
Parameterized Tractability of Multiway Cut with Parity
Constraints

Daniel Lokshtanov1 and M. S. Ramanujan2

1 University of California, San Diego, USA.
daniello@ii.uib.no

2 The Institute of Mathematical Sciences, Chennai, India.
msramanujan@imsc.res.in

Abstract. In this paper, we study a parity based generalization of the classi-
cal MULTIWAY CUT problem. Formally, we study the PARITY MULTIWAY CUT

problem, where the input is a graph G, vertex subsets Te and To (T = Te ∪ To)
called terminals, a positive integer k and the objective is to test whether there
exists a k-sized vertex subset S such that S intersects all odd paths from v ∈ To

to T \ {v} and all even paths from v ∈ Te to T \ {v}. When Te = To, this
is precisely the classical MULTIWAY CUT problem. If To = ∅ then this is the
EVEN MULTIWAY CUT problem and if Te = ∅ then this is the ODD MULTI-
WAY CUT problem. We remark that even the problem of deciding whether there
is a set of at most k vertices that intersects all odd paths between a pair of ver-
tices s and t is NP-complete. Our primary motivation for studying this problem
is the recently initiated parameterized study of parity versions of graphs minors
(Kawarabayashi, Reed and Wollan, FOCS 2011) and separation problems similar
to MULTIWAY CUT. The area of design of parameterized algorithms for graph
separation problems has seen a lot of recent activity, which includes algorithms
for MULTI-CUT on undirected graphs (Marx and Razgon, STOC 2011, Bousquet,
Daligault and Thomassé, STOC 2011), k-WAY CUT (Kawarabayashi and Thorup,
FOCS 2011), and MULTIWAY CUT on directed graphs (Chitnis, Hajiaghayi and
Marx, SODA 2012). A second motivation is that this problem serves as a good
example to illustrate the application of a generalization of important separators
which we introduce, and can be applied even when most of the recently develped
tools fail to apply. We believe that this could be a useful tool for several other sep-
aration problems as well. We obtain this generalization by dividing the graph into
slices with small boundaries and applying a divide and conquer paradigm over
these slices. We show that PARITY MULTIWAY CUT is fixed parameter tractable
(FPT) by giving an algorithm that runs in time f(k)nO(1). More precisely, we
show that instances of this problem with solutions of size O(log log n) can be
solved in polynomial time. Along with this new notion of generalized important
separators, our algorithm also combines several ideas used in previous parameter-
ized algorithms for graph separation problems including the notion of important
separators and randomized selection of important sets to simplify the input in-
stance.

1 Introduction

A fundamental min-max theorem about connectivity in graphs is Menger’s Theorem,
which states that the maximum number of vertex disjoint paths between two vertices s

and t, is equal to the minimum number of vertices whose removal separates these two
vertices. Indeed, a maximum set of vertex disjoint paths between s, t and a minimum
size set of vertices separating these two vertices can be computed in polynomial time.
A known generalization of this theorem, commonly known as Mader’s T -path Theo-
rem [21] states that, given a graphG and a subset T of vertices, there are either k vertex
disjoint paths with only the end points in T (such paths are called T -paths and if their
length is odd (even), then odd (even) T -paths), or there is a vertex set of size at most 2k
which intersects every T -path. Although computing a maximum set of vertex disjoint
T -paths can be done in polynomial time by using matching techniques, the decision
version of the dual problem of finding a minimum set of vertices that intersects every
T -path is NP-complete for |T | > 2. Formally, this problem is the classical MULTIWAY
CUT problem, where the input is a graph G, a subset of vertices T called terminals,
a positive integer k and the objective is to test whether there exists a k-sized vertex
subset that intersects every T -path. This is a very well studied problem in terms of ap-
proximation, as well as parameterized algorithms [2, 9, 22]. In this paper we study a
generalization of this classical MULTIWAY CUT problem to a parity version. Formally,
we study the PARITY MULTIWAY CUT problem which is defined as follows.

PARITY MULTIWAY CUT (PMWC)
Instance: A graph G = (V,E), vertex subsets Te and To (T = Te ∪ To), integer k.

Parameter: k
Question: Is there a vertex set S of size at most k which intersects

1. all odd paths from a vertex v ∈ To to some other vertex u ∈ T \ {v},
2. all even paths from a vertex v ∈ Te to some other vertex u ∈ T \ {v}?

When Te = To, this is precisely the classical MULTIWAY CUT problem. If To = ∅ then
this is the EVEN MULTIWAY CUT (EMWC) problem and if Te = ∅ then this is the
ODD MULTIWAY CUT (OMWC) problem.

Our main motivation for studying this particular generalization is the recently initi-
ated parameterized study of parity versions of graphs minors by Kawarabayashi, Reed
and Wollan [15] and separation problems similar to MULTIWAY CUT [1, 4, 23]. The
area of design of parameterized algorithms for graph separation problems has seen a lot
of recent activity, which includes algorithms for MULTI-CUT on undirected graphs [23,
1], k-WAY CUT [16] and MULTIWAY CUT on directed graphs [4]. Furthermore, recently,
Geelen, Gerards, Reed, Seymour and Vetta [10] proved an odd variant of Mader’s T -
path Theorem. They showed that, given a graph G and a subset T of vertices, there are
either k vertex disjoint odd T -paths, or there is a vertex set of size at most 2k which
intersects every odd T -path. This result has already turned out to be useful in graph
theory [10, 18], as well as in the design of parameterized algorithms [11, 13, 14]. This
result was crucial in settling the parameterized complexity of finding k vertex disjoint
odd length cycles in a graph [14]. Observe that, this odd variant of Mader’s T -path
Theorem naturally gives rise to the OMWC problem, a special case of PMWC.

The goal of parameterized complexity is to find ways of solving NP-hard problems
more efficiently than by brute force. Here, the aim is to restrict the combinatorial explo-
sion of computational difficulty to a parameter that is hopefully much smaller than the

2

input size. Formally, a parameterization of a problem is the assignment of an integer
k to each input instance and we say that a parameterized problem is fixed-parameter
tractable (FPT) if there is an algorithm that solves the problem in time f(k) · |I|O(1),
where |I| is the size of the input instance and f is an arbitrary computable function
depending only on the parameter k. For more background, the reader is referred to the
monographs [7, 8, 25].

Unlike MULTIWAY CUT, the PMWC is already NP-complete for the case when
|T | = 2. Indeed, consider the following reduction from VERTEX COVER to PMWC.
Given an instance (G = (V,E), k) of VERTEX COVER, add two new vertices t1 and t2,
make them both adjacent to every vertex in V , and set To = {t1, t2} and Te = ∅. Call
this new graphG′. It is easy to see thatG has a vertex cover of size at most k if and only
if G′ has k-sized vertex subset that intersects every odd To−path. In fact, our argument
shows that OMWC is NP-complete for the case when |T | = 2. One can similarly show
that EMWC is NP-complete for the case when |T | = 2.

Marx [22] was the first to consider cut problems in the context of parameterized
complexity. He gave an algorithm for MULTIWAY CUT with running timeO(4k

3
nO(1))

with the current fastest algorithm running in time O(2knO(1)) [5]. Even the recent
developments in techniques to solve graph separation problems [23] and parity based
graph problems [17], do not seem to apply to PMWC, a natural companion of these
problems. In this paper, we introduce a new notion of generalized important separators,
which along with the tools used to solve parameterized cut problems like MULTIWAY
CUT and MULTI-CUT, allows us to design an FPT algorithm for PMWC. In general,
this notion seems to allow us to bring a number of problems under a single umbrella,
and in particular we demonstrate its application to PMWC. The main result of this
paper is the following.

Theorem 1. PMWC can be solved in time 22O(k)
nO(1) time.

Our algorithm combines several ideas used in previous parameterized algorithms for
graph separation problems including the notion of important separators and randomized
selection of important sets to simplify the input instance. Furthermore, we introduce a
generalization of important separators, which we believe could be a useful tool for sev-
eral other separation problems. The algorithm for PMWC has three phases, in the first
phase using a well-known technique of iterative compression, we bound the number of
even terminals by a linear function of k. In the second phase we remove even termi-
nals using the notion of generalized important separators that we define in this paper
and obtain f(k) instances of OMWC. We obtain the generalized important separators
by dividing the graph into slices with small boundaries and applying a divide and con-
quer paradigm over these slices. In the final phase we solve these instances of OMWC
by designing an FPT algorithm for OMWC. More precisely we obtain the following
result.

Lemma 1. OMWC can be solved in time 22O(k)
nO(1) time.

We note that OMWC can be shown to be FPT be a simple reduction to the SUBSET
OCT problem which was shown to be FPT in [17]. However, such an algorithm for
OMWC would have a much worse dependence on the parameter k when compared to

3

the algorithm we present in this paper. We also point out that in the case of the EMWC
problem with two terminals, we may subdivide the edges incident on one of them, thus
converting all even paths between these terminals into odd paths and vice versa. This
reduction shows that OMWC is equivalent to EMWC in the case of two terminals
and hence Lemma 1 immediately gives an FPT algorithm for EMWC in the case of
two terminals. We also consider the edge version of PMWC, the EDGE PARITY MUL-
TIWAY CUT (EPMWC) problem, where the input is a graph G, a subset of vertices
T = Te ∪ To, a positive integer k and the objective is to determine whether there exists
a k-sized edge subset that intersects every even path from a vertex v ∈ Te to T \ {v}
and every odd path from a vertex v ∈ To to T \ {v}. We show that this problem is also
FPT by establishing a parameter preserving reduction from EPMWC to PMWC.

Related Work. Parity problems hold a lot of promise and remain hitherto unexplored
from the perspective of parameterized complexity, with exceptions that are few and far
between. The first parameterized algorithm for ODD CYCLE TRANSVERSAL, finding a
k sized vertex subset that intersect all odd cycles only appeared in 2004 [28]. Recently,
Kawarabayashi and Reed [13] obtained an almost linear time parameterized algorithm
for ODD CYCLE TRANSVERSAL, albeit with a much worse dependence on solution
size than in [28]. Kawarabayashi and Reed [14] settled the parameterized complexity
of ODD CYCLE PACKING, finding k vertex disjoint odd cycles in a graph, by show-
ing it to be FPT. The Parameterized Complexity of ODD CYCLE PACKING was a long
standing open problem and is much more general problem than the famous DISJOINT
PATHS problem, finding vertex disjoint paths between given pairs of vertices. Recently,
Kawarabayashi, Reed and Wollan [15] initiated the parameterized study of parity ver-
sions of graphs minors and gave an algorithm to find odd minors. Other studies include
finding odd subdivision, parity paths passing through specific vertices [12, 11]. On the
cut side, as we mentioned before, the area was initiated by the paper of Marx [22].
The notions used in this paper has been useful in settling parameterized complexity
of variety of problems including DIRECTED FEEDBACK VERTEX SET [3], ALMOST
2 SAT [27] and ABOVE GUARANTEE VERTEX COVER [27, 26]. Recently, Marx and
Razgon [23] and Bousquet, Daligault and Thomassé [1] independently showed that
MULTI-CUT, finding k vertices to disconnect given pairs of terminals is FPT. Con-
tinuing this line of study, Chitnis, Hajiaghayi and Marx studied MULTIWAY CUT on
directed graphs and showed it to be FPT [4].

2 Preliminaries

Given a path P , we refer to the number of edges in P as the length of P and denote it
by |P |. We call a path an odd (even) path if the length of the path is odd (respectively
even). We refer to the parity of |P | as the parity of the path P . If P is a path from some
vertex in a set X to some vertex in a set Y , we say that P is an X-Y path. If A contains
a single vertex x, we say that P is an x-Y path. Given a graph G = (V,E) and T ⊆ V ,
paths with only the end points in T are called T -paths and if their length is odd (even),
then odd (even) T -paths. Given a vertex set S, we denote by P ∩ S, the set of vertices
in S which intersect P . Given two paths P1 = v1, . . . , vl and P2 = u1, . . . , ur, such

4

that one end point of P1 (say vl) is the same vertex as some endpoint of P2 (say u1) and
no other vertices of the two paths coincide, we define the concatenated path P1 +P2 as
v1, . . . , vl, u2, . . . , ur. Given a walkW = v1, . . . , vl from t1 = v1 to t2 = vl, we define
a closed loop (or loop) of W , as a closed walk W ′ = vi, vi+1, . . . , vj , vp, vp+1, . . . , vr
where vi = vr and vj = vp, vi+1, . . . , vj−1 and vp+1, . . . , vr−1 are either vertex dis-
joint simple paths which are subpaths of W , or are the same exact path which is a
subpath of W . By deleting a closed loop W ′ = vi, . . . , vr from W , we obtain the walk
W ′′ = v1, . . . , vi, vr+1, . . . , vl. Note that deleting an even closed loop does not affect
the parity of the walk, while deleting an odd closed loop flips the parity of the walk.
Hence, loops of the second type (for eg. v1, v2, v1), where the two internal subpaths co-
incide exactly can be removed without changing the parity of the walk since such loops
are by definition, even. Hence, in our discussions, we will assume that such loops do
not occur, that is, if W ′ = vi, vi+1, . . . , vj , vp, vp+1, . . . , vr is a loop, then it is a cycle.
Given a set Sc of clauses and a set Sv of variables of a 2 SAT formula F , we denote
by F \ Sc the formula obtained from F by deleting the clauses in Sc, we denote by
F \ Sv the formula obtained from F be deleting the clauses which involve a variable
in Sv . We denote by FSc

, the restriction of F to the clauses in Sc. In the ALMOST 2
SAT(VARIABLE) problem, we are given a 2 SAT formula F , and a postive integer k
and the problem is to check if there is a k-sized set of variables of F , whose deletion
makes F satisfiable.
In an instance (G,Te ∪ To, k) of PMWC, the vertices in Te are called even terminals
and those in To are called odd terminals. Vertices in Te \ To are called purely even
terminals and those in To \ Te are called purely odd terminals.

3 Structural Claims

In this section we first prove some general claims that will be used in several proofs
later. Following this, we define the notion of isolated and semi-isolated components
which we use to impose a certain useful structure on the input instance.

Lemma 2. Let G = (V,E) be a graph and let t1 and t2 be two vertices in G. Let W
be a walk from t1 to t2. If there is no odd closed loop in W , then there is a path from t1
to t2 which has the same parity as W . If there is an odd closed loop in W , then there
is a vertex u in the closed loop which has paths of both parities to t1 and paths of both
parities to t2.

Proof. Let W = v1, . . . , vl where v1 = t1 and vl = t2. Suppose that every closed loop
in W is even. We prove the first statement of the lemma by induction on the number of
closed loops in the walk W . In the base case, the number of closed loops is 0. In this
case, the lemma is vacuously true. Now, suppose that the number of closed loops in W
is some s > 0 and assume that the statement of the lemma holds for all walks with less
than s closed loops. Consider a closed loop W ′ in W . Since this is even, deleting it will
result in another walk W ′′ which has the same parity as W , and has less than s closed
loops. By the induction hypothesis, there is a path from t1 to t2 with the same parity as
W ′′. This proves the first statement of the lemma.

5

Suppose W ′ = vi, vi+1, . . . , vj , vp, vp+1, . . . , vr is an odd closed loop of W where
P1 = vi+1, . . . , vj−1 and P2 = vp+1, . . . , vr−1 are vertex disjoint simple paths which
are subpaths of W , and vi = vr and vj = vp. We assume without loss of generality
that there is no other closed loop in walk, since we can just delete such loops if they
did exist. Since W ′ is an odd loop, at least one of P1 or P2 must have length at least 2.
Without loss of generality, we assume that P1 has length at least 2. Consider the vertex
vi+1. We claim that it has paths of both parity to t1 and t2. Indeed, consider the path
P3 = vi+1, vi, . . . , v1 and the path P4 = vi+1, . . . , vj , vp−1, . . . , v1. Clearly, they are
paths of opposite parities from vi+1 to t1. Similarly, we have paths of both parities to
t2. This completes the proof of the second statement of the lemma.

Lemma 3. Let G = (V,E) be a graph, and let t1 and t2 be two distinct vertices of G.
Suppose that every t1-t2 path in G has the same parity, and every vertex of G lies on a
t1-t2 path. Then, any vertex of G cannot have paths of both parity to t1 and it cannot
have paths of both parity to t2.

Proof. Let v be a vertex lying on an t1-t2 path P . Let P1 be the subpath of P from t1
to v and let P2 be the subpath of P from v to t2. We prove by double induction on |P1|
and |P2| that v cannot have paths of both parity to t1. It is analogous to show that v
cannot have paths of both parity to t2.

In the base case, first, let |P2| = 0. This implies that v = t2 and the statement of
the lemma holds. Now, consider the base case for |P1|, that is |P1| = 0. This implies
that v = t1 and the statement of the lemma holds. Now, assume that |P2|, |P1| > 0
and that the claim holds for all smaller values of |P2| and it also holds for all smaller
values of |P1|. Let P3 be a path from v to t1 which has parity opposite to that of P1.
If P3 is disjoint from P1 and P2, P3 + P2 is an odd path from t1 to t2, which is a
contradiction. Hence, assume that P3 intersects P1 or P2 . Suppose P3 intersects P2

first when traversing from v to t1 and let v′ be the first vertex along P3 which occurs
in P2 when traversing P3 from v to t1. Let P ′3 be the subpath of P3 from v to v′, let
P ′′3 be the subpath of P3 from v′ to t1, let P ′2 be the subpath of P2 from v to v′ and let
P ′′2 be the subpath of P2 from v′ to t2. If P ′3 and P ′2 have differing parities, the paths
P1 +P ′3 +P ′′2 and P1 +P ′2 +P ′′2 are t1-t2 paths with differing parities, a contradiction.
Hence, P ′3 and P ′2 must have the same parity. But now, v′ has two paths P ′2 + P1 and
P ′′3 , to t1, which have different parities, and the subpath of P2 from v′ to t2, which is
P ′′2 , has length strictly less than |P2|. But, by induction hypothesis, v′ cannot have paths
of both parity to t1, which is a contradiction. Now, suppose that P3 intersects P1 first
and let v′ be the first vertex along P3 which occurs in P2 when traversing P3 from v
to t1. Let P ′3 be the subpath of P3 from v′ to v, let P ′′3 be the subpath of P3 from t1 to
v′, let P ′1 be the subpath of P1 from v′ to v and let P ′′1 be the subpath of P1 from t1
to v′. If P ′3 and P ′1 have differing parities, the paths P ′′1 + P ′3 + P2 and P ′′1 + P ′1 + P2

are t1-t2 paths with different parities, a contradiction. Hence, P ′3 and P ′1 must have the
same parity. But now, v′ has two paths P ′′3 and P ′1 + P2 to t1, which have different
parities and the subpath of P1 from v′ to t1, which is P ′1, has length strictly less than
|P1|. But, by induction hypothesis, v′ cannot have paths of both parity to t1, which is a
contradiction. This completes the proof of the lemma.

We also prove the following lemma.

6

Lemma 4. Let G = (V,E) be a graph and T be a vertex set such that every T -path
has even parity and for every w ∈ V (G) there is a T -path containing w. Then, for
every w ∈ V , all w − T paths have the same parity.

Proof. The lemma follows by applying arguments similar to those in Lemma 3 for
every vertex w in G and for every pair t1, t2 of terminals in T such that v lies on a t1-t2
path in the subgraph.

3.1 Isolated and semi-isolated components

Definition 1. Consider an instance (G,T = Te ∪ To, k) of PMWC and let S be a
solution to this instance (see Fig. 1). The set of vertices not reachable from T inG\S is
called the isolated part of S, and the set of vertices reachable from T in G \ S is called
the non-isolated part of S. For any connected component C in the subgraph induced on
the non-isolated part, the semi-isolated part of C is the set C ′ ⊂ C of vertices which
do not lie on a T ′-path in this subgraph, where T ′ = T ∩ C. The semi-isolated part of
S is the union of the semi-isolated part of every component in G \ S. Any connected
component in the graph induced on isolated (respectively semi-isolated) part of S is
called an isolated (similarly semi-isolated) component of S, with the reference to S
dropped if it is clear from the context.

Observation 2 Let (G,T = Te ∪ To, k) be an instance of PMWC and let S be a
solution to this instance. Consider any connected component C in the graph induced
on the non-isolated part of S, let T ′ = T ∩C and let C ′ be the semi-isolated part of C.
Then, the graph G[C \ C ′] is connected.

Proof. Consider a Steiner tree in G[C] connecting the vertices in T ′. Since the vertices
of T ′ are connected in G[C], such a tree exists. This tree H will be a subgraph of
G[C \ C ′] since every vertex on this tree lies on some T ′−path. Now, any vertex u in
G[C \ C ′] is be reachable from T ′ (in G[C \ C ′]). Since any two vertices of T ′ are
connected in H , G[C \ C ′] is connected as well.

Definition 2. Let (G,T = Te∪To, k) be an instance of PMWC and let S be a solution
to this instance. Consider any connected componentC in the non-isolated part of S and
let C ′ be the semi-isolated part of C. Then, the subgraph G[C \ C ′] is called a main
component of S.

Observation 3 Let (G,T = Te ∪ To, k) be an instance of PMWC and let S be a
solution to this instance.
(a) Any connected component of G \ S with at least two terminals contains terminals
from exactly one of To \ Te or Te \ To.
(b) Any connected component of G \ S contains at most 2 vertices from Te.

Proof. (a) Let C be a component of G \ S containing two terminals t1 and t2 such that
t1 ∈ To and t2 ∈ Te. Then, there is a path between t1 and t2 in G \ S. If this path is
odd, then it contradicts the intersection of S with every t1-T \{t1} path and if it is even,
then it contradicts the intersection of S with every t2-T \ {t2} path.

7

Fig. 1. An illustration of a solution S where X is
the isolated part of S, C3 is a non-isolated com-
ponent, C′3 is the semi-isolated part of C3 and
C4

3 is a main component.
Fig. 2. An illustration of the two subcases of case
(b) in Lemma 5.

(b) Let C be a component of G \ S containing a set T ′ ⊆ Te. Consider a steiner tree
on the set T ′ in G \ S. Since the steiner tree is a connected bipartite graph, if |T ′| > 2,
there must be two vertices of T ′ which lie in the same partition and hence have an even
path between them in this tree. But this is a contradiction since this even path is disjoint
from S.

Lemma 5. Let (G,T = Te∪To, k) be an instance of PMWC and let S be a solution to
this instance. Then, any component in the semi-isolated part of S has a single neighbor
in the corresponding main component.

Proof. Consider a semi-isolated component C ′ and let C be it’s corresponding main
component. Since the vertices of C ′ are in the same connected component as those of
C in the graph G \ S, C ′ has at least one neighbor in C. We will now show that C ′

cannot have more than one neighbor in C.
Suppose that this is not the case and let v1 and v2 be two distinct vertices in C

which are adjacent to vertices in C ′. We note that in the cases when both v1 and v2
are terminals, there is a path between two terminals which intersects the semi-isolated
componentC ′, which is not possible by definition. Now, consider the case when exactly
one of the two vertices, say v1 is a terminal. But, v2 lies on a path between two terminals,
say w1 and w2 where w1 or w2 could be v1. Consider this path and conside the two
subpaths of this path from v2 tow1 and from v2 tow2. Atleast one of these two subpaths
is disjoint from v1. Hence, subpath, along with the edges from C ′ to v1 and v2 results
in a T -path which intersects a semi-isolated component, a contradiction.

Hence, we consider the remaining case where v1,v2 /∈ T . Let P be a T -path from
t1 to t2 which contains v1. We know that such a path exists since v1 lies in a main

8

component. Let P1 be the subpath of P from t1 to v1 and let P2 be the subpath of P
from v1 to t2. Let P3 be a path from v2 to t3 ∈ T (t3 can be the same as t1 or t2).
We know that such a path exists since v2 is in a main component. We now consider the
following two cases.

(a) P3 does not intersect P2 or P1. Then clearly, there are paths from t1 to t3 and t2
to t3 which intersect the semi-isolated component C ′, and are disjoint from the
solution, which is a contradiction since no vertex in C ′ can lie on a T -path disjoint
from the solution.

(b) P3 intersects P2 or P1. Suppose P3 intersects P2 first (see Fig. 2) when traversing
from v2 to t3 and let the vertex at which this intersection occurs be u. Let P ′3 be
the subpath of P3 from v2 to u and let P ′2 be the subpath of P2 from u to t2.
Additionally, let P be a path from v1 to v2 such that the internal vertices of P lie in
C ′. Since C ′ is a connected component, we know that such a path exists. But now,
P1 + P + P ′3 + P ′2 is a t1-t2 path disjoint from S and intersecting C ′. This is a
contradiction since no vertex in C ′ can lie on a T -path in G \ S.
Now, suppose that P3 intersects P1 first at the vertex u. Let P ′3 be the subpath of
P3 from v2 to u, let P ′1 be the subpath of P1 from u to t1 and let P be a path from
v1 to v2 such that the internal vertices of P lie in C ′. But now, P2 + P + P ′3 + P ′1
is a t2-t1 path disjoint from S and intersecting C ′. This is a contradiction since no
vertex in C ′ can lie on a T -path in G \ S.

This concludes the proof of the lemma.

Definition 3. Let C ′ be a semi-isolated component of S. We refer to the neighbor of C ′

in the corresponding main component as the pivot of C ′ and we denote it by χ(C ′).

4 PMWC parameterized by the solution size

The algorithm for PMWC has three phases, in the first phase using the well-known
technique of iterative compression, we bound the number of even terminals by 7k. In
the second phase we remove even terminals using the notion of generalized important
separators that we define in this section and obtain f(k) instances of OMWC. In this
section we outline the first two phases of the algorithm and in the next section we give
the details of the final phase – an FPT algorithm for OMWC.

4.1 Bounding the number of even terminals

We now describe a way to separate and remove the even terminals from the instance.
We will first describe a way to reduce the given instance of PMWC to multiple (but
a bounded number of) instances, each with a bounded number of even terminals, such
that solving these instances will lead to a solution for the input instance. To this end
we will use the technique of iterative compression. In this technique, we assume that a
solution of size k + 1 is part of the input, and attempt to compress it to a solution of
size k. The method adopted usually is to begin with a subgraph that trivially admits a
(k + 1)-sized solution and then expand it iteratively.

9

Given an instance (G = (V,E), T = Te ∪To, k) of PMWC, where V = {v1, . . . , vn},
we define a graph Gi = G[Vi] where Vi = {v1, . . . , vi}. We iterate through the in-
stances (Gi, Ti = (Te ∩ Vi) ∪ (To ∩ Vi), k) starting from i = k + 1 and for the ith

instance, with the help of a known solution Si of size at most k + 1 we try to find a so-
lution Ŝi of size at most k. Formally, the compression problem we address is following.

PMWC COMPRESSION

Instance: (G = (V,E), T= Te ∪ To, k, S) where G is an undirected graph, Te, To are
vertex sets, k a postive integer and S, a PMWC of size at most k + 1.

Parameter: k
Question: Does there exist a PMWC of size at most k for this instance?

We will reduce the PMWC problem to n− k instances of the PMWC COMPRESSION
problem as follows. Let Ii = (Gi, (Te ∩ Vi) ∪ (To ∩ Vi), Si, k) be the ith instance
of PMWC COMPRESSION. Clearly, the set Vk+1 is a solution of size at most k + 1
for the instance Ik+1. It is also easy to see that if Ŝi−1 is a solution of size at most k
for instance Ii−1, then the set Ŝi−1 ∪ {vi} is a solution of size at most k + 1 for the
instance Ii. We use these two observations to start off the iteration with the instance
(Gk+1, (Te ∩ Vk+1) ∪ (To ∩ Vk+1), k, Sk+1 = Vk+1) and try to compute a solution
of size at most k for this instance. If there is such a solution Ŝk+1, we set Sk+2 =
Ŝk+1 ∪ {vk+1} and try to compute a solution of size at most k for the instance Ik+2

and so on. If, during any iteration, the corresponding instance does not have a solution
of the required size, it implies that the original instance is also a NO instance. Finally
the solution for the original input instance will be Ŝn. Since there can be at most n
iterations, the total time taken is bounded by n times the time required to solve the
PMWC COMPRESSION problem.

We will now describe a way to bound the number of even terminals in an instance
of PMWC COMPRESSION. Let (G,T = Te ∪ To, k, S) be an instance of PMWC
COMPRESSION. Fix a hypothetical solution Ŝ for this instance. We first guess the set
Y = S ∩ Ŝ. There are 2k+1 such possibilities. For each guess of Y , we delete it from
the instance, and also delete vertices which are no longer relevant for the instance. This
results in an instance of PMWC which has a solution N = S \ Y and we are required
to find a solution of size at most k − |Y | which is disjoint from N . Now, we show that
if the resulting instance has such a solution, then it must be the case that the number of
even terminals in this instance is bounded.

Suppose that the resulting instance indeed has such a solution. Fix such a solution
S′. We call a component ofG\N affected if it contains some vertex of S′ and unaffected
otherwise. Clearly, there can be at most k affected components. Now, consider the un-
affected components which contain even terminals. We claim that the number of such
components cannot be more that 2k. Suppose this was not the case. Then there must
exist three unaffected components which contain even terminals and share a neighbor
in N . But this implies that there will be an even path between atleast two of these ter-
minals which is disjoint from the new solution S′, a contradiction. Hence, the number
of components of N which contain even terminals is at most 3k. By Observation 3,
any component can contain at most 2 even terminals. Since N contains at most k even

10

terminals, the number of even terminals in the instance is bounded by 7k. Hence, if the
number of terminals in the instance after removing the guess Y exceeds 7k, we can
reject this guess right away. Note that, even if we compute a solution of the required
size which is not disjoint from the set N , we can use it to continue the iteration. Hence,
once we have an instance with a bounded number of even terminals, we ignore the fact
that there is a solution disjoint from N and just compute any solution of the required
size for the corresponding PMWC instance. Since we only need to deal with PMWC
instances arising from instances of PMWC COMPRESSION, henceforth we will assume
that the given instance of PMWC contains at most 7k even terminals.

4.2 Removing even terminals

We initially perform the following preprocessing step on the given instance (G,T =
Te ∪ To, k) of PMWC. For every purely odd terminal ti ∈ T \ Te, we add 2(k + 1)
new vertices Ti = {t1i , . . . , t

k+1
i } and T̂i = {t̂1i , . . . , t̂

k+1
i } and make ti adjacent to

every vertex in Ti. Finally, we add all possible edges between the sets Ti and T̂i. We
now define a new set of purely odd terminals T ′o =

⋃
ti∈T\Te

T̂i. That is, for every ti in

T \ Te, we replace ti with the k + 1 vertices t̂ji in the set of purely odd terminals. We
will now show that the resulting instance is indeed equivalent to the input instance.

Lemma 6. Given an instance (G,T = Te∪To, k) of PMWC, let (G′, T ′ = Te∪T ′o, k)
be the instance obtained as a result of the terminal transformation described above (see
Fig. 3). Then, (G,T, k) is a YES instance if and only if (G′, T ′, k) is a YES instance.

Fig. 3. Illustration of the terminal transformation.

Proof. Suppose that S is a solution for the instance (G,T = Te ∪To, k). We claim that
S is also a solution for the instance (G′, T ′ = Te ∪T ′o, k). Any T ′-path P in G′ \S can
be converted to a T -path of the same parity and between the corresponding terminals in
G \ S by removing (if necessary) the first two and/or the last two edges of P . Hence,
a path of forbidden parity in G′ \ S implies a path of forbidden parity in G \ S, a
contradiction.

Conversely, suppose that S′ is a solution for the instance (G′, T ′, k). Observe that,
due to our construction, we can assume without loss of generality that the solution S′

11

comprises only vertices of G. We now claim that S′ is also a solution for the instance
(G,T, k). Suppose this is not the case, and let P be a t1-t2 path of forbidden parity in
G \ S′. If this path was between two even terminals, then this path would exist in G′

as well, and hence would intersect S′. Hence, one of the end points of this path must
be a purely odd terminal ti. But in this case, we also have a path of the same parity
from t̂ji to t2 in the graph G′ \ S′ for every j. Similarly, if necessary, we can extend the
other end point by two edges to obtain a path of forbidden parity in G′ \ S′, which is a
contradiction. This completes the proof of the lemma.

Due to Lemma 6, henceforth, we will assume that the given input instance is already
of the form described above. This also allows us to assume that the solution will be
disjoint from the set of purely odd terminals. We will now describe a procedure to
reduce this instance of PMWC to an instance with no even terminals, thereby resulting
in an instance of OMWC.

We fix a hypothetical solution for the PMWC instance and work with this solution.
We first guess the intersection of the hypothetical solution with the set of even terminals
and delete these vertices from the graph. Let S be the subset of the solution left after
this step, that is S is a solution for the remaining instance. We then guess the way S
partitions the even terminals into different connected components in the graph G \ S.
There are at most 2|Te| possible intersections and |Te||Te| = 2O(k log k) partitions for
the even terminals. Hence, the total number of possible guesses is 2O(k log k). We say
that S conflicts with a partition if there is a component of G \ S containing terminals
from two distinct sets of the partition. For each guess of the partition, we attempt to find
a solution which partitions the even terminals in a way which does not conflict with the
guess. We fix one such guess of the partition, say P and work with this partition for
the rest of the section. In addition, note that, we can now assume that the solution S is
disjoint from the entire set of terminals. This is because we have already guessed (and
deleted) the intersection with even terminals, and it is already disjoint from the purely
odd terminals.

4.3 Important separators

The notion of important separators was formally introduced in [22] to handle the MUL-
TIWAY CUT problem and the same concept was used implicitly in [2] to give an im-
proved algorithm for the same problem. In this subsection, we recall some definitions
related to important separators and a few lemmas which will be required for our algo-
rithm.

Definition 4. Let G = (V,E) be an undirected graph, let X,S ⊆ V be vertex subsets.
We denote by RG(X,S) the set of vertices of G reachable from X in the graph G \ S
and we denote by NRG(X,S) the set of vertices of G\S which are not reachable from
X in the graph G \ S. We drop the subscript G if it is clear from the context.

Definition 5. LetG = (V,E) be an undirected graph and letX,Y ⊂ V be two disjoint
vertex sets. A subset S ⊆ V \ (X ∪ Y) is called an X-Y separator in G if RG(X,S)∩
Y = ∅ or in other words there is no path from X to Y in the graph G \S. We denote by
λG(X,Y) the size of the smallest X-Y separator in G. An X-Y separator S1 is said

12

to cover an X-Y separator S with respect to X if R(X,S1) ⊃ R(X,S) and S1 is said
to dominate S if it covers S and |S1| ≤ |S|. If the set X is clear from the context, we
just say that S1 dominates S. An X-Y separator is said to be inclusion wise minimal if
none of its proper subsets is an X-Y separator.

Definition 6. Two X-Y separators S and S1 are said to be incomparable if neither
covers the other.

Observation 4 Let S1 and S2 be two incomparableX-Y separators. Then,R(X,S1)∩
S2 6= ∅ and R(X,S2) ∩ S1 6= ∅. That is, there is a vertex of S1 reachable from X in
the graph G \ S2 and a vertex of S2 reachable from X in the graph G \ S1. Also,
NR(X,S1) ∩ S2 6= ∅ and NR(X,S2) ∩ S1 6= ∅. That is, there is a vertex of S1

separated fromX in the graphG\S2 and a vertex of S2 separated fromX in the graph
G \ S1.

Definition 7. Let G = (V,E) be an undirected graph, X,Y ⊂ V be vertex sets and
S ⊆ V be an X-Y separator in G. We say that S is an important X-Y separator if it
is inclusionwise minimal and there does not exist another X-Y separator S1 such that
S1 dominates S with respect to X .

Lemma 7. ([22]) Let G = (V,E) be an undirected graph, X,Y ⊂ V be disjoint
vertex sets. There exists a unique important X-Y separator S∗ of size λG(X,Y) and it
can be computed in polynomial time.

Lemma 8. ([2]) The number of important X-Y separators of size at most k is at most
4k and these can be enumerated in time O(4knO(1)).

4.4 Important separator sequences and a generalization of important separators

In this subsection we will define the notion of an important separator sequence and use it
in the context of PMWC to define generalized important separators with the properties
we require.

Definition 8. Let G = (V,E) be a graph and let X,Y ⊆ V be disjoint vertex sets. We
define an important X-Y separator of order i, Si to be the unique smallest important
X-Si−1 separator in G, where S0 = Y .

By Lemma 7, for every i, an important X-Y separator of order i is unique and can be
computed in polynomial time.

Definition 9. We define a smallest X-Y separator sequence I to be a set I = {Si|1 ≤
i ≤ l}, where Si is an important X-Y separator of order i, for every 1 ≤ i, j ≤ l,
|Si| = |Sj |, and λ(X,Sl) > λ(X,Y), that is there is no X-Sl cut of size |Sl| (see
Fig. 4).

Observation 5 Given two X-Y separators S1 and S2, we say that S1 � S2 if S2

covers S1 with respect to X . Then, (I,�) forms a total order where I is a smallest
X-Y separator sequence.

13

Note that a smallest X-Y separator sequence is unique and can be computed in poly-
nomial time. Observation 5 is the reason we refer to the set I as a sequence.

Lemma 9. Let P1 and P2 be two separators in I such that P1 � P2 and there is no P3

in I such that P1 � P3 � P2. Then, the size of a minimum X-Y separator which lies
in the set NR(X,P1) ∩R(X,P2) is at least |P1|+ 1.

Proof. Suppose that this is not the case and let S be an X-Y separator of size |P1|
which lies in the set NR(X,P1) ∩ R(X,P2). By the statement of the lemma, S /∈ I.
Let i be such that P2 = Si−1 and P1 = Si, that is, P1 is the unique smallest important
X-P2 separator. But, since P1 � S � P2, and S lies in the set NR(X,P1)∩R(X,P2)
it contradicts the fact that P1 is an important X-P2 separator.

The key consequence of the definition of the smallest separator sequence is that it de-
fines a natural partition of the graph into slices with small boundaries. Using this, we
may restrict our search to local parts of the graph, in which case finding separators with
certain properties becomes easier. We will now describe how this concept is applied in
the context the PMWC problem.

Definition 10. Given sets X and Y and a minimal X-Y separator S, let l be the size
of a minimum EMWC of the set X in the graph G \ S. We say that a minimal X-Y
separator S′ well dominates S (with respect to X) if S′ dominates S with respect to X
and the size of a minimum EMWC of X in the graph G \ S′ is at most l.

Note that any X-Y separator well dominates itself. Now, let T1 be any set in the parti-
tion P , and let Ŝ be a minimal part of S separating T1 from T \ T1. Recall that T1 is a
set of even terminals and by Observation 3, we can assume that T1 contains at most 2
even terminals. We will first show that for any separator which well dominates Ŝ, there
is a solution for the PMWC instance containing this separator. Following that, we will
describe an algorithm to compute a T1-T \ T1 separator that well dominates Ŝ.

Lemma 10. Let (G,T = Te ∪ To, k) be an instance of PMWC, let S be a solution
for this instance, and T1 be a set in P , with T2 = T \ T1. Let Ŝ be a minimal part of
S separating T1 and T2. Let Ŝ1 be a T1-T2 separator which well dominates Ŝ. Then,
there is also a solution for the instance which contains Ŝ1.

Proof. Let K̂ be a minimum EMWC of T1 in the graphG\Ŝ and let K̂1 be a minimum
EMWC of T1 in the graph G \ Ŝ1. We know that |Ŝ| ≥ |Ŝ1| and |K̂| ≥ |K̂1|. Now,
consider the set S′ = (S \ (Ŝ ∪ K̂))∪ (Ŝ1∪ K̂1). We claim that S′ is also a solution for
the given instance. It is clear that the size of S′ is at most that of S. Hence, it remains
to show that S′ is indeed a PMWC for the given instance.

Suppose that this is not the case and let ti and tj be two terminals such that there is
a path P of forbidden parity between ti and tj in the graph G \ S′. Then, there must be
a vertex v ∈ Ŝ ∪ K̂ such that the path P intersects v. Since Ŝ1 dominates Ŝ, this vertex
must be reachable from T1 in the graph G \ Ŝ. But, Ŝ1 is a T1-T2 separator. Hence, if ti
or tj is in T2, then the path P must intersect Ŝ1 and hence intersects S′, a contradiction.
Therefore, it must be the case that ti and tj are precisely the vertices in T1. Now, since
this path P lies entirely inside the component containing T1 in the graphG\ Ŝ1, it must

14

Fig. 4. Illustration of a smallest separator sequence

Fig. 5. Illustration of case 1 of the branching.

be the case that this path intersects K̂1 and this in turn implies that the path P intersects
S′, a contradiction. This completes the proof of the lemma.

Lemma 11. Let (G,T = Te ∪ To, k) be an instance of PMWC with a solution S, P
be a partition of Te such that S does not conflict with P . Let T1 be a set in P and T2

be the set T \ T1. Let X be a minimal part of S separating T1 from T2. Then, there is
an algorithm which runs in time 22O(k)

nO(1) and returns a set of at most 2O(k3) T1-
T2 separators of which at least one separator well dominates X (X is also called the
target separator for this instance).

Proof. For a given subset of vertices, the algorithm computes (if there is one) a T1-T2

separator of size at most k, which is contained in the given subset, and well dominates
X . Initially, and also when the subset is not explicitly given, we allow this subset to be
the entire vertex set of the current graph, and as we prune our search, we will define
the subset accordingly. We first fix a hypothetical minimum EMWC of T1 in the graph
G \X , say K and guess the size of this set, say l.
Description of algorithm. We first check if there is a T1-T2 separator of size at most k
within the given subset Z. If not, we return NO. If there is no path from T1 to T2, then
we return ∅. Furthermore, if k ≤ 10, then we find a T1-T2 separator well dominating
X by enumerating all T1-T2 separators of size at most k which lie inside Z. Otherwise,
we compute the smallest T1-T2 separator sequence, I comprising only of the vertices
of Z. We call a T1-T2 separator S′ good if the size of the minimum EMWC of T1 in
the graph G \ S′ is at most l and we call it bad otherwise. The following observation
plays a crucial role in allowing us to ignore (potentially) large parts of the graph during
our search.

15

Fig. 6. Illustration of case 2 of the branching.

Fig. 7. Illustration of case 3 of the branching.

Observation 6 If a T1-T2 separator is good, all T1-T2 separators covered by this sep-
arator are also good and if a T1-T2 separator is bad, all T1-T2 separators which cover
this separator are bad.

For each T1-T2 separator in I, we now determine whether the separator is good or bad.
Since |T1| ≤ 2, by Lemma 1, this step takes 22O(k)

nO(1) time. Let P1 be the maximal
element of I which is good and let P2 be the minimal element of I, which is bad.
That is, P1 is good and every separator in I \ {P1} which covers P1 is bad, P2 is bad
and every separator in I \ {P2} covered by P2 is good. If all the separators in I are
good, then P2 is defined as T2 and if all separators in I are bad, then P1 is defined as
T1. We will create a number of sub-instances, recurse on each of these instances and
finally return the union of the sets returned by these recursive calls. The sub-instances
are created by exhaustive branching according to the following case analysis on the
“relative position” of the target separator with P1 and P2.
1. P1 covers the target separator X (see Fig. 5) or P1 = X . In this case, P1 itself
is a separator which well dominates the target separator and we have indeed found a
separator of the required kind. Hence, we return P1.
2. The target separator X covers P1, but is itself covered by P2 (see Fig. 6). Let S̃1 be
the intersection of X with P1 and S̃2 be the intersection of X with P2. We first guess
the set S̃1. If this set is non empty, then we delete it from the graph G, and recursively
compute a T1-T2 separator of size at most k − |S̃1| in the graph G \ S̃1, which lies in
the set NRG(T1, P1), and well dominates X \ S̃1 in the graph G \ S̃1. If the set S̃1 is
empty and P2 6= T2, then we guess the set S̃2. If this set is non empty, then we delete
it from the graph and recursively compute a set containing a T1-T2 separator of size at
most k − |S̃2| in the graph G \ S̃2, which lies in the set NRG(T1, P1) ∩ RG(T1, P2),
which also well dominates X \ S̃2 in the graph G \ S̃2. Finally, if the set S̃2 is also

16

empty, then we recursively compute a set containing a T1-T2 separator of size at most
k which is contained in the set NRG(T1, P1) ∩ RG(T1, P2) and well dominates X in
the graph G, and return this set.
3. The target separatorX is incomparable with P1 (see Fig. 7). Let S̃1 be the intersection
ofX with P1, P r1 be the intersection of P1 withRG(T1, X), Pnr1 be the rest of P1. Also,
let Xr be the intersection of X with RG(T1, P1) and let Xnr be the rest of X . Since X
is incomparable with P1, by Observation 4, P r1 , Xr, Pnr1 and Xnr are non empty. We
first guess the set S̃1. If it is non empty, then we delete it from the graph and recursively
compute a set containing a T1-T2 separator of size at most k− |S̃1| in the graph G \ S̃1

which well dominates X \ S̃1. If it is empty, then we guess the sets P r1 and Pnr1 and
also the sizes of the sets Xr and Xnr.
We now construct a graph G′ as follows. Initially, we set G′ as the subgraph of G
induced on the set RG(T1, P1). For every vertex in P r1 , we guess if it is in the set K,
in which case, we delete it from the graph G′. From the remaining vertices of P r1 , for
every pair of vertices, we guess if there is an odd (respectively even) path between
them in the graph G \ S, with the internal vertices disjoint from the vertices of G′

and add an edge (respectively subdivided edge) between these vertices. We note that
it is possible to add both an edge and a subdivided edge between a pair of vertices.
This completes the construction of G′. Now, we recursively compute a set containing
a T1-Pnr1 separator in the graph G′, which well dominates Xr in this graph. Once we
compute this set, for each separator X ′ in the set, we delete it from the graph G and in
the resulting graph, recursively compute a set containing a T1-T2 separator which lies
in the setNRG(T1, P1) and well dominatesXnr inG\X ′. Finally, we construct a new
set by pairing up each separator from the first set, with the corresponding separators in
the second set, and return this new set.
4. The target separator is incomparable with P2. This case is analogous to case 3.

We note that the target separator is distinct from P2 and cannot cover P2, due to
Observation 6 and hence this case need not be taken into consideration.

Correctness. For each instance I for which the algorithm is called, we define a measure
µ(I) = 2k− λ where k is an upper bound on the size of the separator we are searching
for in I , and λ is the size of the smallest such separator. We prove the correctness of the
algorithm by induction on the measure µ(I).
In the base case, if λ > k, then algorithm returns NO, which is clearly correct. Addi-
tionally, if λ = 0, then the algorithm simply returns ∅ as the separator, which is also
correct. Finally, in the case when k ≤ 10, the required separator is found by a brute
force search and hence is correct as well. We now assume that the algorithm is cor-
rect on all instances with measure less than µ. Now, consider an instance I such that
µ(I) = µ.
1. If case 1 is true, then the algorithm is clearly correct in returning P1.
2. Suppose case 2 is true. Consider the instance I ′ obtained by deleting non empty S̃1.
We now search for a T1-T2 separator of size at most k − |S̃1| in the graph G \ S̃1.
Since P1 was a minimum T1-T2 cut, by Menger’s theorem, the graph G \ S̃1 will have
|P1| − |S̃1| vertex disjoint T1-T2 paths and hence the size of the smallest T1-T2 separa-
tor in the graph G \ S̃1 is |P1| − |S̃1|. Hence, µ(I ′) = µ− |S̃1|. Since S̃1 is non empty,
by induction hypothesis, the algorithm is correct on the instance I ′ and hence indeed

17

computes a T1-T2 separator which well dominates X \ S̃1. Hence, adding the set S̃1 to
this separator gives us a T1-T2 separator of size at most k which well dominatesX . The
case when S̃2 is non empty is analgous.
Now, consider the case when both S̃1 and S̃2 are empty. By Lemma 9, any T1-T2 sep-
arator which lies in the set NR(T1, P1) ∩ R(T1, P2) must have size at least |P1| + 1.
Hence, µ(I ′) ≤ µ−1. By induction hypothesis, the algorithm returns a T1-T2 separator
of size at most k which well dominates X , which proves the correctness of this case.
3. Suppose case 3 is true. The case when a non empty S̃1 is deleted from the graph is
correct by the same arguments as that seen in the previous case. Now, consider the case
when S̃1 is empty. Consider the graph G′ constructed as described in the algorithm and
assume that all the guesses made while constructing it were correct. Also, let Kr be the
intersection of the set K with R(T1, P1) and Knr be the rest of K.

Lemma 12. (a) The set Xr is a T1-Pnr1 separator in the graph G′ such that Kr is an
EMWC of T1 in the graph G′1 \Xr.
(b) Let X ′ be a T1-Pnr1 separator which well dominates Xr in the graph G′. Then, the
set X ′ ∪Xnr well dominates X in the graph G.

Proof. (a) Suppose that the set Kr is not an EMWC of T1 in the graph G′ \Xr and let
P be an even T1-path disjoint fromXr∪Kr. Replace any edge (respectively subdivided
edge) in P which was not present in G, with the corresponding path of the same parity
in G \ S. It must be the case that the resulting walk, say W , is an even T1-walk in the
graph G \ S. If W was a path, then it would contradict our assumption that S was a
solution for the given instance of PMWC. Hence, it must be the case that W contains
some vertex twice. Observe that any vertex in W which occurs more that once must be
a vertex in the set R(T1, X) \ R(T1, P1). We now claim that any vertex u ∈ P1 which
lies on W , must also lie in the main component of S containing T1.

If this was not the case and u was in a semi-isolated component, then, W must con-
tain the pivot of u twice since it is a T1-walk disjoint from S. But, since u is reachable
from T1 in the graph G \ S, the pivot of u must lie in the set R(T1, P1), in which case
it cannot appear twice in W , a contradiction. Hence, every vertex of P1 which lies on
W also lies in the main component containing T1. Now, we also know that any path
between two vertices in the main component such that it is disjoint from S, also lies
in the main component (see proof of Lemma 5). Hence, the even walk W lies entirely
inside the main component containing T1, in the graph G\S. But in this case, we know
that there cannot be an odd closed loop in W (see Lemma 2 and Lemma 3), and hence
there exists an even T1-path disjoint from S, which is a contradiction.
(b) Let K ′ be a minimum EMWC of T1 in the graph G′ \X ′. Since X ′ well dominates
Xr inG′, |K ′| ≤ |Kr|. Hence, |X ′∪Xnr| ≤ |X| and |K ′∪Knr| ≤ |K| andX ′∪Xnr

is a T1-T2 separator since it separates T1 from Pnr1 and T2 from P r1 . Therefore, it is suf-
ficient to show that in the graphG\ (X ′∪Xnr), the setK ′∪Knr is indeed an EMWC
of T1. Suppose that this is not the case and consider an even T1-path P in the graph
G \ (X ′ ∪ Xnr). By our construction of G′, there must exist an even T1-path P ′ in
the graph G′ \ X ′. But this contradicts the assumption that K ′ is an EMWC of T1 in
G′ \X ′. This completes the proof of the lemma.

18

Now, let X ′ be a T1-Pnr1 separator which well dominates Xr in the graph G′. Then,
due to Lemma 12, X ′ ∪Xnr is a T1-T2 separator which well dominates X in the graph
G1. Hence, any T1-T2 separator which well dominates X ′ ∪ Xnr in the graph G also
well dominates X . Therefore, we may assume that the target separator for the current
instance I is in fact X ′ ∪ Xnr. Let X ′′ be a P r1 -T2 separator in the graph G \ X ′
which well dominates Xnr and let K ′′ be a minimum EMWC of T1 in the graph
G \ (X ′ ∪X ′′). Since K ′ ∪Knr is an EMWC of T1 in the graph G \ (X ′ ∪Xnr), it
must be the case that |K ′′| ≤ |K ′ ∪Knr|. Therefore, the set X ′ ∪X ′′ well dominates
X ′ ∪Xnr and hence well dominates X in the graph G.

We first search for a T1-Pnr1 separator of size at most |Xr| in the graph G′. By
Menger’s theorem, we know that there are Pnr1 vertex disjoint paths from T1 to Pnr1 ,
which is also the size of the smallest T1-Pnr1 separator. Now, µ(I) = 2(|Xr|+|Xnr|)−
(|Pnr1 |+|P r1 |) and µ(I ′) = 2|Xr|−|Pnr1 |, which implies that µ(I ′) = µ(I)−(2|Xnr|−
|P r1 |). Since |Xnr| ≥ |P r1 |, µ(I)− µ(I ′) ≥ |Xnr|. Since Xnr is non empty, by induc-
tion hypothesis, the algorithm is correct on I ′ and returns a set X ′ well dominating
Xr. Now, consider the instance I ′′ which is a result of deleting Xr from G. Now,
µ(I ′′) = 2|Xnr| − |P r1 |, which implies that µ(I) − µ(I ′′) ≥ |Xr|. By induction hy-
pothesis, the algorithm returns a set X ′′ well dominating Xnr in the graph G \X ′ and
hence the set X ′ ∪ X ′′ indeed well dominates the set X in the graph G. This proves
the correctness of this case and case 4 as well. We also make the following observation,
which will be used in bounding the running time of the algorithm. For the instances I ′

and I ′′ described as above, µ = µ(I ′) +µ(I ′′). This completes the proof of correctness
of the algorithm.
Running time. We will show by induction on µ(I) that the number of separators re-
turned by an execution of the algorithm on instance I , N(µ(I)), is bounded by 2µ(I)3 .
In each of the base cases of the algorithm, we either return a single separator of the re-
quired kind or say NO. Since there are at most k choices for l, the number of separators
returned in the base case is at most k, and the claim clearly holds. We now assume that
the claimed bound is true for all instances with µ(I) < µ. Now, consider an instance I
such that µ(I) = µ.
1. The number of separators returned due to case 1 is one for every choice of l, and
hence at most k.
2. Consider case 2. There are at most k choices for l, 4k choices for the sets S̃1 and S̃2

and for each choice, we return at most N(µ − 1) separators. Hence, by induction hy-
pothesis, the number of separators returned due to case 2 is bounded by k · 4k · 2(µ−1)3 .
3. Consider case 3. There are at most k choices for l, 2k choices for the set P r1 , at most
k choices for |Xnr|, at most 2k choices for the set P r1 ∩ S, at most 4k

2
possible graphs

we construct and for each of these choices, we return at most N(µ1) ·N(µ2) separators
where µ1+µ2 = µ, which, by the induction hypothesis is at most 2(µ−1)3 ·21. Hence, the
number of separators returned due to case 3 is bounded by k ·2k ·k ·2k ·4k2 ·2(µ−1)3 ·21.
4. Similarly, the number of separators returned due to case 4 is bounded by k · 2k · k ·
2k · 4k2 · 2(µ−1)3 · 21.

Using the fact that k ≤ µ ≤ 2k and k > 10, we note that the number of separators
returned by each case is at most 1

4 · 2
µ3

, which yields the required bound. The number

19

of separators returned is hence 2O(k3). The algorithm spends 22O(k)
nO(1) time at each

node of the search tree and hence, the total time taken by the algorithm is 22O(k)
nO(1).

This completes the proof of the Lemma.

4.5 Proof of Theorem 1

Given Lemma 10 and Lemma 11, we do the following. Pick a set T1 in P and guess a
T1-T \T1 separator well dominating the minimal part of the solution separating T1 and
T \ T1. Once T1 has been separated from the rest of the terminals, we use Lemma 1 to
compute a minimum EMWC of T1 in the component containing T1. Following this, we
pick another set from P , and repeat. At the end of this procedure, we will be left with
an instance of PMWC with no even terminals, resulting in an instance of the OMWC
problem. In each step, we either pick a vertex in the solution or discard an even terminal.
Hence the number of steps is bounded by 8k and by Lemma 11, in 22O(k)

nO(1) time,
we obtain 2O(k4) instances of OMWC such that the given instance of PMWC is a
YES instance if and only if one of these instances of OMWC is a YES instance. This,
combined with Lemma 1 proves Theorem 1. ut

5 Odd Multiway Cut parameterized by the solution size

In this section, we prove Lemma 1 by describing an FPT algorithm for OMWC. The
main idea of this algorithm is that we reduce the instance of OMWC to an instance
with certain properties, which ensure that we can solve it in FPT time.

Lemma 13. Given an instance (G,T, k) of OMWC, let S be a solution and let C ′ be
some semi-isolated component in G \ S. Then, no vertex of T occurs as a pivot of C ′.

Proof. We first recall that we have assumed some structural properties regarding the
terminals of the input instance (see Lemma 6). We have already shown that if there is a
solution, then there is one which is disjoint from the set of terminals. Our construction
also ensures that for any solution, for every i, the terminals T̂i occur in the same main
component.

We now proceed to the proof of the lemma. Suppose that for some i, the vertex
t̂ji is the pivot of C ′ for some j. Hence, there is a vertex v ∈ C ′ which is adjacent
to t̂ji . But this vertex is also adjacent to the terminals t̂li, for every l 6= j and these
terminals are also contained in the same main component as t̂ji . Now, we have a T -path
t̂ji , v, t̂

l
i intersecting C ′ and disjoint from S, which contradicts the assumption that C ′

is a semi-isolated component.

The properties we require the instance of OMWC to possess, have been formalized in
the following definition.

Definition 11. An instance (G,T, k) of OMWC is said to admit a special solution if
there is a solution S such that each component of the isolated part and semi-isolated
part of S is a single vertex. An instance which admits a special solution is called a
special instance.

20

Lemma 14. Let (G,T, k) be an instance of OMWC which admits a special solution.
Then we can find a solution for this instance in time 2.32knO(1).

Proof. The proof is by a parameter preserving reduction to the variable version of AL-
MOST 2 SAT, called the ALMOST 2 SAT(VARIABLE) problem, which can then be
solved in 2.32knO(1) time [20]. The reduction is as follows. For every vertex u of the
graph, we have a variable xu. The variable xu is intended to represent the parity of T -u
paths. The 2 SAT formula is constructed as follows. For every edge (t, u) where t ∈ T ,
add a clause (u). For every edge (u, v) in the graph, add two clauses (xu ∨ xv) and
(x̄u ∨ x̄v) to the 2 SAT formula F . This completes the construction of F . We remark
that both these clauses will be satisfied if and only if xu and xv are assigned differ-
ent values. In addition, we also remark that the subformula FP of F induced by the
clauses corresponding to the edges of some odd T -path P is unsatisfiable, that is, we
cannot find a satisfying assignment for it unless we delete some variables. We claim
that if (G,T, k) admits a special solution, then (F, k) is a YES instance and if (F, k) is
a YES instance of ALMOST 2 SAT(VARIABLE), then (G,T, k) is also a YES instance
of OMWC.

Suppose (G,T, k) has a special solution S. Let Sv be the set of the variables cor-
responding to the vertices in S. We claim that the formula F ′ = F \ Sv is satisfiable.
Consider the following assignment for F ′. Assign arbitrary values to the variables cor-
responding to vertices isolated from T in G \ S. For any vertex u in any main compo-
nent, any T -u path must have the same parity (by Lemma 4). Assign 0 to xu if all T -u
paths are even and 1 otherwise. Now, for any vertex u in the semi-isolated part, due to
Lemma 5, the corresponding variable remains in a single clause (whose other variable
corresponds to a vertex in a main component and already has an assignment) and hence
we assign the appropriate value to xu so as to satisfy this clause. We call clauses thus
satisfied, explicitly satisfied clauses. We claim that this assignment satisfies F ′. Con-
sider any clause (l1 ∨ l2) of F ′ and suppose that it is not one of the explicitly satisfied
clauses. Since this clause remains after the deletion of some variables, it must be the
case that neither of the vertices corresponding to the variables involved in the clause
are deleted. Hence, both these vertices must lie in some main component of S. Since
there is an edge between these two vertices, they must have paths of opposite parity
to T and which implies that the corresponding variables are assigned different values.
Hence, this clause is satisfied.

Conversely, consider a solution Sv for the instance (F, k), let F ′ = F \Sv , and let S
be the set of vertices corresponding to the variables in Sv . We claim that S is a solution
for the given instance of OMWC. Suppose that this is not the case, and consider any
odd T -path P in the graph G \ S and let FP be the subformula of F induced by the
clauses corresponding to the edges in P . Since none of the vertices intersecting the path
P have been deleted, it must be the case that none of the variables corresponding to the
vertices along this path are in Sv . But this implies that FP remains as a subformula of
F ′ and since FP is not satisfiable, F ′ is also not satisfiable, which is a contradiction.

In the rest of the section, we will show how, given an instance of OMWC, one can
reduce it to equivalent instance(s) with a special solution.

21

5.1 Parity Preserving Torsos

In this section, we consider a fixed hypothetical solution S for the input instance (G,T, k),
and examine the structure of the instance with respect to this solution. Using our obser-
vations, we will prove some additional structural claims and introduce definitions we
need for the description of the randomized transformation, which will help us to con-
struct a special instance from the given input instance. Following that, we will describe
a randomized algorithm for the OMWC problem when parameterized by the solution
size, and describe a derandomization procedure as well. We begin by defining the notion
of Parity Preserving Torsos, which we will use to construct a set of equivalent instances
of the problem.

Definition 12. Let G = (V,E) be a graph and let C ⊆ V be a vertex set. The graph
Parity-Torso(G,C) is constructed as follows. Consider the induced subgraph G[C]
and perform the following operations on it. For every pair u, v ∈ C, if there is an
odd path in G from u to v whose internal vertices are not in C, then add an edge
(u, v). Furthermore, for every pair u, v ∈ C, if there is an even path in G from u to
v whose internal vertices are not in C, then add a subdivided edge between u and v.
The resulting graph is referred to as Parity-Torso(G,C) or PT (G,C) and we call a
newly added vertex which is part of a subdivided edge, a subdivision vertex.

Lemma 15. Given a graph G = (V,E) and a vertex set C, the graph PT (G,C) can
be constructed in polynomial time.

Proof. Testing if there is an even path between two vertices s and t in a graph can be
done in polynomial time [19]. Testing if there is an odd path between s and t can be
done by subdividing every edge incident on s and checking if there is an even s-t path
in this modified graph. Hence, given C, for every component X of G \ C, for every
pair of vertices of C in the neigborhood of this component, we can test in polynomial
time if there is an even (respectively odd) path between these vertices, whose internal
vertices lie in X . Since the number of components of G \C is at most |V | and for each
component there are at most |V |2 pairs of neighbors in C, the graph PT (G,C) can be
constructed in polynomial time.

Note that intuitively, the operation Parity-Torso is designed to preserve the parity of
paths between vertices in C. The following lemma formalizes this intuition.

Lemma 16. Let C ⊆ V and let u, v ∈ C. If a set S ⊂ C is such that all paths of some
fixed parity from u to v in PT (G,C) intersect S, then all paths of the same parity from
u to v in G also intersect S.

Proof. We first define the notion of external subpaths as follows. Consider some u-v
path P and let p, q ∈ C be two vertices on this path such that the subpath of P between
p and q contains no other vertex in C. We call this subpath of P between p and q, an
external subpath. We now prove the following claim which we will then use to prove
the statement of the lemma.

22

Claim. Given an r-s path P in G, there is a path in PT (G,C) which has the same
parity as P , contains all the vertices in P ∩ C, is disjoint from C \ P . That is, the only
vertices on this path other than those in P ∩ C can be subdivision vertices between
vertices in P ∩ C.

Proof. We prove the claim by induction on the number of external subpaths of P . In
the base case, the number of external subpaths of P is 0, which implies that P contains
only vertices ofC and hence lies in PT (G,C). Thus, the claim is true for the case when
the number of external subpaths of P is 0.

Now, suppose that the number of external subpaths of P is some t > 0 and assume
that our claim holds true for all paths with less that t external subpaths. When traversing
P from r to s, let x and y be the first two vertices in C ∩ P such that the subpath of
P between x and y is an external subpath and call this subpath P̂ . If P̂ has odd length,
then, there is an edge between x and y in the graph PT (G,C) and if P̂ has even length,
then there is a subdivided edge between x and y in the graph PT (G,C). Let P2 be
the path (edge or subdivided edge) in PT (G,C) between x and y which has the same
parity as P̂ . Now, let P ′ be the subpath of P from r to x and let P ′′ be the subpath of P
from y to s. The path P ′ lies entirely inside C and the path P ′′ is a path from y to s with
less than t external subpaths. By the induction hypothesis, there is a path P1 from y to
s in C which has the same parity as P ′′, contains the vertices of P ′′ ∩C and is disjoint
from C \ P ′′. But now, P ′ + P2 + P ′′ is a path from r to s in PT (G,C) which has the
same parity as P , contains the set of vertices in P ∩C and is disjoint from C \ P . This
completes the proof of the claim.

We now prove the statement of the lemma as follows. Suppose that S does not
intersect all paths of said parity from u to v in G, and let P be a u-v path of this parity
in G \ S. By the above claim, there is a path P1 from u to v of the same parity in
PT (G,C) which contains P ∩ C and is disjoint from C \ P . Since P is disjoint from
S, it must be the case that S ⊆ C \ P and hence P1 is also disjoint from S, which
is a contradiction to our assumption that S intersects all u-v paths of that parity in
PT (G,C).

Definition 13. Given an instance I = (G = (V,E), T, k) of OMWC, and a set Z ⊆
V \ T , we define an instance I/Z of OMWC as (PT (G,V \ Z), T, k).

Observe that, while constructing the instance I/Z, the Parity-Torso operation is ap-
plied on the set V \ Z. The following lemma shows that if we compute a set Z with
certain properties, an application of the Parity-Torso operation depending on this set
will lead us to an equivalent special instance of the problem.

Lemma 17. Let I = (G = (V,E), T, k) be an instance of OMWC and let Z ⊆ V \T .
If I is a NO instance, then I/Z is also a NO instance. If I has a solution S such that Z
contains the isolated and semi-isolated parts of S and Z ∩ (S ∪ T) = ∅ (see Fig. 8),
then S is a special solution for the instance I/Z.

Proof. Suppose that I/Z is a YES instance and suppose that S is a solution for this
instance. By Lemma 16, any even T -path in I intersects S as well and hence S is a

23

Fig. 8. Illustration of an application of the parity-torso operation.

solution for I , which makes it a YES instance. This proves the first statement of the
lemma.

We now prove the second statement of the lemma. Suppose that I has a solution S
such that Z contains the isolated and semi isolated parts of S and Z ∩ (S ∪T) = ∅. We
will first show that S is indeed a solution for I/Z. Before we prove this, we make the
following claim.

Claim. Any new edge (or subdivided edge) added between two vertices of some main
component during the construction of the graph PT (G,V \ Z), is due to a path which
lies entirely in the same main component.

Proof. Consider two vertices x and y in some main component and let P2 be a newly
added edge (respectively subdivided edge) between these two vertices. Let P be a path
from x to y which has the same parity as P2 and has its internal vertices in Z. Since Z is
disjoint from S, the path P also is disjoint from S. If the path P intersects some isolated
or semi-isolated component, it must also intersect S, which is not possible. This implies
that P lies entirely in the same main component as x and y. This completes the proof
of the claim.

We will now prove that S is a solution for the instance I/Z as follows. Suppose that
this is not the case, and let P be an odd path from t1 to t2 in the graph PT (G,V \Z)\S.
Since the set Z contains all the isolated and semi-isolated components of S, the only
original vertices of the graph which occur in P are from a single main component
of S. By the claim above, any edge (or subdivided edge) between these vertices in
PT (G,V \ Z) is due to a path lying in the main component. Hence, we can replace
the newly added edges (respectively subdivided edges) in P with the original paths in
G, to get an even walk W from t1 to t2 which lies entirely inside this main component.
We now claim that every closed loop in W is of even length and hence removing these
loops enables us to obtain an even path from t1 to t2. Suppose that there is an odd closed
loop inW . Then, by Lemma 2, for some vertex on this odd loop, there are both odd and

24

even length paths to T , which is a contradiction to Lemma 4. Hence, every loop ofW is
even and we can remove these loops to obtain an odd T -path disjoint from S (see proof
of Lemma 2), which is a contradiction to our original assumption that S is a solution
for the instance I .

We will now show that S is indeed a special solution for the instance I/Z. We will
show this by considering each vertex of PT (G,V \Z)\S and examining the component
it belongs to. Consider a vertex v in PT (G,V \ Z) \ S. The vertex v must either be
a vertex in G or a subdivision vertex added as a result of a subdivided edge. If v is a
vertex in G, it must occur in a main component of S in I . But this implies that v also
occurs in a main component of S in I/Z since the Parity-Torso operation maintains
connectivity along with parity for this vertex with respect to the other vertices disjoint
from Z. We can also argue along the same lines as in the proof of Lemma 5 that, if v is
a subdivision vertex between two vertices in the main component of S in I , then it also
lies on a T -path and hence occurs in the same main component of S as these two vertices
in I/Z. Now, suppose v is a subdivision vertex which occurs as a result of a subdivided
edge added between a vertex of S and a vertex u in some some main component of S
in I , which is disjoint from Z. Since u remains in some main component of S in I/Z,
v will be a singleton semi-isolated component of S in I/Z. Finally, suppose that v is
a subdivision vertex which occurs as a result of a subdivided edge added between two
vertices of S. Then, v is a singleton isolated component. Hence, S is a special solution
for the instance I/Z and this proves the second statement of the lemma.

In the following subsections, we examine the structure of such a set Z and using our
observations, describe a method of constructing such a set.

5.2 Important components and clusters

Definition 14. We call J an important component if G[J] is connected and N(J) is an
important J-T separator of size at most k + 1.

The motivation for the above definition is due to the following lemma, which will allow
us to consider the required set Z as the union of a set of important components.

Lemma 18. Let (G,T, k) be a YES instance of OMWC. Then, there is a solution S
such that every component of the isolated and semi-isolated part of S is an important
component.

Proof. Let S be a smallest solution for the given instance which maximizes the sum of
the sizes of the isolated part and the semi-isolated part. We will prove that every com-
ponent of the isolated and semi-isolated part of this solution is an important component.
Suppose this is not so. We have the following two cases.
Case 1. Suppose that some component C1 in the semi-isolated part is not an impor-
tant component. Since the size of the neighborhood of C1 is at most k + 1, it must be
the case that there is an important separator K which dominates the C1-T separator
N(C1). Define the set S′ = (S \N(C1)) ∪ (K \ {w}) where w is an arbitrary vertex
of K. Clearly, |S′| ≤ |S|. We claim that S′ is a solution for the given instance as well.
Suppose this is not the case and let P be an odd T -path in the graph G \ S′. It must

25

be the case that this path contains some vertex v in S \ S′, which implies that v is in
(N(C1) \K)∪{w}. Since v lies on a T -path, it has two vertex disjoint paths to T . But
K is an important C1-T separator dominating N(C1) and hence is a v-T separator as
well. But then, K must contain two vertices of the path P . Hence, K \ {w} contains
some vertex of this T -path, which is a contradiction to our assumption that S′ is not a
solution. This proves that S′ is indeed a solution. In addition, we may assume that S′

is inclusionwise minimal, that is, for every vertex of S′, there is an odd T -path which
intersects this vertex and is disjoint from the rest of S′. This is because if this were
not the case, and we have a vertex u in S′ such that every odd T -path it intersects also
intersects some vertex in S′ \ {u}, we can remove u from S′, and still have a solution.

We now claim that the sum of the sizes of the isolated and semi-isolated parts of
S′ is strictly greater than that of S, which will contradict our assumption about the
maximality of S with respect to the size of the isolated and semi-isolated part.

We first observe that S′ is disjoint from the isolated part of S. If this were not
the case, then there is a vertex u of S′ in some component in the isolated part of S.
Since S′ is minimal, there is an odd T -path P which intersects u and is disjoint from
S′ \ {u}. Since any T -path intersecting u must intersect S in at least two vertices, P
must contain two vertices of S \ S′ and hence this implies the existence of two vertex
disjoint {v1, v2}-T paths for some v1, v2 ∈ S \ S′ and these paths are disjoint from u
as well. But K intersects all (S \S′)-T paths and hence K \ {w} intersects at least one
of the two vertex disjoint {v1, v2}-T paths. This implies that S′ \{u} is also a solution,
which contradicts the minimality of S′. Hence, S′ is disjoint from the isolated part of
S.

We now observe that S′ is also disjoint from the semi-isolated part of S. To prove
this, it is sufficient to show thatK does not intersect the semi-isolated part of S. Suppose
this is not the case and let u be a vertex of K which intersects some semi-isolated
component of S, say C. Then, in K, we replace u with the pivot of C to get a set K ′

and claim that K ′ is a C1-T separator which dominates K. To prove this, it is enough
to show that K ′ is a C1-T separator. If this were not the case, consider a C1-T path
P which intersects u and is disjoint from χ(C). Since the path P must enter and leave
the semi-isolated component without intersecting the pivot, this implies that P contains
two vertices x and y of S∩N(C1) such that u is contained in the subpath of P between
x and y. Let P1 be the subpath of P from y to T . Now, consider an edge e = (a, y)
where a ∈ C1. We know that such an edge exists since y is in N(C1). But now, we
have a C1-T path e+ P1 disjoint from K, which is a contradiction to K being a C1-T
separator. We have thus proved that S′ is also disjoint from the semi-isolated part of S.

We will now show that the vertices in S \ S′ are either in the isolated or semi-
isolated part of S′. Following that, we will show that every vertex in the isolated or
semi-isolated part of S is also in either the isolated or semi-isolated part of S′. Since
S \S′ is non empty, these two statements imply that the sum of the sizes of the isolated
and semi-isolated components of S′ is strictly larger than that of S.

Consider a vertex v in S \ S′. Note that, in order to show that v is in an isolated
of semi-isolated component of S′, it is sufficient for us to show that there is no T -path
intersecting v in the graphG\S′. Suppose that this is not the case, and let P be a T -path
intersecting v in the graph G\S′. Then, there are two vertex disjoint paths from v to T .

26

But we know that K is an (S \ S′)-T separator and hence there can be at most one v-T
path in the graph G \ (K \ {w}) which implies that there can be at most one path in the
graph G \ S′, which is a contradiction. Thus, we have proved that there is no T -path
intersecting v in the graph G \ S′ and hence proved that the vertices in S \ S′ are in
either the isolated or semi-isolated part of S′.

Consider a vertex v in the isolated or semi-isolated part of S. In order to show that
v is in an isolated or semi-isolated component of S′, it is sufficient for us to show that
there is no T -path intersecting v in the graph G \ S′. Suppose that this is not the case,
and let P be a T -path containing v in the graph G \ S′. Since v is in the isolated or
semi-isolated part of S, the path intersects S and hence intersects S \ S′. This implies
that there is a vertex u ∈ S \ S′ which lies on a T -path in the graph G \ S′. But, we
have already shown that no vertex in S \ S′ can lie on a T -path in the graph G \ S′
and thus we have reached a contradiction. Hence, we have proved that every vertex in
the isolated or semi-isolated part of S stays in the isolated or semi-isolated part of S′ as
well. This completes the proof for case 1.
Case 2. Suppose that some component C2 in the isolated part is not an important
component. Since the size of the neighborhood of C2 is at most k, it must be the
case that there is an important separator K which dominates N(C2). Define S′ =
(S \ N(C2)) ∪ K. Clearly, S′ is no larger than S. We claim that S′ is also a solution
for the given instance.

Suppose this is not the case and let P be an odd T -path in the graph G \ S′. It must
be the case that this path contains some vertex v in S \ S′, which implies that v is in
(N(C2) \K). But K is an important C2-T separator dominating N(C2) and hence is
a v-T separator as well. Hence, K intersects the path P , which is a contradiction to our
assumption that S′ is not a solution. This proves that S′ is indeed a solution. In addition,
we may assume that S′ is inclusionwise minimal.

We now claim that the sum of the sizes of the isolated and semi-isolated parts of
S′ is strictly greater than that of S, which will contradict our assumption about the
maximality of S with respect to the size of the isolated and semi-isolated part.

We first observe that S′ is disjoint from the isolated part of S. If this were not
the case, then there is a vertex u of S′ in some component in the isolated part of S.
Since S′ is minimal, there is an odd T -path P which intersects u and is disjoint from
S′ \ {u}. Since any T -path intersecting u must intersect S in at least two vertices, P
must contain two vertices of S \ S′ and hence this implies the existence of two vertex
disjoint {v1, v2}-T paths for some v1, v2 ∈ S \ S′ and these paths are disjoint from u
as well. But K intersects all (S \ S′)-T paths and this implies that S′ \ {u} is also a
solution, which contradicts the minimality of S′. Hence, S′ is disjoint from the isolated
part of S.

We now observe that S′ is also disjoint from the semi-isolated part of S. To prove
this, it is sufficient to show thatK does not intersect the semi-isolated part of S. Suppose
this is not the case and let u be a vertex of K which intersects some semi-isolated
component of S, say C. Then, in K, we replace u with the pivot of C to get a set K ′

and claim that K ′ is a C2-T separator which dominates K. To prove this, it is enough
to show that K ′ is a C2-T separator. If this were not the case, consider a C2-T path P
which intersects u and is disjoint from χ(C). Since the path P must enter and leave the

27

Fig. 9. Illustration of an important cluster LA with important components J1, J2, and J3, where
N(J1) = A ∪ {v1}, N(J2) = A ∪ {v2} and N(J3) = A.

semi-isolated component without intersecting the pivot, this implies that P contains two
vertices x and y of S ∩N(C2) such that u is contained in the subpath of P between x
and y. Let P1 be the subpath of P from y to T . Now, consider an edge e = (a, y) where
a ∈ C2. We now that such an edge exists since y ∈ N(C2). But now, we have a C2-T
path e+P1 disjoint from K, which is a contradiction to K being a C2-T separator. We
have thus proved that S′ is also disjoint from the semi-isolated part of S.

We will now show that any vertex which lies in S \ S′, or in the isolated or semi-
isolated part of S lies in the isolated or semi-isolated part of S′. Since S \ S′ is non
empty, this implies that the sum of the sizes of the isolated and semi-isolated compo-
nents of S′ is strictly larger than that of S.

Consider a vertex v which is in S \ S′ or in the isolated or semi-isolated part of S.
Note that, in order to show that v is in an isolated or semi-isolated component of S′, it
is sufficient for us to show that there is no T -path intersecting v in the graph G \ S′.
We know that any T -path in the graph G \ S′ intersecting S \ S′ or the isolated or
semi-isolated part of S must intersect S \ S′. But K is an (S \ S′)-T separator, which
implies that there cannot be a T -path intersecting v in the graph G \S′. This completes
the proof for case 2.
In either case, we have arrived at a contradiction and this completes the proof of the
lemma.

Definition 15. For every A ⊆ V , the important cluster LA is the disjoint union of
every important component withN(C) = A∪P where the set P has size at most 1 and
could be different for different important components (see Fig 9).

The motivation behind the definition of important clusters is that, while the number of
important components we are interested in may not be bounded by a function of k, there
is a function f : N → N, such that they can be partitioned into at most f(k) important
clusters.

Observation 7 Any important component can be a part of at most k + 2 important
clusters.

28

Proof. Consider an important component J and letD = N(J). The only clusters which
J can occur in correspond to subsets of D of size at least |D| − 1. Since |D| ≤ k + 1,
the number of clusters which J can occur in is at most k + 2.

Lemma 19. Every vertex v ∈ V is contained in at most 4k+1 important components
and at most (k+2)4k+1 important clusters. Furthermore, all the important components
and clusters can be enumerated in time O(4knO(1)).

Proof. Consider an important component J . Then, N(J) is an important v-T separa-
tor for any v ∈ J . Since there are only at most 4k+1 important v-T separators, v can
occur in at most 4k+1 important components and by Observation 7, v can occur in at
most 4k+1(k + 2) important clusters. The set of important components can be com-
puted by computing the set of important v-T separators for every vertex v in the graph
(Lemma 8). Once the set of important components is computed, we can compute the set
of important clusters by adding each important component to the appropriate clusters.
By Lemma 8, this requires time O(4knO(1)).

5.3 Randomized selection of important components

We recall that our objective is to find a set Z which contains the isolated and semi-
isolated part of some solution S, and is disjoint from S. By Lemma 18, we know that
there exists such a set Z which contains only important components. Note that, if we
take the important clusters corresponding to all the subsets of the solution S and take
their union, then this set will contain Z. Hence, Z is contained in the union of at most
2k important clusters. Now, we will select important clusters randomly and compute
the probability with which we will have selected a set of vertices which contains all
the isolated and semi-isolated components of some solution and is disjoint from the
solution. We first enumerate all important clusters and pick each one independently,
with probability 1

2 . Call the union of all important clusters thus picked,H. We will now
compute the probability that the setH satisfies the required properties.
1. The probability thatH contains the isolated and semi-isolated part of S is equal to the
probability that we pick all the at most 2k clusters whose disjoint union is the isolated
and semi-isolated part of S. This probability is at least (1

2)2
k

.
2. The probability that H is disjoint from S, is at least (1 − 1

2)k(k+2)4k+1
, since there

are at most k(k + 2)4k+1 important clusters intersecting S.
Finally, since these two events are independent, the probability that they both occur is
at least (1

2)2
k

(1 − 1
2)k(k+2)4k+1

= 2−2O(k)
. Hence, by Lemma 17, with probability at

least 2−2O(k)
, the instance I \ H is a special instance, which can solved by applying

Lemma 14. Thus, we have a randomized algorithm (see Algorithm 5.1) for OMWC
which has a success probability of 2−2O(k)

.

5.4 Derandomization

We derandomize the selection of important clusters by using the standard technique of
splitters. An (n, r, r2)-splitter is a family of functions from [n] to [r2] such that for any

29

Input : An instance (G, T, k) of OMWC
Output: A solution of size at most k for the instance (G, T, k) if it exists and NO

otherwise

1 Enumerate all important components.
2 Enumerate all important clusters.
3 Select each cluster independently, with probability 1

2
. Call the union of the selected

clusters Z.
4 Construct the instance I/Z.
5 Compute a solution S for this instance by reduction to an instance of ALMOST 2

SAT(VARIABLE) and solving this instance.
6 if S is not NO and S is a solution to the input instance then
7 return S.
8 end
9 return NO

Algorithm 5.1: Randomized algorithm for OMWC

r−sized subsetX of [n], there is a function in this family which is injective onX . There
exist explicit constructions of an (n, r, r2)-splitter of size O(r6 log r log n) [24].

Let C be the set of all important clusters in G. We let P be the set of important
clusters whose disjoint union is the union of the isolated and semi-isolated parts of S
and let Q be the set of all important clusters which intersect S. We know that |C| =
c ≤ n(k + 2)4k+1, |P| = p ≤ 2k, and |Q| = q ≤ k(k + 2)4k+1. For the deterministic
selection of important clusters, we go through each function in a (c, p + q, (p + q)2)-
splitter family F and every subset F ⊆ [(p + q)2]. For some f ∈ F and F , we select
those sets of C which f maps to an element in F and call the union of these setsH.

We now count the number of instances returned by this algorithm. The size of the
splitter family we use is bounded by 2O(k) log n and for each function in the splitter
family, we have

(
(p+q)2

p+q

)
= 22O(k)

subsets F . Hence, the number of instances returned

by this algorithm is 22O(k)
log n and we have the following lemma.

Lemma 20. There is an algorithm that, given an instance (G,T, k) of OMWC, runs
in time 22O(k)

nO(1) and returns 22O(k)
log n instances such that if I is a YES instance,

then at least one of the returned instances has a special solution and if I is a NO
instance, then all of the returned instances are NO instances.

5.5 Proof of Lemma 1

We are now ready to prove Lemma 1. In our algorithm for OMWC, we first compute the
set of all important clusters and use Lemma 20 to obtain a set of instances of OMWC
in 22O(k)

nO(1) time such that if the given instance is a YES instance, then at least one of
the returned instances has a special solution. We then apply the reduction of Lemma 14
to each of these instances. Each such reduction only requires polynomial time. We then
solve the resulting ALMOST 2 SAT(VARIABLE) instances and return YES if and only
if at least one of the ALMOST 2 SAT(VARIABLE) instances was found to be a YES

30

instance. The time required to solve ALMOST 2 SAT(VARIABLE) for each instance is
2O(k)nO(1). Hence, our algorithm for OMWC runs in time 22O(k)

nO(1). ut

6 EDGE PARITY MULTIWAY CUT parameterized by the solution
size

Lemma 21. EDGE PARITY MULTIWAY CUT (EPMWC) is NP-complete for |T | ≥ 3.

Proof. It is clear that this problem is in NP. We prove the NP-hardness of EPMWC by
showing that even the edge variant of OMWC is NP-hard for |T | ≥ 3. Since OMWC
is a special case of PMWC, the lemma follows. We give a polynomial time many-
one reduction from the EDGE MULTIWAY CUT problem (EDGE MWC) to EDGE ODD
MULTIWAY CUT (EOMWC). In the EDGE MWC problem we are given a graph G,
a set of terminals T and a positive integer k and the objective is to determine if there
is a k-sized subset of edges, whose removal from the graph disconnects every pair of
terminals. EDGE MWC is NP-complete for |T | ≥ 3 [6].

Given an instance (G = (V,E), T, k) of EDGE MWC, for each terminal ti ∈ T , we
add 3k+4 vertices t1i1 , . . . , t

1
ik+1

, t2i1 , . . . , t
2
ik+1

, t3i1 , . . . , t
3
ik+1

, t′i. Add an edge between
ti and tlij for every 1 ≤ j ≤ k + 1 and l ∈ {1, 3} (see Fig. 10). Add an edge between
t′i and tlij for every 1 ≤ j ≤ k + 1 and l ∈ {2, 3}. Add an edge between t1ij and t2ij
for every 1 ≤ j ≤ k + 1. Let the resulting graph be called G′. Define a new set of
terminals T ′ = {t′i|ti ∈ T}. We claim that the instance (G,T, k) is a YES instance of
EDGE MWC if and only if the instance (G′, T ′, k) is a YES instance of EOMWC.

Let S be a solution for the instance (G,T, k). We claim that S is also a solution for
the instance (G′, T ′, k). Suppose that this is not the case and consider some odd T ′-path
P in G′ \ S. Suppose the path P is from t′i to t′j . Clearly, this path has to intersect ti
and tj , which implies that there is a path from ti to tj in the graph G′ \ S. Since the
newly added edges and vertices do not create any new T -paths, this path also exists in
the graph G \ S, which is a contradiction to our assumption.

Now, let S′ be a solution for the instance (G′, T ′, k). Note that S′ will not contain
any newly added edges. We claim that S′ is a solution for the instance (G,T, k). Sup-
pose this is not the case and let P be a T -path in the graph G \ S′ from ti to tj . Since
S′ is disjoint from the newly added edges, we can extend this path P on both sides
using the appropriate newly added edges, to get an odd T ′-path in G′ \ S′, which is a
contradiction. This completes the proof.

Theorem 8. EPMWC can be solved in time 22O(k)
nO(1).

Proof. The proof is by a polynomial time parameter preserving reduction to PMWC
where the solution is required to be disjoint from the terminals. Theorem 1 also holds
for this case (since we assume that the solution is disjoint from the terminals from
Lemma 11 onwards). Let (G = (V,E), T = Te ∪ To, k) be an instance of EPMWC.
We construct a graph G′ as follows. Take the set T and for each vertex v ∈ V \ T ,
make k + 1 copies v1, . . . , vk+1 of this vertex. For each edge e = (u, v) ∈ E, add two

31

Fig. 10. An illustration of the terminal gadget in Lemma 21.

Fig. 11. An illustration of the reduction from EPMWC to PMWC.

vertices xe and ye and add an edge between them (see Fig. 11). Furthermore, add an
edge from each copy of u (if u ∈ T , there is a single copy) to xe and from each copy
of v to ye. We call the resulting graph G′ and keep the set of terminals the same. This
completes the construction. We claim that (G,T, k) is a YES instance of EPMWC if
and only if (G′, T, k) is a YES instance of PMWC where the solution is disjoint from
T .

Suppose that S is a solution of size at most k for the instance (G,T, k). For each
edge e in S, pick one of the vertices xe or ye and we claim that this set S′ forms a
solution of the required kind for the instance (G′, T, k). Clearly S′ ∩ T = ∅. Now,
suppose that there is a t1-t2 path P of forbidden parity in G′ \ S′. The existence of this
path implies that no vertex of the form xe or ye lying on this path has been deleted,
which implies that none of the corresponding edges in the original graph were deleted.
But these edges together constitute a t1-t2 path of the same parity in G disjoint from S,
which is a contradiction.

32

Conversely, let S′ be a solution for the instance (G′, T, k) such that S′ ∩ T = ∅.
Note that the construction of G′ then ensures that S′ only contains vertices of the form
xe or ye. For each vertex xe or ye in S′, pick the corresponding edge in G and call this
set S. We claim that S is a solution for the instance (G,T, k). Clearly, |S| ≤ k. Suppose
that there is a t1-t2 path P1 of forbidden parity in G \ S. Since no edge along this path
is in S, neither the xe nor the ye vertex corresponding to any edge e in this path is in
S′. But this implies that existence of a t1-t2 path of the same parity in G′ \S′, which is
a contradiction.

7 Conclusion

In this paper, we introduce a notion of generalized important separators and by sup-
plementing this idea with randomized selection of important components, along with
the iterative compression technique, we give an FPT algorithm for a parity based gen-
eralization of the classical MULTIWAY CUT problem, the PARITY MULTIWAY CUT
problem. The design of improved FPT algorithms for this problem, as well as FPT
algorithms for other parity based separation problems like the parity version of MULTI-
CUT remains an interesting open problems, as does the kernelization complexity of
these problems.

Acknowledgements

We would like to thank Saket Saurabh for the insightful discussions on graph separation
problems.

References

1. N. Bousquet, J. Daligault, and S. Thomassé. Multicut is fpt. In STOC, pages 459–468, 2011.
2. J. Chen, Y. Liu, and S. Lu. An improved parameterized algorithm for the minimum node

multiway cut problem. Algorithmica, 55(1):1–13, 2009.
3. J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter algorithm for the

directed feedback vertex set problem. J. ACM, 55(5), 2008.
4. R. H. Chitnis, M. Hajiaghayi, and D. Marx. Fixed-parameter tractability of directed multiway

cut parameterized by the size of the cutset. In SODA, pages 1713–1725, 2012.
5. M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. On multiway cut parameter-

ized above lower bounds. IPEC, 2011.
6. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The

complexity of multiterminal cuts. Siam Journal on Computing, 23:864–894, 1994.
7. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, New York,

1999.
8. J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer

Science. An EATCS Series. Springer-Verlag, Berlin, 2006.
9. N. Garg, V. V. Vazirani, and M. Yannakakis. Multiway cuts in directed and node weighted

graphs. In ICALP, volume 820 of Lecture Notes in Computer Science, pages 487–498, 1994.
10. J. Geelen, B. Gerards, B. A. Reed, P. D. Seymour, and A. Vetta. On the odd-minor variant of

hadwiger’s conjecture. J. Comb. Theory, Ser. B, 99(1):20–29, 2009.

33

11. K. ichi Kawarabayashi, Z. Li, and B. A. Reed. Recognizing a totally odd k4-subdivision,
parity 2-disjoint rooted paths and a parity cycle through specified elements. In SODA, pages
318–328, 2010.

12. K. ichi Kawarabayashi and B. A. Reed. A nearly linear time algorithm for the half integral
parity disjoint paths packing problem. In SODA, pages 1183–1192, 2009.

13. K. ichi Kawarabayashi and B. A. Reed. An (almost) linear time algorithm for odd cyles
transversal. In SODA, pages 365–378, 2010.

14. K. ichi Kawarabayashi and B. A. Reed. Odd cycle packing. In STOC, pages 695–704, 2010.
15. K. ichi Kawarabayashi, B. A. Reed, and P. Wollan. The graph minor algorithm with parity

conditions. In FOCS, pages 27–36, 2011.
16. K. ichi Kawarabayashi and M. Thorup. The minimum k-way cut of bounded size is fixed-

parameter tractable. In FOCS, pages 160–169, 2011.
17. N. Kakimura, K. ichi Kawarabayashi, and Y. Kobayashi. Erdös-pósa property and its algo-

rithmic applications: parity constraints, subset feedback set, and subset packing. In SODA,
pages 1726–1736, 2012.

18. N. Kakimura, K. ichi Kawarabayashi, and D. Marx. Packing cycles through prescribed ver-
tices. J. Comb. Theory, Ser. B, 101(5):378–381, 2011.

19. A. S. Lapaugh and C. H. Papadimitriou. The even-path problem for graphs and digraphs.
Networks, 14(4):507–513, 1984.

20. D. Lokshtanov, N. S. Narayanaswamy, V. Raman, M. S. Ramanujan, and S. Saurabh. Faster
parameterized algorithms using linear programming. Manuscript, 2012.

21. W. Mader. Über die Maximalzahl kreuzungsfreier H-Wege. Arch. Math. (Basel), 31(4):387–
402, 1978/79.

22. D. Marx. Parameterized graph separation problems. Theoret. Comput. Sci., 351(3):394–406,
2006.

23. D. Marx and I. Razgon. Fixed-parameter tractability of multicut parameterized by the size
of the cutset. In STOC, pages 469–478, 2011.

24. M. Naor, L. J. Schulman, and A. Srinivasan. Splitters and near-optimal derandomization.
In Proceedings of the 36th Annual Symposium on Foundations of Computer Science, FOCS
’95, pages 182–191, Washington, DC, USA, 1995. IEEE Computer Society.

25. R. Niedermeier. Invitation to Fixed-Parameter Algorithms, volume 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

26. V. Raman, M. S. Ramanujan, and S. Saurabh. Paths, flowers and vertex cover. In ESA,
volume 6942 of Lecture Notes in Computer Science, pages 382–393, 2011.

27. I. Razgon and B. O’Sullivan. Almost 2-sat is fixed-parameter tractable. J. Comput. Syst. Sci.,
75(8):435–450, 2009.

28. B. A. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Oper. Res. Lett.,
32(4):299–301, 2004.

34

