Skip to main content

Soft Computing Approach for Modeling Genetic Regulatory Networks

  • Conference paper
Advances in Computing and Information Technology

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 178))

Abstract

Interactions among the cellular components determine the behaviour of the complex biological system. The major challenge of the post-genomic era is to understand how interactions among various molecules in a cell determine its form and function. Several computational techniques for modeling biological systems, particularly gene regulatory networks (GRNs), has been proposed in order to understand the complex biological interactions and behaviours. Gene regulatory models has been proved to be the most widely used mechanism to model, analyze and predict the behaviour of an organism. In this paper, we have reviewed the role of soft computing techniques, such as fuzzy logic, artificial neural networks, evolutionary algorithms and their hybridization, for modeling GRNs. In addition, recent developments in this area are introduced and various challenges and opportunities for future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. J. Computational Biology 9, 67–103 (2002)

    Article  Google Scholar 

  2. Cho, K.-H., Choo, S.-M., et al.: Reverse engineering of gene regulatory networks. IET Syst. Biol. 1(3), 149–163 (2007)

    Article  Google Scholar 

  3. Sun, Y., Feng, G., Cao, J.: A new approach to dynamic fuzzy modeling of genetic regulatory networks. IEEE Transactions on Nanobioscience 9(4), 263–272 (2010)

    Article  Google Scholar 

  4. Naldi, A., Thieffry, D., Chaouiya, C.: Decision Diagrams for the Representation and Analysis of Logical Models of Genetic Networks. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 233–247. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Remy, É., Ruet, P., Mendoza, L., Thieffry, D., Chaouiya, C.: From Logical Regulatory Graphs to Standard Petri Nets: Dynamical Roles and Functionality of Feedback Circuits. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 56–72. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Pac. Symp. Biocomput., pp. 17–28 (1999)

    Google Scholar 

  7. Martin, S., Shang, Z., Martino, A., Faulon, J.-L.: Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Bioinformatics 23, 866–874 (2007)

    Article  Google Scholar 

  8. Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics 18, 261–274 (2002)

    Article  Google Scholar 

  9. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Computational Biology 7, 601–620 (2000)

    Article  Google Scholar 

  10. Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19, 2271–2282 (2003)

    Article  Google Scholar 

  11. Klipp, E.: Systems biology in practice: concepts, implementation and application. Wiley-VCH, Weinheim (2005)

    Book  Google Scholar 

  12. Maraziotis, I.A., Dragomir, A., Thanos, D.: Gene regulatory networks modeling using a dynamic evolutionary hybrid. BMC Bioinformatics 11, 140 (2010)

    Article  Google Scholar 

  13. de Jong, H., Page, M.: Search for steady states of piecewise-linear differential equation models of genetic regulatory networks. IEEE/ACM Trans. Computational Biology and Bioinformatics 5(2), 208–222 (2008)

    Article  Google Scholar 

  14. Chen, T., He, H.L., Churck, G.M.: Modeling gene expression with differential equations. In: Pac. Symp. Biocomput., pp. 29–40 (1999)

    Google Scholar 

  15. Tyson, J.J., Csikasz-Nagy, A., Novak, B.: The dynamics of cell cycle regulation. Bioessays 24(12), 1095–1109 (2002)

    Article  Google Scholar 

  16. Koch, I., Schueler, M., Heiner, M.: STEPP – search tool for exploration of Petri net paths: a new tool for Petri net-based path analysis in biochemical networks. Silico Biol. 5, 129–137 (2005)

    Google Scholar 

  17. Liang, S., Fuhrman, S., Somogyi, R.: REVEAL, a general reverse engineering algorithm for inference of genetic regulatory network architectures. In: Pacific Symposium on Biocomputing, vol. 3, pp. 18–29. World Scientific Publishing (1998)

    Google Scholar 

  18. Mitra, S., Das, R., Hayashi, Y.: Genetic networks and soft computing. IEEE/ACM Trans. on Comp. Biology and Bioinformatics 8(1), 94–107 (2011)

    Article  Google Scholar 

  19. Karlebach, G., Shamir, R.: Modeling and analysis of gene regulatory networks. Nature Reviews Molecular Cell Biology 9, 770–780 (2008)

    Article  Google Scholar 

  20. Bower, J.M., Bolouri, H.: Computational modeling of genetic and biochemical networks, pp. 1–48. MIT Press, London (2001)

    Google Scholar 

  21. Schlitt, T., Brazma, A.: Current approaches to gene regulatory network modeling. BMC Bioinformatics 8 (suppl. 6), S9 (2007)

    Google Scholar 

  22. Schreiber, F., et al.: A generic algorithm for layout of biological networks. BMC Bioinformatics 10, 375 (2009)

    Article  Google Scholar 

  23. Zadeh, L.A.: Fuzzy logic, neural networks and soft computing. One-page course announcement of CS 294-4. University of California at Berkeley (1992)

    Google Scholar 

  24. Mitra, S., Hayashi, Y.: Bioinformatics with soft computing. IEEE Trans. Systems, Man, and Cybernetics, Part C: Applications and Rev. 36(5), 616–635 (2006)

    Article  Google Scholar 

  25. Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. Comm. ACM 37, 77–84 (1994)

    Article  Google Scholar 

  26. Liu, G., et al.: Combination of neuro-fuzzy network models with biological knowledge for reconstructing gene regulatory networks. Journal of Bionic Engineering 8(1), 98–106 (2011)

    Article  Google Scholar 

  27. Vohradsky, J.: Neural network model of gene expression. FASEB J. 15, 846–854 (2001)

    Article  Google Scholar 

  28. Woolf, P.J., Wang, Y.: A fuzzy logic approach to analyzing gene expression data. Physiological Genomics 3, 9–15 (2000)

    Google Scholar 

  29. Zhang, Y., et al.: Reverse engineering module networks by PSO-RNN hybrid modeling. BMC Genomics 10 (suppl. 1), S15 (2009)

    Google Scholar 

  30. Tian, T., Burrage, K.: Stochastic neural network models for gene regulatory networks. In: IEEE Congress on Evolutionary Computation, pp. 162–169 (2003)

    Google Scholar 

  31. Chiang, J.-H., Chao, S.-Y.: Modeling human cancer-related regulatory modules by GA-RNN hybrid algorithms. BMC Bioinformatics 8, 91 (2007)

    Article  Google Scholar 

  32. Du, P., et al.: Modeling gene expression networks using fuzzy logic. IEEE Transcation on Systems, Man and Cybernetic – Part B: Cybernetics 35(6), 1351–1359 (2005)

    Article  Google Scholar 

  33. Ram, R., Chetty, M., Dix Trevor, I.: Fuzzy model for gene regulatory network. In: Proc. of IEEE Congress on Evolutionary Computation, pp. 1450–1455 (2006)

    Google Scholar 

  34. Datta, D., et al.: A recurrent fuzzy neural model of a gene regulatory network for knowledge extraction using differential equation. In: Proc. of IEEE Congress on Evolutionary Computation, pp. 2900–2906 (2009)

    Google Scholar 

  35. Vineetha, S., Chandra, C., Bhat, S., Idicula, S.M.: Gene regulatory network from microarray data using dynamic neural fuzzy approach. In: Proceedings of the International Symposium on Biocomputing (ISB 2010). ACM, New York (2010)

    Google Scholar 

  36. Kentzoglanakis, K.: A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9(2), 358–371 (2012)

    Article  Google Scholar 

  37. Jung, S.H., Cho, K.-H.: Reconstruction of gene regulatory networks by neuro-fuzzy inference system. In: Frontiers in the Convergence of Bioscience and Information Technologies, pp. 32–37 (2007)

    Google Scholar 

  38. Rui, X., Wunsch, D.C., Frank, R.L.: Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization. IEEE/ACM Transactions on Comp. Biology and Bioinformatics 4(4), 681–692 (2007)

    Article  Google Scholar 

  39. Ressom, H., Wang, D., Varghese, R.S., Reynolds, R.: Fuzzy logic-based gene regulatory network. In: IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1210–1215 (2003)

    Google Scholar 

  40. Kim, S., et al.: Multivariate measurement of gene expression relationships. Genomics 67, 201–209 (2000)

    Article  Google Scholar 

  41. Huang, J., Shimizu, H., Shioya, S.: Clustering gene expression pattern and extracting relationship in gene network based on artificial neural networks. J. Bioscience and Bioeng. 96, 421–428 (2003)

    Google Scholar 

  42. Zhou, X., et al.: A Bayesian connectivity-based approach to constructing probabilistic gene regulatory networks. Bioinformatics 20(17), 2918–2927 (2004)

    Article  Google Scholar 

  43. Keedwell, E., Narayanan, A., Savic, D.: Modeling gene regulatory data using artificial neural networks. In: Proc. of the 2002 IEEE/INNS/ENNS International Joint Conference on Neural Networks (IJCNN 2002), pp. 183–189 (2002)

    Google Scholar 

  44. Weaver, D.C., Workman, C.T., Stormo, G.D.: Modeling regulatory networks with weight matrices. In: Proc. Pacific Symp. Biocomputing, pp. 112–123 (1999)

    Google Scholar 

  45. Hu, X., Maglia, A., Wunsch II, D.C.: A general recurrent neural network approach to model genetic regulatory networks. In: Proc. of IEEE Engineering in Medicine and Biology Annual Conference, pp. 4735–4738

    Google Scholar 

  46. Ando, S., Sakamoto, E., Iba, H.: Modeling genetic network by hybrid GP. In: Proc. of the Congress on Evolutionary Computation, CEC 2002, vol. 1, pp. 291–296 (2002)

    Google Scholar 

  47. Wang, H., Qian, L., Dougherty, E.: Inference of gene regulatory networks using genetic programming and Kalman filter. In: IEEE GENSIPS, pp. 27–28 (2006)

    Google Scholar 

  48. Sirbu, A., Ruskin, H.J., Crane, M.: Comparison of evolutionary algorithms in genetic regulatory network model. BMC Bioinformatics 11, 59 (2010)

    Article  Google Scholar 

  49. Maeshiro, T., et al.: An evolutionary system for prediction of gene regulatory networks in biological cells. In: SICE Annual Conference 2007, pp. 1577–1581 (2007)

    Google Scholar 

  50. Noman, N., Iba, H.: Reverse engineering genetic networks using evolutionary computation. Genome Informatics 16(2), 205–214 (2005)

    Google Scholar 

  51. Kimura, S., et al.: Inference of S-system models of genetic networks using cooperative coevolutionary algorithm. Bioinformatics 21(7), 1154–1163 (2005)

    Article  Google Scholar 

  52. Chowdhury, A.R., Chetty, M.: An improved method to infer gene regulatory network using S-System. In: IEEE Congress on Evolutionary Computation, pp. 1012–1019 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Raza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raza, K., Parveen, R. (2013). Soft Computing Approach for Modeling Genetic Regulatory Networks. In: Meghanathan, N., Nagamalai, D., Chaki, N. (eds) Advances in Computing and Information Technology. Advances in Intelligent Systems and Computing, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31600-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31600-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31599-2

  • Online ISBN: 978-3-642-31600-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics