∈ P and we try to compress this appearance during the pair compressions.
This fails if and only if one of letters from this appearance was already compressed when we considered
ab during the pair compression. � �

So each uncompressed letter can be associated with a letter to the left and to the right, which were
compressed (the first and last letter can be only associated with a letter to the right/left, respectively).
Since when a substring is compressed, it is of length at least two, this means that no compressed letter

is associated with two uncompressed letters. So, for a pattern p there are at most |p|+2
3 uncompressed

letters (the +2 comes from the first/last letter that can be uncompressed and do not have a compressed

1This is not a information-theory problem, as we replace only strings that appear in the instance and moreover can reuse
original letters.

FASTER FULLY COMPRESSED PATTERN MATCHING BY RECOMPRESSION 5

letter to the left/right) and at least 2|p|−2
3 compressed ones. Hence, the length of the pattern at the end

of a phase is at most
|p|+ 2

3
+

1

2
·
2|p| − 2

3
=

2|p|+ 1

3
≤

5

6
|p| ,

where the last inequality holds in the interesting case of |p| > 1. � �

This shows that there are at most O(log(min(m,n))) phases, however, the running time can be in fact
bounded much better: one phase takes only linear time, assuming that the alphabet Σ can be identified
with numbers from the set {1, 2, . . . , (n+m)c} for some constant c. Since the lengths of p and t shorten
by a constant factor in each phase, this yields a total linear running time.

Lemma 3. Assuming that in the input Σ can be identified with {1, 2, . . . , (n+m)c}, one phase of Sim-

pleEqualityTesting can be implemented in O(|p|+ |t|) time.

Proof. In order to show the running time bounds, we need to ensure that letters in p and t form an
interval of consecutive letters (in this way RadixSort can be applied). We prove the technical claim after
the main part of the proof.

Claim 2. Without loss of generality, at the beginning of each phase the letters present in p and t form
an interval {k+1, k+2, . . . , k+ k′} for some k and k′ ≤ |p|+ |t|. Ensuring this takes at most O(|p|+ |t|)
time in a phase.

Using Claim 2 the proof of the lemma is nearly trivial: We go through the p and t. Whenever we spot
a pair ab (of different letters), we create a record (a, b, p), where p is the pointer to this appearance of ab.
Similarly, when we spot a maximal block aℓ (where ℓ > 1), we put a record (a, ℓ, p), where p is again a
link to this maximal block (say, to the first letter of the block). Clearly, this takes linear time.

We sort the triples for blocks, using RadixSort (we ignore the third coordinate). Since the letters form
an interval of size at most |p|+ |t| and blocks have length at most |p|+ |t|, this can be done in O(|p|+ |t|)
time. Then we go through the sorted list and replace aℓ with aℓ, for ℓ > 1. Since all appearances of aℓ

are consecutive on the sorted list, this can be done in time O(1) per processed letter. Hence, the total
running time is linear.

Similarly, we sort the triples of pairs. For each ab on the list we replace all of its appearances by a
fresh letter. Note, that as the list is sorted, before considering a pair a′b′ we either replaced all, or none
appearances of a different pair ab (depending on whether ab is earlier or later in the list). Hence this
effectively implements iterated pair compression.

Note that it might be that a link to pair ab is invalid, as one of letters ab was already replaced. In
such a case we do nothing.

It is left to show the technical Claim 2:

of Claim 2. We show the claim by an induction on the number of phase.
Consider the first phase. We assumed that the input alphabet consists of letters that can be identified

with subset of {1, . . . , (n+m)c}. Treating them as vectors of length c over {0, . . . , (n+m)− 1} we can
sort them using RadixSort in O(c(n +m)) time, i.e. linear one. Then we can re-number those letters to
1, 2, . . . , k for some k ≤ n+m. This takes O(n+m) = O(|p|+ |t|) time.

Suppose that at the beginning of the phase the letters formed an interval [k + 1 . . k + k′]. Each new
letter, introduced in place of a compressed pair or block, is assigned a consecutive value, starting from
k + k′ + 1 and so after the phase the letters appearing in p and t are either within [k + 1 . . k + k′] 9the
old letters) or within an interval [k + k′ + 1 . . k + k′′] (the new letters), for some k′ ≤ k′′ ≤ k′ + |p|+ |t|
(the second inequality follows from the fact that introduction of a new letter shortens p or t by at least
one letter). It is now left to re-number the letters [k + 1 . . k + k′], so that only those appearing in p and
t have valid numbers: we go through p t and for each letter a with number in [k . . k′ + k] we increase
the counter count[a] by 1. Then we go through count and assign consecutive numbers, starting from
k + k′′ + 1 to letters with non-zero count. Lastly, we replace the values of those letters in p and t by the
new values. � �

� �

By iterative application of Lemma 1 each compression performed by SimpleEqualityTesting preserves
the equality of strings, so SimpleEqualityTesting returns a proper answer. Concerning the running time of
one phase takes O(|p| + |t|), by Lemma 3, and as |p| and |t| shorten by a constant factor in each phase,
see Lemma 2, this takes in total O(n+m) time.

Theorem 2. SimpleEqualityTesting runs in O(n+m) and tests the equality of p and t.

6 ARTUR JEŻ

Building of a grammar. Observe, that as already noted in the Introduction, SimpleEqualityTesting ba-
sically generates a context free grammar, whose some nonterminals generate p and t (additionally, this
context free grammar is an SLP, which are formally defined in the later section). To be more precise:
observe that each replacement of ab by c corresponds to an introduction of a new nonterminal c with
a production c → ab and replacement of each ab with c, that generates the same string as ab does.
Similarly, the replacement of ak with ak corresponds to an introduction of a new nonterminal ak with a
rule ak → ak.

3. Toy example: pattern matching

The approach used in the previous section basically applies also to the pattern matching, with one
exception: we have to treat the ‘ends’ of the pattern in a careful way. Consider t = ababa and p = baba.
Then compression of ab into c results in t′ = cca and pattern p′ = bca, which no longer appears in t′.
The other problem appears during the block compression: consider p = aab and t = aaab. Then after
the block compression the pattern is replaced with p′ = a2b and text with t′ = a3b.

In general, the problems arise because the compression in t is done partially on the p appearance and
partially outside it, so it cannot be reflected in the compression of p itself. We say that the compression
spoils pattern’s beginning (end) when such partial compression appears on pattern appearance beginning
(end, respectively). In other words, when a, b are the first and last letters of the p, then we cannot
perform a pair compression for ca or bc (for any letter c), nor the a or b block compression.

Lemma 4. If the pair compression (block compression) does not spoil the end, not the beginning, then
there is a one-to-one correspondence

In the first example, i.e. t = ababa and p = baba, spoiling of the pattern’s beginning can be circum-
vented by enforcing a compression of the pair ba in the first place: when two first letters of the pattern
are replaced by a fresh letter c, then the beginning of the pattern no longer can be spoiled in this phase
(as c will not be compressed in this phase). We say, that pattern’s beginning (end) is fixed by a pair
or block compression, if after this compression a first (last, respectively) letter of the pattern is a fresh
letter, so it is not in L and no pair containing it is in P .

Our goal is to fix both the beginning and end, without spoiling any of them. Notice, that the same
compression can at the same time fix the beginning and spoil the end: for instance, for t = ababa and
p = bab, compressing ba into c fixes the beginning and spoils the end while compression of ab into c spoils
the beginning and fixes the end. This example demonstrates that the case in which the first and last
letter of the pattern are the same is more problematic than the case in which they are different.

Algorithm 2 SimplePatternMatching: outline

1: while |p| > 1 do
2: L← list of letters in p, t and P ← list of pairs in p, t
3: if p[1] 6= p[|p|] then
4: FixEndsDifferent(p[1], p[|p|])
5: else ⊲ p[1] = p[m]
6: FixEndsSame(p[1])

7: for a ∈ L do compress blocks of a in p and t

8: for ab ∈ P do compress pair ab in p and t

9: check, if p[1] appears in t

There are four main subcases, when trying to fix the beginning, they depend on whether:

• the first and last letter of the pattern are the same are not
• the first and second letter of the pattern are the same or not (i.e. whether p begins with a pair

or a block).

We consider them in the order of increasing difficulty.
Suppose that the first and last letter of the pattern are different. If moreover, the first two letters of

the pattern are ab for a 6= b, then we can fix the beginning by compressing the pair ab, before any other
pairs (or blocks) are compressed. This will fix the beginning and not spoil the end (since the last letter
is not a). This cannot be applied, when a = b, or in other words, p has a leading ℓ-block of letters a
for some ℓ > 1. The problem is that each m-block for m ≥ ℓ can begin an appearance of the pattern
in the text. The idea of the solution is to replace the leading ℓ-block of p with aℓ, but then treat aℓ as

FASTER FULLY COMPRESSED PATTERN MATCHING BY RECOMPRESSION 7

a ‘marker’ of a (potential) beginning of the pattern, meaning that each block am for m ≥ ℓ should be
replaced with a string ending with aℓ. To be more specific:

• for m ≤ ℓ each m-block is replaced by a fresh letter am;
• for m > ℓ each m-block is replaced by a pair of letters amaℓ, where am is a fresh letter.

This modifies the block compression, however, there is no reason, why we needed to replace am by exactly
one letter in the block compression, two letters are fine, as long as:

• the replacement function is injective;
• they are shorter than the replaced text;
• the introduced substring consists does not appear in p and t.

We shall not formalise this intuition, instead the proofs will simply show that there is a one-to-one
correspondence between appearances of the pattern before and after such modified block compression.

For instance, in the considered example t = aaab and p = aab we obtain t = a3a2b and p = a2b; clearly
p has an appearance in t. In this way we fixed the pattern beginning.

Now it is left to fix the pattern’s end, which is done in the same way. Note that we may need to compress
a pair including a letter introduced during the fixing of the beginning, but there is no additional difficulty
in this (though this somehow contradicts the earlier approach that we do not replace letters introduced
in the current phase).

Algorithm 3 FixEndsDifferent(a, a′)

1: b← p[2]
2: if a 6= b then ⊲ Compress the leading pair ab
3: comrpess ab in t and p
4: else ⊲ a = b: compress the a blocks
5: let ℓ← length of the p’s a-prefix
6: for m ≤ ℓ do
7: replace each maximal block am in p, t by am

8: for m > ℓ do
9: replace each maximal block am in p, t by amaℓ

10: if t ends with aℓ then remove this aℓ ⊲ Cannot be used by pattern appearance anyway
⊲ Symmetric for the ending letter

The described approach does not work when the first and last letter of the pattern are the same. As a
workaround, we alter the pattern so that the first and last letter are in fact different and then apply the
previous approach. The idea is to introduce the ‘markers’ aL and aR which denote the potential beginning
and ending of the pattern; we assume that aL 6= aR, even if aℓ = ar. They work as the marker aℓ in
the block compression in the previous case: Let aℓ and ar be the a-prefix and a-suffix of p. We replace
the a-prefix (a-suffix) of the pattern with aL (aR, respectively) and then make a block compression for
a, in which am, for m ≥ ℓ, r, is replaced by aRamaL. This reflects the fact that am can both begin and
end the pattern appearance, the former consumes ending aL and the latter the leading aR. The exact
replacement of am for m ≤ max(ℓ, r) depends on whether ℓ < r, ℓ = r or ℓ > r, for instance, when ℓ = r:

• for m < ℓ we replace m-blocks with am;
• for m = ℓ we replace ℓ-blocks with aRaL;
• for m > ℓ we replace ℓ-blocks with aRamaL.

the other replacement schemes are similar.
Note that in this way it is possible that the p begins with aR or ends with aL, none of which can be

used by a pattern appearance. For simplicity, we remove such aR and aL.
For ℓ = r = 1 this actually enlarges the LZ-representations (and for ℓ = r = 2 not always decreases the

length). To fix this make additional round of pair replacement, immediately after the blocks replacement:
we make the compression of pairs of the form {aLb |b ∈ Σ\{aL}} (note that those pairs cannot overlap, so
all of them can be replaced in parallel), followed by compression of pairs {baR | b ∈ Σ \ {aR}}. The latter
compression allows compression of the letters introduced in this phase, i.e. aLbaR is first compressed into
caR and then into c′. It can be routinely checked, that this schema shortens both p and t: to see this
observe that bab′ is first replaced with baRaLb

′ and then by baRc and finally with c′c, which is shorter
than bab′; other cases are analysed similarly. When afterwards a block compression and pair compression
is applied, Lemma 2 still holds, though with a larger constant.

8 ARTUR JEŻ

Lemma 5. When the first and last letter of the pattern are different, in O(|p|+ |t|) time we can fix both
the beginning and end without prior spoiling them.

There is a one-to-one correspondence between the pattern appearances in the new text and old pattern
appearances in the old text.

Proof. It was already described, how to perform the appropriate operations, it is left to analyse their
properties and implementations.
Fixing the beginning. Let a′ be the second letter of p. Suppose first that a′ 6= a. We (naively) perform
the modified compression of the pair aa′, by reading both p and t from the left to the right. Note that
the beginning and end were not spoiled in the process, and so there is a one-to-one correspondence of
new and old pattern appearances.

So suppose that a′ = a, let aℓ be the a-prefix of p. Then we (naively) perform the compression of blocks
for the letter a. We show that no pattern appearance was lost, nor that any new pattern ‘appearance’
was introduced. So let t = w1a

mw2w3 and p = aℓw2, for m > ℓ. Observe that as the first and last
letter of the pattern are different, we know that w2 6= ǫ. Let wi be replaced by w′

i. Then the new text is
t′ = w′

1amaℓw
′
2w

′
3 and the new pattern is p′ = aℓw

′
2, thus there is a pattern appearance in the new text.

The case in which m = ℓ is shown in the same way.
Conversely, let w′

1aℓw
′
2w

′
3 be the new text and aℓw

′
2 the new pattern. Then the pattern was obtained

from aℓw2 for some w2. Furthermore, w′
1a

ℓ was obtained from some w1a
m for m ≥ ℓ, (this is the only way

to obtain aℓ), also, the only way to obtain w′
2 is from the same w2. Hence, no new pattern appearance

was introduced.
This fixes the pattern beginning and as the last letter of p is not a, it did not spoil the pattern end.

Fixing the end. We want to apply exactly the same procedure at the end of the p. However, there can
be some perturbation, as fixing the beginning might have influenced the end:

• the last letter could have been already compressed, which can happen only when b = a′. In this
case we got lucky and we make no additional compression, as the end of the pattern has been
already fixed.
• the second last letter (say b′) of p equals a′ and it was compressed, into the letter c (either due

to pair compression or block compression). In this case we make the compression of the pair ca′,
even though c is a fresh letter. Note, that as c is the first letter of this pair, this will not spoil
the beginning of the pattern.

The rest of cases, as well as the analysis of the above exceptions, is the same as in the case of fixing the
beginning. � �

Now we consider the more involved case in which the first and last letter of the pattern are the same.

FASTER FULLY COMPRESSED PATTERN MATCHING BY RECOMPRESSION 9

Algorithm 4 FixEndsSame

1: let ℓ← the length of p’s a-prefix, r ← the length of a-suffix
2: replace the leading aℓ and ending ar in p by aL and aR
3: if ℓ = r then
4: for m < ℓ do
5: replace each maximal am in p, t by am

6: replace each maximal aℓ in p, t by aRaL
7: for m > ℓ do
8: replace each maximal am in p, t by aRamaL

9: if ℓ < r then
10: for m < ℓ do
11: replace each maximal am in p, t by am

12: replace each maximal aℓ in p, t by aL
13: for r > m > ℓ do
14: replace each maximal am in p, t by amaL

15: for m ≥ r do
16: replace each maximal am in p, t by aRamaL
17: if ℓ > r then
18: for m < r do
19: replace each maximal am in p, t by am
20: for r ≤ m < ℓ do
21: replace each maximal am in p, t by aRam

22: replace each maximal ar in p, t by aRaL
23: for m > ℓ do
24: replace each maximal am in p, t by aRamaL

25: if t ends with aL then remove this aL
26: if t begins with aR then remove this aR

27: compress all pairs of the form aLb with b ∈ Σ \ {aL}
28: compress all pairs of the form baR with b ∈ Σ \ {aR}
29: if 1 = r < ℓ then
30: compress all pairs of the form a1b with b ∈ Σ \ {a1}

Lemma 6. When the first and last letter of the pattern are equal, in O(|p|+ |t|) time we can fix both the
beginning and end without prior spoiling them.

There is a one-to-one correspondence between the pattern appearances in the new text and old pattern
appearances in the old text.

Proof. Let the first (and last) letter of the pattern be a. There is a simple special case, when p ∈ a∗.
Then it is enough to perform a usual compression of a blocks and mark the letters am for m ≥ ℓ, as each
such letter corresponds to m − ℓ + 1 appearances of the pattern. To this end we perform the a-blocks
compression (for blocks of a only), which includes the sorting of blocks according to their length. Hence
blocks of length at least ℓ can be identified and marked.

So consider now the case, in which the pattern has some letter other than a, i.e. p = aℓuar where u 6= ǫ
and it does not begin, nor end with a. The main principle of the replacement was already discussed,
i.e. first a tuned version of the a blocks compression is performed, which introduces markers aL and
aR denoting the pattern beginning and end, respectively; then a compression of the pairs of the form
{aLb | b ∈ Σ \ {aL}} and finally {baR | b ∈ Σ \ {aR}}.

While the block compression scheme was already given for r = ℓ, the ones for ℓ > r and r < ℓ were
not, we start with their precise description, see also Algorithm 3.

The replacement of blocks for ℓ < r is as follows:

• for m < ℓ maximal blocks am are replaced by am;
• for m = ℓ maximal blocks aℓ are replaced with aL;
• for ℓ < m < r maximal blocks am are replaced with amaL;
• for m ≥ r maximal blocks am are replaced with aRamaL.

As in the case of the normal block compression, for m = 1 we identify a1 with a (and do not make any
replacement) and allow further in the phase the compression of pairs including a.

10 ARTUR JEŻ

The compression of blocks for r < ℓ is similar:

• for m < r blocks am are replaced by am;
• for r ≤ m < ℓ blocks am are replaced with aRam;
• for m = ℓ blocks aℓ are replaced with aRaL;
• for m > ℓ blocks am are replaced with aRamaL.

Again, we identify a1 with a (and do not make any replacement) and allow further compression of pairs
including a.

After the block compression, regardless of the actual scheme, we compress pairs of the form {aLb | b ∈
Σ \ {aL}} and then {baR | b ∈ Σ \ {aR}}. Since in one such group pairs do not overlap, this can be easily
done in linear time using RadixSort, as in the case of pair compression in SimpleEqualityTesting. (When
compressing the second group of pairs we allow compression of letters introduced in the compression in
the first group.)

Lastly, there is a special case: when 1 = r < ℓ the compression of the pairs {a1b | b ∈ Σ \ a1} is
also performed. The running time is again linear. When the t after the block compression begins (ends)
with aR (aL, respectively), we remove it from t, as this letter cannot be used by any pattern appearance
anyway.

Clearly both the beginning and end were fixed during the block compression, we still need to guarantee
that pattern appearances were not lost nor gained in the process. The argument is similar as in Lemma 5.
So let p = aℓw2a

r, where w 6= ǫ, observe that we can make this assumption as we do not consider the
case in which p ∈ a∗. Let t = w1a

mw2a
nw3, where m ≥ ℓ and n ≥ r. There are several cases, we focus

on one, the other are shown in the same way. Suppose that m > ℓ > r and ℓ > n > r. Let wi be replaced
by w′

i. Then p′ = aLw
′
2aR, while t′ = w′

1aRamaLw
′
2aRanw

′
3, so there is an appearance of the pattern.

The other cases are shown similarly.
In the other direction, suppose that p′ = aLw

′
2aR appears in t′ = w′

1aLw
′
2aRw

′
3. Observe that w′

2 in
both was obtained from the same w2, furthermore the only way to obtain aL (aR) in t′ is from am (an,
respectively) for some m ≥ ℓ (some n ≥ ar, respectively). Thus p = aℓw2a

r appeared in t = w1a
mw2a

nw3.
So not it is left to show that the following pair compressions do not spoil the beginning or end of the

(new) pattern. Consider the first compression of the pairs of the form {aLb | b ∈ Σ \ {aL}}: is it possible
that it spoils the end? This can happen, when the last letter of the pattern, i.e. aR is compressed with a
letter to its right. Hence, aL = aR, which is not possible, as aL and aR are different symbols. So consider
the second compression phase, in which pairs of the form {baR | b ∈ Σ \ aR} are compressed. Suppose
that the beginning was spoiled in the process. Let b be the letter compressed with the leading aL in the
pattern (by the assumption that p /∈ a∗, such b exists) and let c be the fresh letter that replaced aLb.
Then the beginning is spoiled, when pair of the form xc is compressed, but this implies aR = c, which is
not possible. Lastly, consider the special case, i.e. r = 1 < ℓ, in which additionally pairs of the form a1x
were compressed. This cannot spoil the end, as the last letter of p is not a1. Suppose that this spoils the
beginning. We already know that aLb was replaced with c. As already shown, it could not be compressed
with the letter to the left, however, it is possible that it was compressed with the letter to the right, and
replaced with c′. Still the only possibility to spoil the beginning is to compress a1c or a1c

′, depending on
the case. In both cases this implies that before first compression phase there was a substring aRa1aLb,
which contradicts our replacement scheme. � �

Now, when the whole replacement scheme is defined, it is time to show that fixing preserves the main
property of original SimpleEqualityTesting: that in each round the lengths of p and t are reduced by
a constant factor. Roughly, our replacement schema took care of that: for instance, even though we
replaced a single a with aRaL, we made sure that aR is merged with a previous letter and aL is merged
with a following letter. Effectively we replaced 3 letters with 2. This is slightly weaker than replacing
2 letters with 1, but still shortens by a constant factor. The other cases are analysed similarly. The
following lemma takes care of the details.

Lemma 7. When |p|, |t| > 1 then one phase of SimplePatternMatching shortens those lengths by a
constant factor.

Proof. We group the compressed substrings into fragments, one fragment shall intuitively correspond to
small substring that was compressed into some letters. Letters, that were not altered, are not assigned
to fragments. We show that there is a grouping of letters in p and t into fragments (in the beginning of
the phase) such that

(Fra 1) there are no consecutive letters not assigned to fragments;
(Fra 2) fragments of length 2 are compressed into one letter till the end of the phase;

FASTER FULLY COMPRESSED PATTERN MATCHING BY RECOMPRESSION 11

(Fra 3) fragments of length 3 are compressed into at most two letters till the end of the phase;
(Fra 4) fragments of length 4 or more are compressed into at most three letters till the end of the phase.

This shows that the compression ratio is a little weaker then in case of SimpleEqualityTesting, see Lemma 2,
but still by a constant factor. So it is left to show that fixing, followed by block compression and pair
compression, allows grouping into fragments satisfying (Fra 1–Fra 4).

Claim 3. When the first and last letter of the pattern are different, (Fra 1–Fra 4) hold.

Proof. Suppose that there are two consecutive letters not assigned to fragments, let them be ab. They
were not replaced in the phase, i.e. they are not fresh letters. The analysis splits, depending on whether
a = b or not.

a = b: Then this pair of consecutive letters is either compressed in the fixing of the beginning and
end or it is going to be compressed in line 7, contradiction.

a 6= b: Then the pair ab is either compressed in the fixing of the beginning and end or it is going to
be compressed in line 8 contradiction.

It is left to define the fragments satisfying (Fra 2)–(Fra 4). In most we replace pairs or blocks with one
letter only, so this clearly satisfies (Fra 2)–(Fra 4). There is an exception: when p begins (ends) with
aℓ for ℓ > 1 (br for r > 1, respectively), then am for m > ℓ is replaced with amaℓ (brbm, respectively).
However, as ℓ > 1 (r > 1, respectively), this shows that m > 2 and thus fragments replaced with 2 letters
are of length at least 3, which shows (Fra 2)–(Fra 4) � �

When the first and last letter of the pattern are the same, the proof follows a similar idea. We need
to accommodate the special actions that were performed during the fixing of the beginning and end.

Claim 4. When the first and last letter of the pattern are the same (Fra 1–Fra 4) hold.

Proof. Let the first and last letter of p be a. Except for blocks of a (and perhaps letters neighbouring
them), all fragments are defined in the same way as in Claim 3, so we focus on the blocks of a.

The am blocks for m < min(ℓ, r) are replaced in the same way as in Claim 3, so we deal mainly with
am for m ≥ min(ℓ, r). Let us first consider a simpler case, in which ℓ, r > 1. Since the fragments depend
also on the letters neighbouring the a-blocks, take the longest possible substring of p (or t) of the form

x(1)am1x(2)am2x(3) · · ·x(k)amkx(k+1),

where x(i) ∈ Σ and mi > 1. Such substrings cover all blocks of a except the leading and ending a-blocks
in pattern and text. To streamline the analysis, we deal with them separately at the end.

During the replacement, each block ami may introduce a letter aL to the right, but it is compressed
with x(i+1) and letter aR to the left, which is compressed with x(i). Then the block is replaced with a
single letter ami

(or no letter at all, when ℓ = r = mi). Hence the resulting string is

y(1)am1
y(2)am2

y(3) · · · y(k)amk
y(k+1),

where each y(i) ∈ Σ and each ami
is either a letter or ǫ. Then define the first fragment as x(1)am1x(2),

which is replaced with y(1)am1
y(2), and each consecutive fragment as amix(i+1), for i > 1, which is

replaced with ami
y(i+1). Since mi > 1, such fragments satisfy (Fra 1–Fra 4). Each other fragment is

defined as in Claim 3, i.e. letters compressed into a single symbol form a fragment. The same argument
as in Claim 3 shows that (Fra 1–Fra 4) holds for such defined grouping.

Now we consider the special cases omitted in the previous analysis, i.e.: 1 = ℓ = r, 1 = ℓ < r and
1 = r < ℓ. In these case we consider similar maximal substrings

x(1)am1x(2)am2x(3) · · ·x(k)amkx(k+1),

of p (or t), but we allow mi = 1. Observe that as in the previous case, each a block is covered by such
susbtrings, except for the leading and ending a blocks of p and t. To streamline the argument, we consider
them at the end.

The fragments are defined in the similar way: the first one as x(1)am1x(2) and amix(i+1) for i > 1. It
remains to show that (Fra 1–Fra 4) hold in this case as well. Note that when mi > 1 the analysis is the
same as previously, so we skip it and focus on the case of mi = 1. There are three cases, depending on
the relation between ℓ and r:

ℓ = r = 1: Then a is replaced with aRaL and aR is merged with x(i) while aL with x(i+1). Hence,
for i > 2 the fragment amix(i+1) is replaced with y(i+1) alone, and for i = 1 the x(1)am1x(2) is
replaced with y(1)y(2). So (Fra 1–Fra 4) hold in this case.

12 ARTUR JEŻ

1 = ℓ < r: Then a is replaced with aL which is then merged with x(i+1) and the rest of the analysis
follows as in the first case.

1 = r < ℓ: In this case a is replaced with aRa1, then aR is merged with x(i). Furthermore, in this
special case, a1 is also compressed, to x(i+1). Now, the rest of the analysis follows as in the first
case.

The rest of the argument follows as in the proof of Claim 3, and so it is omitted.
Concerning the leading and ending a-blocks observe that in case of the p, the aℓ (ar) is replaced with

aL (aR, respectively), which is later compressed with the letter to the right (left, respectively). So the
leading aℓ (ending ar) can be added to the fragment to its right (left, respectively) and (Fra 1–Fra 4)
still holds.

For the leading a-block of t, we extend the definition and consider a substring

x(0)am0x(1)am1x(2) · · ·x(k)amkx(k+1),

where am0 is the leading a block of t and x(0) = ǫ is an imaginary beginning marker. Then the whole
analysis works in the same way: the only difference is that aR that may be produced by am0 to the left is
removed from t, which is simulated by ’merging’ it into the imaginary beginning marker x(0). Otherwise,
the fragments are defined in the same way. The analysis for the ending block of as is similar. � �

� �

Concerning other operations, they are implemented in the same way as in case of SimpleEqualityTesting,
so in particular the pair compression and block compression run in O(|p|+|t|), see Lemma 3. Furthermore,
since the beginning and end are fixed, those operations do not spoil pattern appearances, see Lemma 4.

As a corollary we are now able to show that SimplePatternMatching runs in linear time and preserves
the appearances of the pattern, which follws from Lemma 5 and 6.

Lemma 8. SimplePatternMatching runs in O(n + m) time and correctly reports all appearances of a
pattern in text.

The running time is clear: each phase takes linear time and the length of text and pattern are shortened
by a constant factor in a phase.

Building of a grammar revisited. Note that the more sophisticated replacement rules in the fixing of
beginning and end endangers our view of compression as creation of a context free grammar for p and t.
Still, this can be easily fixed.

For the fixing of the beginning when the first and last letter are different there are symmetric actions
performed at the beginning and at the end, so we focus only on the former. The problematic part is the
replacement of am for m > ℓ with amaℓ. Then we simply declare that al replaced aℓ (note that this is
consistent with the fact that aℓ is replaced with aℓ) and am replaced am−ℓ. Since m > ℓ, this is well
defined.

When the first and last letter are the same, the situation is a bit more complicated. For the block
replacement, similarly we declare that aL ‘replaces’ aℓ, am the am for m < ℓ and am−ℓ for m > ℓ. Lastly,
to be consistent, we need to define that aR → ǫ. It can be verified by case inspection that in this way all
blocks are replaced properly, except the ending block for p (for which the ar is replaced with aR). While
this somehow falsifies our informal claim that we create an SLP for the p, this is not a problem, as the
occurrences of the pattern are preserved. (We can think that we shortened the pattern by those ending
ar letters, but the appearances were preserved.)

The aR generating ǫ is a bit disturbing, but note that we enforce the compression of pairs of the form
{baR |b ∈ Σ\aR} (and if aR is the first letter of t then we remove it). In this way all aR are removed from
the instance. Furthermore, when baR is replaced with b′ we can declare that the rule for b′ is b′ → α,
where b has a rule b→ α. In this way no productions have ǫ at their right-hand sides.

4. Equality testing for SLPs

In this section we extend the SimpleEqualityTesting to the setting in which both the p and t are given
using SLPs. In particular, we introduce and describe the second important property of the recompres-
sion: local modifications of the instance so that pair and block compressions can be performed on the
compressed representation directly.

FASTER FULLY COMPRESSED PATTERN MATCHING BY RECOMPRESSION 13

4.1. Straight line programmes. Formally, a Straight-Line Programme (SLP) is a context free grammar
G over the alphabet Σ with a set of nonterminals {X1, . . . , Xk}, generating a one-word language. For
normalisation reasons, it is assumed that G is in a Chomsky normal form, i.e. each production is either
of the form X → Y Z or X → a. We denote the string defined by nonterminal X by val(X), like value.

During our algorithm, the alphabet Σ is increased many times and whenever this happens, the new
letter is assigned number |Σ|+ 1. The |Σ| does not become large in this way: it remains of size O((n +
m) log(n+m) logM), see Lemma 16. Observe furthermore that Claim 2 generalises easily to SLPs and
so without loss of generality we may assume that Σ consists of consecutive natural numbers (starting
from 1).

For our purposes it is more convenient to treat the two SLPs as a single context free grammar G with a
set of nonterminals {X1, . . . , Xn+m}, the text being given by Xn+m and the pattern by Xm. We assume,
however, that Xm is not referenced by any other nonterminal, this simplifies the analysis. Furthermore,
in our constructions, it is essential to relax the usual assumption that G is in a Chomsky normal form,
instead we only require that G satisfies the conditions:

each Xi has exactly one production, which has at most 2 noterminals,(1a)

if Xj appears in the rule for Xi then j < i,(1b)

if val(Xi) = ǫ then Xi is not on the right-hand side of any production,.(1c)

We refer to these conditions collectively as (1) and assume that the input of the subroutines always
satisfies (1). However, we expect more from the input instance: we want it to obey the Chomsky normal
form, instead of the relaxed conditions (1) (in this way we bound the initial size of G by 2(n +m) and
also claim that M ≤ 2m). Note that (1) does not exclude the case, when Xi → ǫ and allowing such a
possibility streamlines the analysis.

Let Xi → αi, then a substring u ∈ Σ+ of αi appears explicitly in the rule; this notion is introduced to
distinguish them from the substrings of val(Xi). The size |G| is the sum of length of the right-hand sides
of G’s rules. The size of G kept by the algorithm will be small: O((n +m) log(n+m)), see Lemma 16.
Furthermore the set of nonterminals is always a subset of {X1, . . . , Xn+m}.

(Non) crossing appearances. The outline of the algorithm is the same as SimpleEqualityTesting, the crucial
difference is the way we want perform the compression of pairs and blocks, when p and t are given as
SLPs. Before we investigate this, we need to understand, when the compression (of pairs and blocks) is
easy to perform, and when it is hard.

Suppose that we are to compress a pair ab. If b is a first letter of some val(Xi) and aXi appears
explicitly in the grammar, then the compression seems hard, as it requires modification of G. On the
other hand, if none such, nor symmetrical, situation appears then replacing all explicit abs in G should
do the job. This is formalised in the following definition:

Definition 1 ((Non) crossing pairs). Consider a pair ab and its fixed appearance in val(Xi), where the
rule for Xi is Xi → uXjvXkw. We say that this appearance is

explicit (for Xi): if this ab comes from u, v or w;
implicit (for Xi): if this appearance comes from val(Xj) or val(Xk);
crossing (for Xi): otherwise.

A pair ab is crossing if it has a crossing appearance for any Xi, it is non-crossing otherwise.

Unless explicitly written, we use this notion only to pairs of different letters. Note that if ab appears
implicitly in some Xi then it has an explicit or crossing appearance in some Xj for j < i.

The notions of (non-) crossing pairs is usually not applied to pairs of the form aa, instead, for a letter
a ∈ Σ we consider its maximal blocks, as defined in earlier sections.

Definition 2. Consider a letter a. We say that aℓ has an explicit appearance in Xi with a rule Xi →
uXjvXkw if aℓ appears in u, v or w; implicit appearance if it appears in val(Xj) or val(Xk) and a crossing
appearance if it appears in val(Xi) and this is not an implicit, nor explicit appearance.

A letter a has a crossing block, if some aℓ has a crossing appearance in some Xi. Equivalently, the
pair aa is crossing.

Note that when a has crossing blocks it might be that some blocks of a are part of explicit and crossing
appearances at the same time. However, when a has no crossing blocks, then a maximal explicit block
of a is not part of a larger crossing block.

Intuitively, a pair ab is crossing, if we can find a rule Xi → uXjvXkw such that a is the last letter of
u and b is the first letter or val(Xj), or a is the last letter of val(Xj) and b is the first letter of v, etc. So

14 ARTUR JEŻ

in some sense it ‘crosses’ between this nonterminal and a neighbouring letter (nonterminal). Note that
this justifies the somehow unexpected notion of crossing blocks: if aa is crossing pair (say, val(Xi) ends
with a and v begins with a as well) then the maximal block of as containing this pair aa also ‘crosses’
the nonterminal.

The crossing pairs and letters with crossing blocks are intuitively hard to compress, while non-crossing
pairs and letters without crossing blocks are easy to compress. The good news is that the number of
crossing pairs and blocks is bounded in terms of n,m, and not size of the grammar, as shown in the
following lemma. Note that the lemma allows a slightly more general form of the grammar, in which
blocks aℓ are represented using a single symbol. Such a form appears as an intermediate product of our
algorithm, and so we need to deal with it as well.

Lemma 9. Consider a grammar, in which blocks of a letter can be represented as a single symbol. There
are at most 2(n+m) different letters with crossing blocks and at most 4(n+m) different crossing-pairs
and at most |G| noncrossing pairs. For a letter a there are at most |G| + 4(n +m) different lengths of
a’s maximal blocks in p and t.

Proof. Observe that if a has a crossing block then for some Xi the first or last letter of val(Xi) is a. Since
there are n+m nonterminals, there are at most 2(m+ n) letters with crossing blocks.

Similarly, if ab is a crossing pair then it can be associated with an appearance of some Xi in the
grammar, where additionally a is the last letter of val(Xi) and Xib appears in the rule or b is the first
letter of val(Xi) and aXi appears in the rule. Since there are at most 2(n+m) appearances of nonterminals
in the grammar, it follows that there are at most 4(n+m) appearances of a crossing pair, so in particular
at most 4(n+m) different crossing pairs.

If ab is a noncrossing pair then ab appears explicitly is some of the rules of the grammar, and there
are at most |G| such substrings (note that when aℓ is represented by one symbol, it still contributes to
pairs in the same way as a single a).

The argument for maximal blocks of a is a little more involved. Consider first maximal blocks that
have an explicit appearance in the rules of G, for simplicity let now the nonterminals also count for ending
maximal blocks, similarly the ends of rules. Then each letter (or block of letters that are represented as
one symbol) is assigned to at most one maximal block and so there are not more than |G| such blocks,
so not more than |G| different lengths. Assign other blocks to nonterminals: a block aℓ is assigned to
Xi with a rule Xi → uXjvXkw, if a maximal block aℓ has an appearance in val(Xi), but it does not in
val(Xj) nor in val(Xk) (so it has a crossing appearance for Xi). Thus, there are four possibilities for a
block to be assigned to the rule:

• a letter a from this maximal block is the last letter of u and the first letter of val(Xj),
• a is the last letter of val(Xj) and a letter a from this maximal block is the first letter of v,
• a letter a from this maximal block is the last letter of v and a is the first letter of val(Xk),
• a is the last letter of val(Xk) and a letter a from this maximal block is the first letter of w.

Hence, there are at most 4 maximal blocks assigned to Xi in this way, which yields the desired bound of
4(n+m) on the number of such blocks. � �

4.2. The algorithm. When the notions of crossing and non-crossing pairs (blocks) are known, we can
give some more detail of EqualityTesting. Similarly to SimpleEqualityTesting, it performs the compression
in phases, until one of p, t has only one letter, but for running time reasons it is important to distinguish
between compression of non-crossing pairs and crossing ones (this is not so essential for blocks, as shown
later).

Algorithm 5 EqualityTesting: outline

1: while |p|, |t| > 1 do
2: P ← list of pairs
3: L← list of letters
4: for each a ∈ L do compress blocks of a

5: P ′ ← crossing pairs out of P , P ← non-crossing pairs out of P
6: for each ab ∈ P do compress pair ab

7: for ab ∈ P ′ do compress pair ab

8: Output the answer.

As in the case of SimpleEqualityTesting, the length of p and t shorten by a constant factor in a phase
and so there are O(log(min(M,N))) many phases.

FASTER FULLY COMPRESSED PATTERN MATCHING BY RECOMPRESSION 15

Lemma 10. There are O(logM) executions of the main loop of FCPM.

The proof is the same as in the case of Lemma 2.

4.2.1. Compression of non-crossing pairs. We start by describing the compression of a non-crossing pair
ab, as it is the easiest to explain. Intuitively, whenever ab appears in string encoded by G, the letters a and
b cannot be split between nonterminals. Thus, it should be enough to replace their explicit appearances.

Algorithm 6 PairCompNcr(ab, c): compression of a non-crossing pair ab

1: for i← 1 . .m+ n do
2: replace every explicit ab in the rule for Xi by c

Luckily, as in case of SimpleEqualityTesting the compression of all noncrossing pairs can be performed
in parallel in linear time, using RadixSort to group the appearances.

To simplify the notation, we use PCab→c(w) to denote w with each ab replaced by c. Moreover, we
say that a procedure implements the pair compression for ab, if after its application the obtained p′ and
t′ satisfy p′ = PCab→c(p) and t′ = PCab→c(t).

Lemma 11. When ab is non-crossing, PairCompNcr properly implements the pair compression.

Proof. In order to distinguish between the nonterminals before and after the compression of ab we use
‘primed’ nonterminals, i.e. X ′

i, for the nonterminals after this compression and ‘unprimed’, i.e. Xi, for
the ones before. We show by induction on i that

val(X ′
i) = PCab→c(val(Xi)) .

Indeed, this is true when the production for Xi has no nonterminal on the right-hand side (recall the
assumption that a 6= b), as in this case each pair ab on right hand side of the production for Xi was
replaced by c and so val(X ′

i) = PCab→C(val(Xi)).
When Xi → uXjvXkw, then

val(Xi) = u val(Xj)v val(Xk)w and

val(X ′
i) = PCab→c(u) val(X

′
j)PCab→c(v) val(X

′
k)PCab→c(w)

= PCab→c(u)PCab→c(val(Xj))PCab→c(v)PCab→c(val(Xk)),

with the last equality following by the induction assumption. Notice, that since ab is a non-crossing pair,
all occurrences of ab in val(Xi) are contained in u, v, w, val(Xj) or val(Xk), as otherwise ab is a crossing
pair, which contradicts the assumption. Thus,

PCab→c(val(Xi)) = PCab→c(u)PCab→c(val(X
′
j))PCab→c(v)PCab→c(val(X

′
k))PCab→c(w),

which shows that PCab→c(val(Xi)) = val(X ′
i). � �

As in the case of SimpleEqualityTesting, the pair compression of all noncrossing pairs can be effectively
implemented, with a help of RadixSort for grouping of the appearances.

Lemma 12. The non-crossing pairs compression can be performed in O(|G|) time.

Proof. We go through the list productions of G. Whenever we spot an explicit pair ab, we put (a, b, 1, p)
in the list of pairs’ appearances, where 1 indicates, that this appearance is non-crossing and p is the
pointer to the appearance in G.

It is easy to list the crossing pairs: we begin with calculating for each nonterminal Xi the first and
last letter of val(Xi), which can be easily done in a bottom-up fashion. Then for aXib appearing in
the right-hand side of a rule we list the tuples for pairs af and ℓb with flag 0 indicating, that they are
crossing, where f (ℓ) is the first (last, respectively) letter in val(Xi) (the pointer p is not important, as
it is not going to be used for anything)

Then, we sort all these tuples lexicographically, using RadixSort in O(|G|) time: by Lemma 16 the size
of Σ is polynomial in n+m, and RadixSort sorts the tuples in O(|G|+ n+m) = O(|G|) time. Thus, for
each pair we obtain a list of its appearances. Moreover, when sorted, we can establish in O(|G|) time,
which pairs are crossing and which non-crossing: since 0 < 1 the first appearance of ab on the list will
have 0 on the third coordinate of the tuple if and only if the pair ab is crossing.

For a fixed non-crossing pair ab, the compression is performed as in the case of SimpleEqualityTesting,
see Lemma 3: We go through the associated list and use pointers to localise and replace all appearances

16 ARTUR JEŻ

of ab. If this pair is no longer there (as one of letters ab was already replaced), we do not nothing. For a
crossing pair, we do nothing.

The correctness follows in the same way as in Lemma 3, it only remains to estimate the running time.
Since rules of G are organised as lists, the pointers can be manipulated in constant time, and so the whole
procedure takes O(|G|) time. � �

Compression of crossing pairs. We intend to reduce the case of crossing pairs to the case of non-crossing
one, i.e. given a crossing pair we want to ‘uncross’ it and then compress using the procedure for compres-
sion of noncrossing pairs, i.e. PairCompNcr.

Let ab be a crossing pair. Suppose that this is because a is to the left of nonterminal Xi such that
val(Xi) = bw. To remedy this we ‘left-pop’ the leading b from Xi: we modify G so that val(Xi) = w and
replace each Xi with bXi in the rules. We apply this procedure to each nonterminal, in an increasing
order. It turns out that the condition that Xi is to the right of a is not needed, we left-pop b whenever Xi

starts with it. Symmetric procedure is applied for a letter a and nonterminals Xi such that val(Xi) = w′a.
It can be easily shown that after left-popping b and right-popping a the pair ab is no longer crossing, and
so it can be compressed.

Uncrossing a pair ab works for a fixed pair ab and so it has to be applied to each crossing pair separately.
It would be good to uncross several pairs at the same time. In general it seems impossible to uncross
an arbitrary set of pairs at the same time. Still, parallel uncrossing can be done for group of pairs of a
specific form: when we partition the alphabet Σ to Σℓ and Σr then pairs from ΣℓΣr can be uncrossed in
parallel. Intuitively, this is because pairs from ΣℓΣr cannot overlap as the same letter cannot be at the
same time the first in some crossing pair in this group and a second one. Furthermore, using a general
construction (based on binary expansion of numbers), we can find O(log(n + m)) partitions such that
each of 4(n+m) crossing pairs is covered by at least one of those partitions.

Note that letters should not be popped from Xm and Xn+m: on one hand those nonterminals are not
used in the rules and so they cannot be used to create a crossing pair, on the other hand, since they
define p and t we should not apply popping to them, as this would change text or pattern.

Algorithm 7 Pop(Σℓ,Σr): Popping letters from Σℓ and Σr

1: for i← 1 . . n+m, except m and m+ n do
2: let Xi → αi and b the first letter of αi

3: if the first letter b ∈ Σr then ⊲ Left-popping
4: remove leading b from αi

5: replace Xi in G’s rules by bXi

6: if αi = ǫ then remove Xi from rules of G ⊲ Xi is empty

7: let a be the last letter of αi

8: if a ∈ Σℓ then ⊲ Right-popping
9: remove ending a from αi

10: replace Xi in G’s rules by Xia
11: if αi = ǫ then remove Xi from rules of G ⊲ Xi is empty

Lemma 13. After Pop(Σℓ,Σr) no pair in ΣℓΣr is crossing. Furthermore, val(Xm) and val(Xn+m) have
not changed.

Pop runs in time O(n+m) and introduces at most 4(n+m) letters to G.

Proof. Suppose that ab ∈ Σℓ,Σr is crossing after Pop(Σℓ,Σr). Without loss of generality consider the
case, in which after Pop(Σℓ,Σr) there is aXj in the rule for Xi and val(Xj) starts with b. We first show
by induction, that if val(Xj) started with a letter from Σr then this letter was left-poppped from Xj by
Pop. This is of course true for X1, for general Xj with a rule Xj → αj consider that if val(Xj) begins
with b ∈ Σr, in which case it is left-popped, or with Xk, where k < j. In the latter case Pop did not pop
a letter from Xk. As val(Xk) begins with b ∈ Σr it should have, contradiction.

Returning to the main claim, we want to show that it is impossible that after Pop the aXj appears in
the rule for Xi, where val(Xj) begins with b ∈ Σr. Consider, whether Pop(Σℓ,Σr) left-popped a letter
from Xj . If so, then it replaced Xj with cXj and letter c ∈ Σr cannot be changed to any other letter
during the whole Pop(Σℓ,Σr). Hence a = c ∈ Σr, which is a contradiction. If no letter was popped from
Xj, then its first letter is not changed afterwards, and so it is b ∈ Σr. However, b should have been
popped from Xj , contradiction.

The other cases are shown in the same way.

FASTER FULLY COMPRESSED PATTERN MATCHING BY RECOMPRESSION 17

Concerning the running time note that we do not need to read the whole G: it is enough to read the
first and last letter in each rule. To perform the replacement, for each nonterminal Xi we keep a list of
pointers to its appearances, so that Xi can be replaced with aXib in O(1) time.

Note that at most 2 letters are popped from each nonterminal and so at most 4(n+m) are introduced
to G. � �

Now, when the pairs ab ∈ ΣℓΣr are no longer crossing, we can compress them. Since such pairs do
not overlap, this can be done in parallel in linear time, similarly as in Lemma 12.

The obvious way to compress all crossing pairs, is to make a series of partition (Σ
(1)
ℓ ,Σ

(1)
r), (Σ

(2)
ℓ ,Σ

(2)
r),

. . . such that each crossing pair is in at least one of those partitions. Since there are 4(n +m) crossing
pairs, see Lemma 9, in the naive solution we would have 4(n + m) partitions. However, using a more
clever approach, we can reduce this number to O(log(n+m)). Roughly, we make the partitions according
to the binary expansion of notations of letters: For i = 1, . . . ⌈log |Σ|⌉, define

• Σ
(2i−1)
ℓ = Σ

(2i)
r consist of elements of Σ that have 0 at the i-th position in the binary notation

(counting from the least significant digit)

• Σ
(2i−1)
r = Σ

(2i)
ℓ consist of elements of Σ that have 1 at the i-th position in the binary notation

For a 6= b, their binary notation differ at some position and so the pair ab is in some group Σ
(j)
ℓ Σ

(j)
r .

Note, that ab may be in many Σ
(j)
ℓ Σ

(j)
r but it will be compressed only once, for the smallest possible

j. Thus, it makes sense to define the lists Pj , where we include ab ∈ P ′ in the group Pj , when j is

the smallest number such that a ∈ Σ
(j)
ℓ and b ∈ Σ

(j)
r . Observe, that using standard bit operations we

can calculate the first position on which a and b differ and so also j for ab in constant time. Lastly,
since |Σ| = O((n + m) log(n + m) logM) = O((n + m)3) by Lemma 16, we partition P ′ into at most
O(log(n+m)) subgroups.

Algorithm 8 PairComp(Σℓ,Σr) compressing crossing pairs from ΣℓΣr.

1: find partitions of Σ into {Σ
(i)
ℓ ,Σ

(i)
r }, i ∈ O(log(n+m)) ⊲ see discussion above

2: partition the crossing pairs into groups P1, P2, . . . , P2i according to partitions of Σ
3: for j ← 1 . . 2i do

4: run Pop(Σ
(j)
ℓ ,Σ

(j)
r)

5: compress each of the pairs ab ∈ Pj ⊲ Pj is more or less P ′ ∩Σ
(j)
ℓ Σ

(j)
r

Concerning the running time of an efficient implementation, we first compute the list of explicit
appearances of each crossing pair, which is done in linear time using the same methods as in the case
of noncrossing pairs and divide those pairs into groups, also in linear time. However, Pop creates new
explicit appearances of pairs, which should be also compressed. Still, we can easily identify those new
appearances and assign them to appropriate groups. Re-sorting each group before the compression makes
sure that we can replace the pairs.

Lemma 14. The PairComp properly compresses all crossing pairs. It runs in O(|G|+(n+m) log(n+m))
time. It introduces O(log(n+m)) letters to each rule.

Proof. The sorted list of all appearances of each crossing pair is obtained as a by-product of creation a
similar list for noncrossing pairs, see Lemma 12. Each pair ab is assigned to the appropriate group Pj

(according to the partition for Σ
(j)
ℓ ,Σ

(j)
r) in constant time.

We analyse the processing of a single group Pj . By induction on the number of the group (j) we show
the following claim:

Claim 5. Compression of pairs from one group Pj , i.e. lines 4–5, can be done in time O(|Pj |+ n+m).

Proof. Firstly, by Lemma 13, the application of Pop(Σ
(j)
ℓ ,Σ

(j)
r) takes time O(n+m) and afterwards the

pairs from Pj are non-crossing. Note, that Pop(Σ
(j)
ℓ ,Σ

(j)
r) introduces new explicit pairs to G: when we

replace Xi by bXi and a is a letter to the left of Xj, a new explicit pair ab appears. In constant time
we can decide, to which Pj′ this pair should belong, we simply add it an appropriate tuple (a, b, 0, p) to
the list Pj′ (which makes the list Pj′ unsorted). There two remarks: firstly, by inductive assumption all
appearances of pairs from Pj′′ for j′′ < j were already replaced and so j′ ≥ j, so the newly introduced
pairs will be handled later; secondly, we do not know in advance, whether the pair ab is one of the
crossing pairs and so whether it should be compressed. To remedy this, each element Pj stores also an

18 ARTUR JEŻ

information, whether it was a crossing pair or perhaps it was added later on; those are used to decide
whether ab should be compressed at all, as described later on.

Now, since we cannot assume that the records in the list Pj are sorted or even that they shold be
compressed at all (as we might have added some pairs to Pj when considering Pj′ for j′ < j), we sort them
again, using RadixSort, ignoring the coordinate for the pointers; furthermore we add another coordinate,
which is 1 for original crossing pairs and 0 for those introduced due to recompression. The compression
can be done in time O(|Pj | + n+m). Now, as the list of appearances of pairs are sorted, we can cut it
into several lists, each consisting of appearances of a fixed pair. Going through one list, say for a pair
ab, we first whether the first appearance is an original crossing pair, if not, then we do not compress
appearances of this pair at all. If it is an original crossing pair, we replace appearances of ab (if they
are still there) in O(|Pj |) time: since we replace appearances of one fixed pair, we replace always by the
same (fresh) letter and so do not need to use any dictionary operations to look-up the appropriate letter.
Clearly, this procedure properly implements the pair compression for a single pair ab and thus also for
all pairs in Pj (note that pairs in Pj cannot overlap). � �

The running time of the whole loop 3 is at most (for some constant c):

2i
∑

j=1

c(|Pj |+ n+m) = 2c(n+m)i+ c

2i
∑

j=1

|Pj |

= O((n+m) log(n+m)) + c

2i
∑

j=1

|Pj | .

It is tempting to say that
∑2i

j=1 |Pj | ≤ |G| + 4(n +m): observe that before the loop 3 each element of
∑2i

j=1 |Pj | corresponds to some appearance of a (crossing) pair in G, and there are only |G| + 4(n +m)
such appearances by Lemma 9. However, Pop introduce new pairs to the lists. Still, there are only
2(n + m) pairs added by one run of Pop, see Lemma 13, hence in total there are only 2i(n +m) pairs
introduced in this way. Hence

2i
∑

j=1

|Pj | ≤ |G|+ 4(n+m) + 2i(n+m)

= O(|G| + (n+m) log(n+m)) .

Thus, the total running time is O((n + m) log(n + m) + |G|), and at most O(log(n + m)) pairs are
introduced into a rule. � �

4.3. Blocks compression. Now, we turn our attention to the block compression. Suppose first that
G has no letters with a crossing block. Then a procedure similar to the one compressing non-crossing
pairs can be performed: when reading G, we establish all maximal blocks of letters. We group these
appearances according to the letter, i.e. for each letter a we create a list of a’s maximal blocks in G
and we sort this list according to the lengths of the blocks. We go through such list and we replace each
appearance of aℓ by a fresh letter aℓ.

However, usually there are letters with crossing blocks. We deal with this similarly as in the case of
crossing pairs: a letter a has a crossing block if and only if aa is a crossing pair. So suppose that a is to
the left of Xi and the first letter of val(Xi) is a, in such a case we left-pop a letter from Xi. In general,
this does not solve the problem as it may happen that still a is the first letter of val(Xi). So we keep on
left-popping until it is not. In other words, we remove the a-prefix of val(Xi). Symmetric procedure is
applied to Xj such that a is the last letter of val(Xj) and Xj is to the left of a.

It turns out that even a simplified approach works: for each nonterminal Xi, where the fist letter of
val(Xi) is a and the last letter of val(Xi) is b, it is enough to ‘pop’ its a-prefix and b-suffix, see RemCrBlocks.

Observe that during the procedure, long blocks of a (up to 2n+m) may be explicitly written in the
rules. This is conveniently represented: aℓ is simply denoted as (a, ℓ), with ℓ encoded in binary. When
ℓ fits in one code word, aℓ representation is still of constant size and everything works smoothly. For
simplicity, for now we consider only this case, the general case is treated in Section 6.

FASTER FULLY COMPRESSED PATTERN MATCHING BY RECOMPRESSION 19

Algorithm 9 RemCrBlocks: removing crossing blocks.

1: for i← 1 . .m+ n, except n and n+m do
2: let Xi → αi be the production for Xi and a its first letter
3: calculate and remove the a-prefix aℓi of αi

4: let b be the last letter of αi

5: calculate and remove the b-suffix bri of αi

6: replace each Xi in rule’s bodies by aℓiXib
ri

7: if val(Xi) = ǫ then remove Xi from the rules’ bodies

After RemCrBlocks, every letter a has no crossing blocks and we may compress maximal blocks using
the already described method.

Lemma 15. After RemCrBlocks there are no crossing blocks. This algorithm and following block com-
pression can be performed in time O(|G| + (m + n) log(m + n)) and introduce at most 4 new letters to
each rule.

Proof. We first show the first claim of the lemma, i.e. that after RemCrBlocks there are no letters with
crossing blocks. This follows from three observations:

(1) When RemCrBlocks considers Xi with a rule Xi → αi such that val(Xi) = arwbℓ, where w does
not start with a and does not end with b, then αi has an explicit aℓ prefix and explicit br suffix.

(2) When RemCrBlocks replaces Xi with aℓiXib
ri then afterwards the only letter to the left (right)

of Xi in the rules is a (b, respectively).
(3) After RemCrBlocks considered Xi, and Xi is to the left (right) of a then a is not the first (last,

respectively) letter of val(Xi).

All properties follow by a simple induction on the number i of considered nonterminal.
We infer from these observations that after RemCrBlocks there are no crossing blocks in G. Suppose

for the sake of contradiction, that there are; let a be the letter that has a crossing block. By symmetry
we consider only the case, when there are Xi and Xj such that aXj appear in the rule for Xi and val(Xj)
begins with a. Note that by observation 1 when RemCrBlocks considered Xj then it replaced it with
bℓXjc

r for some letters b and c. By observation 2 the letter to the left of Xj in the rule for Xi is not
changed by RemCrBlocks afterwards (except that it can be popped when considering Xi) hence b = a.
Lastly, by observation 3 the first letter of val(Xj) is not a, contradiction.

RemCrBlocks is performed in O(|G|) time: assuming that we represent block aℓ as a pair (a, ℓ), the
length of the a-prefix (b-suffix) is calculated simply by reading the rule until a different letter is read (note
that the lengths of the blocks fit in one machine word). Since there are at most 4 symbols introduced by
RemCrBlocks to the rule, this takes at most O(|G|) time. The replacement of Xi by aℓiXib

ri is done at
most twice inside one rule and so takes in total O(n+m) time.

Note that right after RemCrBlocks it might be that there are neighbouring blocks of the same letter
in the rules of G. However, we can easily replace such neighbouring blocks by one block of appropriate
length by in one reading of G, in time O(|G|).

Concerning the compression of the blocks of letters, we adapt the block compression from SimpleEqual-

ityTesting, see Lemma 3, it is done in a similar way as we adapted the compression of non-crossing pairs
from SimpleEqualityTesting, see Lemma 12. For the sake of completeness, we present a sketch: We read
the description of G. Whenever we spot a maximal block aℓ for some letter a, we add a triple (a, ℓ, p) to
the list. The p is the pointer to this appearance of the block in G. Notice, that as there are no crossing
blocks, the nonterminals (and end or rules) count for termination of maximal blocks.

After reading the whole G we sort these pairs lexicographically. However, we sort separately the blocks
that include the a-prefixes (or b-suffixes) popped from nonterminals and the other blocks. As in total we
popped at most 4(n + m) prefixes and suffixes, there are at most 4(n + m) blocks of the former form,
so we can sort their tuples in O((n + m) log(n + m)) time, using any usual sorting algorithm of. The
remaining blocks are sorted using RadixSort in linear time: note that other blocks cannot have length
greater than |G|, and as Σ = O((n+m) logM log(n+m)) = O((n+m)3), those tuples can be sorted in
O(|G|) time. Lastly, we can merge those two lists in O(|G|) time.

Now, for a fixed letter a, we use the pointers to localise a’s blocks in the rules and we replace each of
its maximal block of length ℓ > 1 by a fresh letter. Since the blocks of a are sorted according to their
length, all blocks of the same length are consecutive on the list, and replacing them by the same letter is
easily done.

20 ARTUR JEŻ

Since we already know that there are no letters with crossing block, we can show, as in Lemma 12,
that this procedure realises the block compression. The simple proof, which is essentially the same as the
proof in Lemma 12, is omitted. � �

4.4. Grammar and alphabet sizes. The subroutines of FCPM run in time dependant on |G| and |Σ|,
we bound these sizes.

Lemma 16. During FCPM, |G| = O((n+m) log(n+m)) and |Σ| = O((n+m) log(n+m) log |M |).

The proof is straightforward: using an argument similar to Lemma 2 we show that the size of the
words that were in a rule at the beginning of the phase shorten by a constant factor (in this phase). On
the other hand, only Pop and RemCrBlocks introduce new letters to the rules and it can be estimated,
that in total they introduced O(log(n+m)) letters to a rule in each phase. Thus, bound O(log(n+m))
on each rules’ length holds. Concerning |Σ|, new letters appear as a result of a compression. Since each
compression decreases the size of |G| by at least 1, there are no more than |G| of them in a phase, which
yields the bound.

Proof. We begin with showing the bound on |G|. Consider a rule of G. On one hand, its size drops, as
we compress letters in it. On the other, some new letters are introduced to the rule, by popping them
from nonterminals. We estimate both influences.

Observe that Claim 1 applies to the bodies of the rules and so an argument similar to the one in the
proof Lemma 2 can be used to show that the length of the explicit strings that were in the rules at the
beginning of the phase decreases by a constant factor in each phase. Of course, the newly introduced
letters may be unaffected by this compression. By routine calculations, as each rules’ length decrease by a
constant factor, if O((n+m) log(n+m)) letters are introduced to G, the |G| is also O((n+m) log(n+m))
(with a larger constant, though). Hence it is left to show that O((n+m) log(n+m)) letters are introduced
to G in one phase. We do not count the letters that merely replaced some other letters (as a compression
of maximal block or a pair compression), but only the letters that were popped into the rules.

In noncrossing pair compression there are no new letters introduced. Concerning the crossing pairs
compression, by Lemma 14 this introduces at most O(log(n+m)) letters to a rule, which is fine. When
RemCrBlocks is applied, it introduces at most 4 new symbols into a rule, see Lemma 15. In total, this
gives O(log(n+m)) letters per rule, so O((n+m) log(n+m)) letters in total.

Concerning the alphabet, the time used in one phase, is O((n+m) log(n+m)+ |G|), which is O((n+
m) log(n+m)). Thus no more than this amount of letters is introduced in one phase. Lemma 2 guarantees
that there are O(logM) phases, and so a bound O((n+m) logM log(n+m)) on |Σ| follows. � �

Memory Consumption. EqualityTesting uses memory proportional to the size of grammar representation,
so O((n +m) log(n+m)) space, assuming that numbers up to M fit in O(1) code words.

Main proof. The cost of one phase of EqualityTesting is O(|G| + (n + m) + (m + n) log(n + m)), by
Lemmas 12, 14 and 15 while Lemma 16 shows that |G| = O((n +m) log(n + m)) and Lemma 2 shows
that there are O(logM) phases. So the total running time is O((n+m) logM log(n+m)).

5. Pattern matching

In Section 3 it was shown how to perform the pattern matching using recompression on explicit strings.
In this section we extend this method to the case in which p and t are given as SLPs. Note that most of
the tools are already known, as in Section 4 it was shown how to perform the equality testing when both
p and t are given as SLPs. In particular, the proof of correctness of the pattern matching follows from
the one in Section 3, so we need to focus only on the efficient implementations, mostly of FixEndsDifferent

and FixEndsSame, as other operations are used already in EqualityTesting.
The outline of the algorithm looks as follows, in the rest of the section we comment on the implemen-

tation details and running time.

FASTER FULLY COMPRESSED PATTERN MATCHING BY RECOMPRESSION 21

Algorithm 10 FCPM: outline

1: while |p| > 1 do
2: P ← list of pairs, L← list of letters
3: fix the beginning and end ⊲ See Section 3
4: for each a ∈ L do compress blocks of a

5: P ′ ← crossing pairs from P , P ← noncrossing pairs from P
6: for each ab ∈ P do compress pair ab

7: for ab ∈ P ′ do compress pair ab

8: Output the answer.

The first operation in the FCPM is the fixing of the beginning and end, which adapts FixEndsSame

and FixEndsDifferent to the compressed setting.

Lemma 17. The fixing of beginning and end for an SLP represented p and t can be performed in
O(|G|+ (n+m) log(n+m)) time.

It introduces O(n+m) new letters to G.

Proof. To see this, we look at the operations performed by FixEndsSame (the ones for FixEndsDifferent

are even simpler) and comment how to perform them efficiently. Firstly, in linear time we can find out
what is the first and last letter of p, to see whether FixEndsDifferent or FixEndsSame should be applied,
suppose the latter. Now FixEndsSame performs a (modified) block compression, the only difference is
that we compress only blocks of a and replace them not by a single letter, but by up to three letters. To
this end we apply a modified RemCrBlocks, which removes only a-prefixes and a-suffixes and afterwards
compress only blocks of a. The running time bounds O(|G| + (n +m) log(n +m)), see Lemma 15, are
preserved, furthermore, using the same argument as in Lemma 15 it can be shown that after the modified
block compression there are no crossing a blocks. Furthermore, by the same lemma O(n+m) new letters
are introduced to G.

The next operations in FixEndsSame is the compression of pairs of the form {aLb | b ∈ Σ \ aL}, then
{baR | b ∈ Σ \ aR} (and then perhaps also {a1b | b ∈ Σ \ a1}). In each case the pairs are obtained by
partitioning the alphabet into Σℓ and Σr, (where one of the parts is a singleton). Thus by Lemma 13
one such group can be uncrossed in O(n + m) time, the uncrossing introduces O(n + m) letters to G.
Afterwards we can compress all pairs by naively in O(|G|) time. � �

The rest of the operations on G (pair compression, block compression) is implemented as in Section 4
and has the same running time.

We now move to the analysis of FCPM. We show that FCPM preserves the crucial important property of
EqualityTesting: that |p| decreases by a constant factor in each phase and that |G| = O((n+m) log(n+m)).

Lemma 18. In each phase the FCPM shortens p by a constant factor. The size of G is O((n+m) log(n+
m)), while the size of Σ is O((n+m) log(n+m) logM)

Proof. Observe that FCPM performs the same operations on p as SimplePatternMatching, but it just does
it on the compressed representation. Thus it follows from Lemma 7 that both p and t are shortened by
a constant factor in one phase of FCPM.

Concerning the size of the grammar, a similar argument as in Lemma 16 applies: note that as Equali-

tyTesting the FCPM introduces O((n+m) log(n+m)) letters per phase into G. On the other hand, the
analysis performed in Lemma 7 (that SimplePatternMatching shortens p) applies to each substring of p
and t, so each explicit string in the rules of G is shortened during the phase by a constant factor, i.e. the
same as in Lemma 16. Hence the size of G kept by FCPM can be also bounded by O((n+m) log(n+m)).
Consequently, also |Σ| = O((n+m) log(n+m) logM). � �

Now, Lemma 18 implies that FCPM runs in O((n + m) log(n + m) logM) time: each subprocedure
runs in time O(|G| + (n + m) log(n + m)) = O((n + m) log(n + m)) and so this is also the running
time of one phase. Since pattern is shortened by a constant factor in each phase, see again Lemma 18,
there are O(logM) many phases. The correctness (returning representation of all pattern appearance)
follows from the correctness of SimplePatternMatching (as the performed operations are the same, just
the representation of p and t is different).

Theorem 3. FCPM runs in O((n+m) log(n+m) logM) time and returns a representation of all pattern
appearances in text.

22 ARTUR JEŻ

Positions of appearances. In order to give the position of the first appearance of the pattern we need to
track to how many letters in the input the current symbol of Σ corresponds. This is formalised using
weight of letters, which is extended to strings in a natural way: Every letter a in the input grammar has
w(a) = 1, while when a new letter a replaces the string w we set w(a) = w(w). When N fits in a constant
amount of code words, the weight of each letter can be calculated in constant time, so we can store the
weights of the letters on the fly in a table.

Since the compression can be seen as building an SLP for the input, the weights of the letters are
well defined (recall that we can always imagine new letters replace non-empty strings in the instance,
see Section 2 and end of Section 3). Thus, to calculate the position of the first pattern appearance it is
enough to calculate the weight of the string preceding it. To this end we keep up-to-date table of weights
of val(Xi), for each Xi. To return the first position of a pattern appearance we determine the derivation
path for this appearance and sum up the weights of nonterminals and letters that are to the left of this
derivation path; this is easy to perform in time linear in |G|.

Note that there is a small technical issue: in one special case we remove the first letter from t, when
it is aR. But w(aR) = 0 and so it does not influence anything. When considering the last appearance of
the pattern, note that the aL that is removed from the end has a non-negative weight, still it is enough
to add the weights of all letters removed from the end of t.

6. Improving running time

In order to reduce the running time to O((n+m) logM) we need to make sure that the grammar size
is O(n + m) and improve the running time of block compression, see Lemma 15, so that it is O(|G|),
without the extra (n + m) log(n + m) summand. For the former, the argument in Lemma 16 (and its
adaptation in Lemma 18) guarantee this size as long as there are only O(n+m) letters introduced to G
in a phase. The crossing blocks compression already posses this property, see Lemma 15, so it is enough
to alter the crossing pairs compression.

We show that it is enough to consider O(1) partitions Σℓ,Σr and pairs that fall into them. Roughly, we
choose a partition such that a constant fraction of crossing pairs appearances in p fall into this partition.
In particular, we calculate for each crossing pair ab the number of its appearances in p, so we need to
manipulate numbers up to M in constant time, i.e. this construction requires that M fits in O(1) code
words.

For the block compression, we improve the sorting time: we group block lengths into groups of similar
lengths and sort them inside one such group in linear time using RadixSort. The groups are also established
using RadixSort performed on representatives of groups. The latter sorting treats numbers as bit string
and therefore may have high running time, but we show that overall it cannot exceed O((n+m) logM)
during the whole FCPM.

6.1. Faster compression of crossing pairs. Let us formalise the notion that ab falls into a partition
of Σ: for a given partition Σℓ,Σr we say that it covers the appearances of ab ∈ ΣℓΣr in p. The main idea
of improving the running time of the crossing pairs is quite simple: instead of considering O(log(n+m))
partitions such that each crossing pair from P ′ is covered by at least one of them, we consider only one
partition Σℓ,Σr such that at least one fourth of appearances of crossing pairs in p are covered by it. Then
estimations about shortening of the pattern in one phase hold as before, though with a larger constant.

Existence of such a partition can be shown by a simple probabilistic argument: if we assign each
letter to Σℓ with probability 1/2 then a fixed appearances of ab in p is covered with probability 1/4.
The standard expected-value derandomisation technique gives a deterministic algorithm finding such a
partition, it can be easily implemented in O(|G|) time, see Lemma 20.

It is not guaranteed that this partition shortens also |G|, however, we can use exactly the same approach
to shorten G: we find another partition ΣℓΣr such that at least 1/4 of crossing pairs explicit appearances
in G are from this partition.

Our to-be-presented algorithm constructing a partition requires a list of all crossing pairs, together
with number of their appearances in p. This can be supplied using a simple linear-time algorithm: for
each nonterminal Xi we calculate the amount ki of substrings val(Xi) it generates in p. We associate an
appearance of ab with the least nonterminal that generated it. Then the number of all appearances of ab
can be calculated summing appropriate kis.

Lemma 19. Assuming M fits in O(1) code words, in O(|G| + n + m) we can return a sorted list of
crossing pairs together with number of their appearances in p.

FASTER FULLY COMPRESSED PATTERN MATCHING BY RECOMPRESSION 23

Proof. Clearly km = 1 (as Xm simply generates the whole p) and other numbers satisfy a simple recursive
formula:

(2) kj =
∑

i>j

ki ·#{number of times Xj appears in the rule for Xi} .

Then (2) can be used in a simple linear-time procedure for calculation of ks: for i = m. . 1 we add ki to
kj , when Xj appears in the rule for Xi (we add twice if there are two such appearances). Clearly this
can be implemented in linear time.

Concerning the number of appearances of crossing pairs, observe that each appearance of ab in p can
be assigned to a unique rule Xi → αi: this is the rule that generates this particular appearance of ab and
moreover this appearance of ab comes from an explicit appearance of ab in αi or a crossing appearance
of ab in this rule. To see this imagine we try to retrace the generation of this particular ab: Given Xi

generating this appearance of ab (we start with Xm, as we know that it generates this ab) we check if it
is generated by nonterminal Xj in the rule. If so, we replace Xi with Xj and iterate the process. If not,
then this ab is comes from either an explicit or crossing pair in this Xi.

Given a rule for Xi listing all pairs that appear explicitly or have a crossing appearance in the rule
for Xi is easy, for each such pair ab we create a tuple (a, b, ki) (where ki is the number of substrings that
Xi generates). We sort the tuples using RadixSort (in O(|G|+ n+m) time). Now for a given pair ab the
tuples with number of its appearances are listed consecutively on the list, so for each pair we can add
those numbers and obtain the desired (sorted) list of pairs with numbers of their appearances in G, this
also takes linear time, since list is of this length.

This list includes both crossing and non-crossing pairs. We use the same procedure as in Lemma 12
to establish the crossing and non-crossing pairs. Note that it generated a sorted list of crossing (and
non-crossing) pairs, this takes O(|G| + n+m) time. Without loss of generality, the order on those lists
is the same as on our list, so we can filter from it only crossing pairs in linear time. � �

In the following, for a crossing pair ab we shall denote by kab the number of its appearances in p,
calculated in Lemma 19.

Now we are ready to find the partition covering at least one fourth of the appearances of crossing pairs
is done by a derandomisation of a probabilistic argument showing its existance: divide Σ into Σℓ and Σr

randomly, where each letter goes to each of the parts with probability 1/2. Consider an appearance of a
crossing pair ab in p. Then a ∈ Σℓ and b ∈ Σr with probability 1/4. This applies to every appearance of
a crossing pair in p, so the expected number of pairs covered is 1/4 of their number.

Lemma 20 (cf. [12]). For p in O(|G| + n + m) time we can find a partition of Σ into Σℓ, Σr such
that number of appearances of crossing pairs in p covered by this partition is at least 1/4 of all such
appearances in p. In the same running time we can provide for each covered crossing ab a lists of pointers
to its explicit appearances in G.

Proof. Observe first that the above probabilistic argument can be altered: if we were to count the
number of pairs that are covered either by ΣℓΣr or by ΣrΣℓ then the expected number of crossing pairs
appearances covered by ΣℓΣr ∪ ΣrΣℓ is one half.

The deterministic construction of such a partition follows by a simple derandomisation, using an
expected value approach. It is easier to first find a partition such that at least half of crossing pairs’
appearances in p are covered by ΣℓΣr∪ΣrΣℓ, we then choose ΣℓΣr or ΣrΣℓ, depending on which of them
covers more appearances.

According to Lemma 19 we assume that we are given a sorted list P ′, on which we have all crossing
pairs together with the number kab of their appearances in p.

Suppose that we have already assigned some letters to Σℓ and Σr and we are to decide, where the
next letter a is assigned. If it is assigned to Σℓ, then all appearances of pairs from aΣℓ ∪ Σℓa are not
going to be covered, while appearances of pairs from aΣr ∪ Σra are; similarly observation holds for a
being assigned to Σr. The algorithm makes a greedy choice, maximising the number of covered pairs in
each step. As there are only two options, the choice brings in at least half of appearances considered.
Lastly, as each appearance of a pair ab from p is considered exactly once (i.e. when the second of a, b
is considered in the main loop), this procedure guarantees that at least half of appearances of crossing
pairs in p is covered.

In order to make the selection effective, the algorithm GreedyPairs keeps an up-to-date counters
countℓ[a] and countr[a], denoting, respectively, the number of appearances of pairs from aΣℓ ∪ Σℓa
and aΣr ∪ Σra in p. Those counters are updated as soon as a letter is assigned to Σℓ or Σr. Note that
as by Claim 2 we can assume that letters in p are from an interval of consecutive |G| letters, this can be
organised as a table with constant access time to countℓ[a] and countr[a].

24 ARTUR JEŻ

Algorithm 11 GreedyPairs

1: L← set of letters used in P ′

2: Σℓ ← Σr ← ∅ ⊲ Organised as a bit vector
3: for a ∈ L do
4: countℓ[a]← countr[a]← 0 ⊲ Initialisation

5: for a ∈ L do
6: if countr[a] ≥ countℓ[a] then ⊲ Choose the one that guarantees larger cover
7: choice ← ℓ
8: else
9: choice ← r

10: Σchoice ← Σchoice ∪ {a}
11: for each b ∈ L do
12: countchoice[b]← countchoice[b] + kab + kba

13: if # appearances of pairs from ΣrΣℓ in p> # appearances of pairs from ΣℓΣr in p then
14: switch Σr and Σℓ

15: return (Σℓ,Σr)

By the argument given above, when Σ is partitioned into Σℓ and Σr, at least half of the appearances
of pairs from p are covered by ΣℓΣr ∪ ΣrΣℓ. Then one of the choices ΣℓΣr or ΣrΣℓ covers at least one
fourth of the appearances.

It is left to give an efficient variant of GreedyPairs, the non-obvious operations are the choice of the
actual partition in line 14 and the updating of countℓ[b] or countr[b] in line 12. All other operation clearly
take at most O(|G|+ n+m) time. The latter is simple: since Σℓ and Σr as organised as a bit vector, we
can read P ′, for each pair in it check if it is covered by ΣℓΣr or ΣrΣℓ and calculate the total number of
pairs appearances covered by each of those two partitions.

To implement the count, for each letter a in p we have a table right of right lists : right(a) =
{(b, kab)|ab appears in P ′}, represented as a list. There is a similar left list left(a) = {(b, kba)|ba appears in P ′}.
Since at the input we get a sorted list of all pairs ab together with kab, creation of right(a) can be easily
done in in linear time (and similarly left(a) can).

Given right and left, performing the update in line 12 is easy (suppose that we are to update countℓ):
we go through right(a) (left(a)) and increase the countℓ[b] by kab (kba, respectively). As right, left and
count are organised as tables, this takes only O(1) per read element of right(a) (left(a)). We can then
discard right(a) (left(a)) as they are not going to be used again. In this way each of the list right(a)
(left(a)) is read O(1) times during GreedyPairs, and so this time is at most as much as the time of their
creation, i.e. O(|G|). � �

A similar construction works also when we want to calculate the partition that covers 1/4 of appear-
ances of crossing pairs in G: when calculating the number of appearances of pair ab it is enough to drop
the coefficient ki for appearing in the rule Xi and take 1 for every rule. The rest of the construction and
proofs is the same.

Lemma 21. In O(|G| + n + m) time we can find a partition of Σ into Σℓ, Σr such that number of
appearances of crossing pairs in G covered by this partition is at least 1/4 of all such appearances in G.
In the same running time we can provide for each covered crossing ab a lists of pointers to its explicit
appearances in G.

Thus the modification to FCPM would be as follows: after establishing the list of all crossing pairs we
find two partitions Σℓ,Σr, Σ

′
ℓ,Σ

′
r one of which covers half of appearances of crossing pairs in the pattern

the other in G. And then instead of compressing all crossing pairs we compress only those covered by
the first and then by the second of those two partitions. Each of those compression requires only one call
to Pop, so there are only O(1) letters introduced to a rule during the crossing pairs compression.

Lemma 22. FCPM using the modified crossing pair subprocedure introduces O(1) letters to a rule in one
phase.

It is left to estimate that indeed this modified compression schema shortens |p| and |G| by a constant
factor in a phase. This will clearly guarantee the O(logM) number of phases.

Lemma 23. FCPM using the modified crossing pair subprocedure keeps the size of the grammar O(n+m)
and has O(logM) phases

FASTER FULLY COMPRESSED PATTERN MATCHING BY RECOMPRESSION 25

Proof. Let us first consider the simpler case of EqualityTesting. Consider first the length of p, we show
that it is reduced by a constant factor in a phase. Consider two consecutive letters ab in p. Observe that
if EqualityTesting tried to compress ab (when a = b this means that a blocks were compressed) then at
least one of those letters is compressed in the phase: we tried to compress this ab and the only reason
why we could fail is because one of those letters was already compressed by some earlier compression.
We want to show that for at least 1/4 of all such pairs ab we tried to compress them. Thus at least 1/8
of all letters was compressed and so the length of p dropped by at least 1/16 in a phase.

If a = b then we compressed them, during the blocks compression. If a 6= b and ab is non-crossing then
we tried to compress them. Lastly, when a 6= b and ab is a crossing pair, then we chose a partition ΣℓΣr

such that at least 1/4 of all appearances of crossing pairs is covered by this partition. So for one in four
of such pairs we tried to compress them.

In total, for at least one fourth of abs we tried to compress them, as claimed.
A similar analysis yields that we reduced the length of |G| (excluding the new introduced letters) by

15/16. Since we introduce only O(n+m) new letters to G per phase, the size of G remains O(n+m).
Now, in the general case of FCPM we combine this analysis with the one in Lemma 7. We define

the fragments of more than one letter as in Lemma 7, i.e. the letters that were replaced during the
compression are grouped so that one group (fragment) is replaced with a shorter string. The letters that
were not altered are not assigned to any fragments.

Similarly as in the earlier argument for EqualityTesting above, we want to show that for at least 1/4
of all pairs of consecutive letters one of those letters was assigned to a fragment. Since fragments are
replaced with strings of at most 3/4 of their length, as above this shows that p is shortened by a constant
factor. To show that at least one of ab is in a compressed fragment it is again enough to show that we
tried to compress ab (either as a pair of different letters or as a part of a block of letters): if we succeed
then a, b are in the same fragment, if we fail then this means that at least one of them is in some other
fragment.

So consider any two consecutive letters a and b. If any of them was compressed during the fixing of
beginning or end then we are done, as it was assigned to a fragment. Otherwise, if a = b than they are
compressed during the blocks compression, so both of them are assigned to the same fragment. If a 6= b
and ab is a non-crossing pair, then we tried to compress it during the non-crossing pairs compression.
Lastly, if a 6= b and ab is a crossing pair then due to our construction of Σℓ and Σr from Lemma 21 at
least one fourth of appearances of crossing pairs is chosen for the compression.

The rest of the argument follows as in the case of the one for EqualityTesting, with a slightly larger
constant. Hence, in each round p is shortened by a constant factor and so there are at most logM phases.

Observe that a similar argument holds for G: there is a second round of compression of crossing pairs
that tries to compresses at least 1/4 of crossing pairs appearances in G. Hence also the explicit strings in
G can be grouped into fragments as above. On the other hand, by Lemma 15 and 22 there are O(n+m)
letters introduced to G in one phase (and those are not necessarily compressed). So the size of the new
grammar (at the end of the phase) G′ can be given using an recursive equation

|G′| ≤ α|G|+ β(n+m)

for some α < 1 and β. Since in the first phase |G| = 2(n + m) by simple calculations it follows that

|G′| ≤ 2β
1−α

(n+m). � �

6.2. Block compression. As already noted, we should improve the O(|G|+(n+m) log(n+m)) running
time, see Lemma 15 used for sorting of blocks’ lengths to O(|G|). We deal with this by introducing a
special representation of the lengths of a blocks. In particular, we shall sort the lengths of blocks using
RadixSort, treating the lengths as bitvectors. For this reason considering very long blocks that exceed the
length of p needs to be avoided.

Too long blocks. Consider the blocks of letter a that does not appear in p. Then there is no difference,
whether we replace two appearances of aℓ with the same letter, or with different letters, as they cannot
be part of a pattern appearance. Thus, for a that does not appear in p we perform a ‘sloppy’ blocks
compression: we treat each maximal block as if it had a unique length. To be precise: we perform
RemCrBlocks, but represent aℓ blocks as (a, ?) for ℓ > 1. Then, when replacing blocks of a (we exclude
the blocks of length 1), we replace each of them with a fresh letter. In this way, the whole blocks
compression does not include any cost of sorting the lengths of blocks of a. Still, the appearances of the
pattern are preserved.

Similar situation appears for a that appears in p, but t has a blocks of length greater than M . We
treat them similarly: as soon as we realise that aℓ has ℓ > M , we represent such blocks as (a,> M) and

26 ARTUR JEŻ

do not calculate the exact length and do not insist that two such blocks of the same length are replaced
with the same symbol. In this way we avoid the cost associated with sorting this length. Of course, when
a is the first or last letter of the pattern we need to replace them with aRa?aL (or similar), to allow the
pattern beginning/ending at this block.

Length representations. The intuition is as follows: while the a blocks can have exponential length, most
of them do not differ much, as they are obtained by concatenating letters a that appear explicitly in the
grammar. Such concatenations can in total increase the lengths of a blocks by |G|. Still, there are blocks
of exponential length: these ‘long’ blocks are created only when two blocks coming from two different
non-terminals are concatenated. However, there are only n + m concatenations of nonterminals, and
so the total number of ‘long’ blocks ‘should be’ at most n + m. Of course, the two mentioned ways of
obtaining blocks can mix, and our representation takes this into the account: we represent each block as
a concatenation of two blocks: ‘long’ one and ‘short’ one:

• the ‘long’ corresponds to a block obtained as a concatenation of two nonterminals, such a long
block is common for many blocks of letters,
• the ‘short’ one corresponds to concatenations of letters appearing explicitly in G, this length is

associated with the given block alone.

More formally: we store a list of common lengths, i.e. the lengths of common long blocks of letters.
Each block-length ℓ is represented as a sum c + o, where c is one of the common lengths and o (offset)
is a number associated with ℓ. Furthermore, some blocks are represented only by offsets; we sometimes
think of them as if they were represented by a common length 0 and an offset. The construction will
guarantee that each offset is at most |G|. Internally, aℓ is represented as a number o and a pointer to c.

Initially a common length c is created for each nonterminal Xi, such that val(Xi) = ac. Next, other
common lengths are created, when we add two common lengths (perhaps with offsets), i.e. when during
the calculation of length ℓ (inside a rule) we add lengths that are both represented using non-zero common
lengths. This new length ℓ is then a new common length and is represented as itself plus a 0 offset. If we
concatenate explicit letter a (i.e. represented by a 0-common length with an offset) to a block, we simply
increase the offset. The blocks that are created solely by explicit letters a are represented by offsets alone,
without a common length. Observe that this covers all possible way of creation of block. Furthermore,
there are at most 2(n+m) common lengths in one phase: at most n+m created when Xi defines a block
of letters and at most one per rule created as a concatenation of two block whose lengths are represented
as common lengths.

Before proceeding, let us note on how large the offsets may be and how many of them are.

Lemma 24. There are at most |G|+ n+m offsets in total and largest offset is at most |G|.

Proof. Creation of an offset corresponds to an explicit letter in G, so there are at most |G| offsets created.
An offset is created or increased, when an explicit letter a (not in a compressed form) is concatenated

to the block of as. One letter is used once for this purpose and there is no other way to increase an offset,
so the maximal of them is at most |G|. � �

Since we intend to sort the lengths, we need to compare the lengths of two numbers represented as
common lengths with offsets, say o + c and o′ + c′. Since the common lengths are so large, we expect
that we can compare them lexicographically, i.e.

(3) o+ c ≥ o′ + c′ ⇐⇒

{

c > c′, or

c = c′ ∧ o ≥ o′

Furthermore (3) allows a simple way of sorting the lengths of maximal blocks:

• we first sort the common lengths (by their values)
• then for each common length we (separately) sort the offsets assigned to this common length.

While (3) need not to be initially true, we can apply a couple of patches which make it true. Before that
however, we need the common lengths to be sorted. We sort them using RadixSort and treating each
common length as a series of bits. Although this looks more expensive, it allows a nice amortised analysis
as demonstrated later, see Lemma 28. Recall that we do not sort lengths of blocks longer than M .

Lemma 25. Let c1 ≤ c2 ≤ · · · ≤ ck ≤ M be the common lengths. The time needed to sort them is

O(
∑k

i=1 log(ci) + k).

This is done by a standard implementation of RadixSort that sorts the numbers of different length.
The problem with (3) is that even though ci and cj are so large, it can still happen that |c−c′| is small.

We fix this naively: first we remove common lengths so that ci+1 − ci > |G|. A simple greedy algorithm

FASTER FULLY COMPRESSED PATTERN MATCHING BY RECOMPRESSION 27

does the job in linear time. Since common lengths are removed, we need to change the representations
of lengths: when o was assigned to removed c consider the ci and ci+1 that remained in the sequence
and ci < c < ci+1. We reassign ℓ = c + o to either ci or ci+1: if o + c ≥ ci+1 then we reassign it to
ci+1 and otherwise to ci. It can be shown that in this way all offsets are at most 2|G| and that (3) holds
afterwards.

Lemma 26. Given a sorted list of common lengths we can in O(|G|) time choose its sublist and reassign
offsets (preserving the represented lengths) such that all offsets are at most 2|G| and (3) holds.

Proof. Given a sorted list of of common lengths we choose a subsequence of it such that the distance
between any two consecutive common lengths in it is at least |G|. This is done naively: we choose c0 = 0
and then go through the list. Having last chosen c we look for the smallest common length c′ such that
c′ − c > |G| and choose this c′. Since there are 2(n+m) common lengths in the beginning, this can be
done in O(n+m) time. We refer to the obtained sequence as 0 = c0 < c1 <

For any removed c such that ci < c < ci+1 we reassign offsets assigned to c as described above: for
o assigned to c, if c + o ≥ ci+1 then we reassign o to ci+1, otherwise to ci. In this way o is changed to
o′ and it takes O(1) per offset to change this and as there are O(|G|) offsets, see Lemma 24, this takes
O(|G|) time in total. Let o′ be the offset after the reassignment. Then

• o′ ≤ 2|G|, since o ≤ |G| and the only way to increase it is to reassign it to ci. Since c is removed,
it holds that c− ci ≤ |G|. Hence o′ = o+ (c− ci) ≤ |G|+ |G|.
• When oi is assigned to ci then oi + ci < ci+1: indeed, if oi was reassigned from c > ci then by

definition ci + oi = c+ o < ci+1; if o was originally assigned to ci or it was reassigned from ci−1

then oi < |G| and so ci + oi ≤ ci + |G| < ci+1.

Hence the claim of the Lemma holds. � �

Now, since (3) holds, in order to sort all lengths it is enough to sort the offsets within groups. To
save time, we do it simultaneously for all groups: offset oj assigned to common length ci is represented
as (i, oj), we sort these pairs lexicographically, using RadixSort. Since the offsets are at most 2|G| and
there are at most |G| of them and there are at most O(n+m) common lengths, RadixSort sorts them in
O(|G|) time.

Lemma 27. When all common lengths (not larger than M) are sorted and satisfy (3), sorting all lengths
takes O(|G|) time.

It is left to bound the sorting time of all common lengths. Due to Lemma 25 this cost is O(log p) for
a common length c. We redirect the log(p) cost towards the rule, in which c was created. We estimate
the total such cost over the whole run of FCPM.

Lemma 28. For a single rule, the cost redirected from common lengths towards this rule during the whole
run of FCPM is O(logM).

Proof. If a common length is created because some Xj defined a block of a, this costs at most logM and
happens once per nonterminal, so takes O(logM) time.

The creation of the common length can remove a nonterminal from the rule, which happens when Xj

in the rule defines a string in a∗. Then the cost is at most logM and such cost can be charged twice to
a rule, as initially there are two nonterminals in the rule. Hence, all such situations cost O(logM) per
rule.

Lastly, it can happen that no nonterminal is removed from the rule, even though a new common
length is created: this happens when in the Xi’s rule Xi → uXivXjw both the a-suffix of val(Xj) and
the a-prefix of val(Xk) are represented using the common lengths of a, moreover, v ∈ a∗.

Consider all such creations of powers in a fixed rule. Let the consecutive letters, whose blocks were
compressed, be a(1), a(2), . . . , a(ℓ) and the corresponding blocks’ lengths c1, c2, . . . , cℓ. Lastly, the cℓ
repetitions of a(ℓ) are replaced by a(ℓ+1). Observe, that a(i+1) does not need to be a

(i)
ci , as there might

have been some other compression in between.
Recall the definition of weight : for a letter it is the length of the represented string in the original

instance. Consider the weight of the strings between Xj and Xk. Clearly, after the i-th blocks compression

it is exactly ci · w(a(i)). We claim that w(a(i+1)) ≥ ci w(a
(i)).

Claim 6. It holds that w(a(i+1)) ≥ ciw(a
(i)).

Proof. Right after the i-th blocks compression the string between Xj and Xk is simply a
(i)
ci . After some

operations, this string consists of ci+1 letters a(i+1). All operations in FCPM do not remove the symbols

28 ARTUR JEŻ

from the string between two nonterminals in a rule (removing of leading aR or ending aL from t cannot
affect letters between nonterminals). Recall that we can think of the recompression as building of an SLP

for the p and t. In particular, one of the letters a(i+1) derives a
(i)
ci , Since in the derivation the weight is

preserved, it holds that

w(a(i+1)) ≥ w(a(i)ci
) = ci · w(a

(i)) .

Which shows the claim. � �

Thus w(a(ℓ)) ≥
∏ℓ−1

i=1 ci. Still, by our assumption we consider only the cost of letters that appear in

the pattern. Hence, a(ℓ) (or some heavier letter) appears in the pattern, and so M ≥ w(a(ℓ)) (note that
this argument does not apply to a(ℓ+1), as it does not necessarily appear in p). Hence,

log(M) ≥ log

(

ℓ−1
∏

i=1

ci

)

=

ℓ−1
∑

i=1

log ci.

Taking into the account that cℓ ≤M (by the assumption we do not sort blocks of length greater than M

so they do not redirect any costs towards a rule), the whole charge of
∑ℓ

i=1 log ci to the single rule is in
fact at most 2 logM . � �

Summing over the rules gives the total cost of O((n+m) logM), as claimed.

Large numbers. When we estimated the running time of the RemCrBlocks, then we assumed that numbers
up to M can be manipulated in constant time. We show that in fact this bound holds even if this
assumption is lifted. The only difference is that we cannot compare numbers in constant time. However,
if they are written as bit-vectors, the cost of each operation on a number ℓ is Θ(log ℓ). For common
lengths of letters appearing in p and that are at most M we estimated in Lemma 28 that such cost
summed over all phases sums up to O((n +m) logM). So it is left to consider the cost for letters that
do not appear in p and the cost for common lengths larger than M of letters appearing in p.

Concerning the letters not appearing in the pattern, we do not calculate their lengths at all, so there is
no additional cost. For a common length c > M of a letter from p we spend O(logM) time to find out that
c > M . Observe that if this common length is created because some Xi generates it or during its creation
a nonterminal is removed from the rule, then this is fine as this happens only once per nonterminal/rule.

In the other case this common length appears between nonterminals in a rule for Xi. Afterwards
between those nonterminals there is a letter not appearing in p. Furthermore, compression cannot change
it: in each consecutive phase there will be such a letter between those nonterminals. So there can be no
more creation of common lengths of letters appearing in strings between those two nonterminals. So the
O(logM) cost is charged to this rule only once.

Acknowledgements. I would like to thank Paweł Gawrychowski for introducing me to the topic, for
pointing out the relevant literature [1, 19, 20, 21] and discussions [3].

References

[1] Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic texts. In: SODA, pp. 819–828 (2000). DOI
doi.acm.org/10.1145/338219.338645

[2] Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., Shelat, A.: The smallest grammar
problem. IEEE Transactions on Information Theory 51(7), 2554–2576 (2005). DOI 10.1109/TIT.2005.850116

[3] Gawrychowski, P.: personal communication (2011)
[4] Gawrychowski, P.: Optimal pattern matching in LZW compressed strings. In: D. Randall (ed.) SODA, pp. 362–372.

SIAM (2011)
[5] Gawrychowski, P.: Pattern matching in Lempel-Ziv compressed strings: fast, simple, and deterministic. In: C. Deme-

trescu, M.M. Halldórsson (eds.) ESA, LNCS, vol. 6942, pp. 421–432. Springer (2011). DOI 10.1007/978-3-642-23719-5_
36

[6] Gawrychowski, P.: Simple and efficient LZW-compressed multiple pattern matching. In: J. Kärkkäinen, J. Stoye (eds.)
CPM, Lecture Notes in Computer Science, vol. 7354, pp. 232–242. Springer (2012). DOI 10.1007/978-3-642-31265-6_19

[7] Gawrychowski, P.: Tying up the loose ends in fully LZW-compressed pattern matching. In: C. Dürr, T. Wilke (eds.)
STACS, LIPIcs, vol. 14, pp. 624–635. Schloss Dagstuhl — Leibniz-Zentrum fuer Informatik (2012). DOI 10.4230/
LIPIcs.STACS.2012.624

[8] Gąsieniec, L., Karpiński, M., Plandowski, W., Rytter, W.: Efficient algorithms for Lempel-Ziv encoding. In: R.G.
Karlsson, A. Lingas (eds.) SWAT, LNCS, vol. 1097, pp. 392–403. Springer (1996). DOI 10.1007/3-540-61422-2_148

[9] Gąsieniec, L., Karpiński, M., Plandowski, W., Rytter, W.: Randomized efficient algorithms for compressed strings:
The finger-print approach. In: D.S. Hirschberg, E.W. Myers (eds.) CPM, LNCS, vol. 1075, pp. 39–49. Springer (1996).
DOI 10.1007/3-540-61258-0_3

[10] Gąsieniec, L., Rytter, W.: Almost optimal fully LZW-compressed pattern matching. In: Data Compression Conference,
pp. 316–325 (1999)

FASTER FULLY COMPRESSED PATTERN MATCHING BY RECOMPRESSION 29

[11] Hirao, M., Shinohara, A., Takeda, M., Arikawa, S.: Fully compressed pattern matching algorithm for balanced straight-
line programs. In: SPIRE, pp. 132–138 (2000)

[12] Jeż, A.: Approximation of grammar-based compression via recompression. In: J. Fischer, P. Sanders (eds.) CPM,
LNCS, vol. 7922, pp. 165–176. Springer (2013)

[13] Jeż, A.: The complexity of compressed membership problems for finite automata. Theory of Computing Systems pp.
1–34 (2013). DOI 10.1007/s00224-013-9443-6. URL http://dx.doi.org/10.1007/s00224-013-9443-6

[14] Jeż, A.: One-variable word equations in linear time. In: F.V. Fomin, M. Kwiatkowska, D. Peleg (eds.) ICALP, vol.
7966, pp. 330–341 (2013). Full version at http://arxiv.org/abs/1302.3481

[15] Jeż, A.: Recompression: a simple and powerful technique for word equations. In: N. Portier, T. Wilke (eds.) STACS,
LIPIcs, vol. 20, pp. 233–244. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2013). DOI
10.4230/LIPIcs.STACS.2013.233. URL http://drops.dagstuhl.de/opus/volltexte/2013/3937

[16] Kärkkäinen, J., Mikkola, P., Kempa, D.: Grammar precompression speeds up Burrows-Wheeler compression. In:
L. Calderón-Benavides, C.N. González-Caro, E. Chávez, N. Ziviani (eds.) SPIRE, Lecture Notes in Computer Science,
vol. 7608, pp. 330–335. Springer (2012). DOI 10.1007/978-3-642-34109-0_34

[17] Karpiński, M., Rytter, W., Shinohara, A.: Pattern-matching for strings with short descriptions. In: CPM, pp. 205–214
(1995). DOI 10.1007/3-540-60044-2_44

[18] Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Data Compression Conference, pp. 296–305. IEEE
Computer Society (1999). DOI 10.1109/DCC.1999.755679

[19] Lifshits, Y.: Processing compressed texts: A tractability border. In: B. Ma, K. Zhang (eds.) CPM, LNCS, vol. 4580,
pp. 228–240. Springer (2007). DOI 10.1007/978-3-540-73437-6_24

[20] Lohrey, M., Mathissen, C.: Compressed membership in automata with compressed labels. In: A.S. Kulikov, N.K.
Vereshchagin (eds.) CSR, LNCS, vol. 6651, pp. 275–288. Springer (2011). DOI 10.1007/978-3-642-20712-9_21

[21] Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equality tests in polylogarithmic time.
Algorithmica 17(2), 183–198 (1997). DOI 10.1007/BF02522825

[22] Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm for strings in terms of straight-line
programs. In: CPM, LNCS, vol. 1264, pp. 1–11. Springer (1997). DOI 10.1007/3-540-63220-4_45

[23] Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical strcture in sequences: A linear-time algorithm. J. Artif.
Intell. Res. (JAIR) 7, 67–82 (1997). DOI 10.1613/jair.374

[24] Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: J. van Leeuwen (ed.) ESA, LNCS,
vol. 855, pp. 460–470. Springer (1994). DOI 10.1007/BFb0049431

[25] Plandowski, W., Rytter, W.: Complexity of language recognition problems for compressed words. In: J. Karhumäki,
H.A. Maurer, G. Paun, G. Rozenberg (eds.) Jewels are Forever, pp. 262–272. Springer (1999)

[26] Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theor.
Comput. Sci. 302(1-3), 211–222 (2003). DOI 10.1016/S0304-3975(02)00777-6

[27] Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based compression. J. Discrete Algorithms
3(2-4), 416–430 (2005). DOI 10.1016/j.jda.2004.08.016

Max Planck Institute für Informatik, Campus E1 4, DE-66123 Saarbrücken, Germany and Institute of

Computer Science, University of Wrocław, ul. Joliot-Curie 15, 50-383 Wrocław, Poland, aje@cs.uni.wroc.pl

http://dx.doi.org/10.1007/s00224-013-9443-6
http://drops.dagstuhl.de/opus/volltexte/2013/3937

	1. Introduction
	2. Toy example: equality testing
	3. Toy example: pattern matching
	4. Equality testing for SLPs
	4.1. Straight line programmes
	4.2. The algorithm
	4.3. Blocks compression
	4.4. Grammar and alphabet sizes

	5. Pattern matching
	6. Improving running time
	6.1. Faster compression of crossing pairs
	6.2. Block compression

	References

