Skip to main content

A Novel Algorithm for Hub Protein Identification in H.Sapiens Using Global Amino Acid Features

  • Conference paper
Book cover Advances in Computing and Information Technology

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 178))

  • 2320 Accesses

Abstract

Identification of hub proteins solely from amino acids in proteome remains an open problem in computational biology that has been getting increasing deliberations with extensive growth in sequence information. In this context, we have chosen to investigate whether hub proteins can be predicted from amino acid sequence information alone. Here, we propose a novel hub identifying algorithm which relies on the use of conformational, physiochemical and pattern characteristics of amino acid sequences. In order to extract the most potential features, two feature selection techniques, CFS (Correlation-based Feature Selection) and ReliefF algorithms were used, which are widely used in data preprocessing for machine learning problems. The performance of two types of neural network classifiers such as RBF network and multilayer perceptron were evaluated with these filtering approaches. Our proposed model led to successful prediction of hub proteins from amino acid sequences alone with 92.98% and 92.61% accuracy for multilayer perceptron and RBF Network respectively with CFS algorithm and 94.69% and 90.89% accuracy for multilayer perceptron and RBF Network respectively using ReliefF algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aswathi, B.L., Nair, A.S., Sivasankaran, A., Dhar, P.K.: Identification of hub proteins from sequence. Bioinformation 7 (2011)

    Google Scholar 

  2. Tun, K., Rao, R.K., Samavedham, L., Tanaka, H., Dhar, P.K.: Rich can get poor: conversion of hub to non-hub proteins. Systems and Synthetic Biology 2, 75–82 (2009)

    Article  Google Scholar 

  3. He, X., Zhang, J.: Why do hubs tend to be essential in protein networks? PLoS Genetics 2, e88 (2006)

    Article  Google Scholar 

  4. Patil, A., Kinoshita, K., Nakamura, H.: Hub promiscuity in protein-protein interaction networks. International Journal of Molecular Sciences 11, 1930–1943 (2010)

    Article  Google Scholar 

  5. Hsing, M., Byler, K.G., Cherkasov, A.: The use of Gene Ontology terms for predicting highly-connected “hub” nodes in protein-protein interaction networks. BMC Systems Biology 2, 80 (2008)

    Article  Google Scholar 

  6. Srihari, S.: Detecting hubs and quasi cliques in scale-free networks. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  7. Dandekar, T., Snel, B., Huynen, M., Bork, P.: Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 23, 324–328 (1998)

    Article  Google Scholar 

  8. Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G.D., Maltsev, N.: The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA 96, 2896–2901 (1999)

    Article  Google Scholar 

  9. Marcotte, E.M., Pellegrini, M., Ng, H.L., Rice, D.W., Yeates, T.O., Eisenberg, D.: Detecting protein function and protein-protein interactions from genome sequences. Science 285, 751–753 (1999)

    Article  Google Scholar 

  10. Enright, J., Iliopoulos, I., Kyrpides, N.C., Ouzounis, C.A.: Protein interaction maps for complete genomes based on gene fusion events. Nature 402, 86–90 (1999)

    Article  Google Scholar 

  11. Ge, H., Liu, Z., Church, G.M., Vidal, M.: Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat. Genet. 29, 482–486 (2001)

    Article  Google Scholar 

  12. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., Yeates, T.O.: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. USA 96, 4285–4288 (1999)

    Article  Google Scholar 

  13. Kerrien, S., Alam-Faruque, Y., Aranda, B., Bancarz, I., Bridge, A., Derow, C., et al.: IntAct–open source resource for molecular interaction data. Nucleic Acids Research 35, D561–D565 (2007), http://www.ebi.ac.uk/intact/main.xhtml

  14. Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., et al.: Uni-Prot: the Universal Protein knowledgebase. Nucleic Acids Research 9, D115–D119 (2004), http://www.uniprot.org

    Article  Google Scholar 

  15. Jeffrey, H.J.: Chaos game representation of gene structure. Nucleic Acids Res. 18, 2163–2170 (1990)

    Article  Google Scholar 

  16. Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., Kanehisa, M.: AAindex: amino acid index database, progress report 2008. Nucleic Acids Research 5, D202–D205 (2008), http://www.genome.jp/aaindex/

  17. Goli, B., Aswathi, B.L., Nair, A.S.: A Novel Algorithm for Prediction of Protein Coding DNA from Non-coding DNA in Microbial Genomes Using Genomic Composition and Dinucleotide Compositional Skew. In: Meghanathan, N., Chaki, N., Nagamalai, D. (eds.) CCSIT 2012, Part II. LNICST, vol. 85, pp. 535–542. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Hall, M., Holmes, G.: Benchmarking Attribute Selection Techniques for Discrete Class Data Mining. IEEE Trans. Knowl. Data Eng. 15, 1–16 (2003)

    Article  Google Scholar 

  19. Wang, C., Ding, C., Meraz, R.F., Holbrook, S.R.: PSoL.: A positive sample only learn-ing algorithm for finding non-coding RNA genes. Bioinformatics 22, 2590–2596 (2006)

    Article  Google Scholar 

  20. Liu, H., Yu, L.: Towards integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering 17(3), 1–12 (2005)

    Article  MATH  Google Scholar 

  21. Hall, M.A.: Correlation based feature selection for machine learning. Doctoral dissertation, The University of Waikato, Dept. of Comp. Sci. (1999)

    Google Scholar 

  22. Marko, R.S., Igor, K.: Theoretical and empirical analysis of relief and rreliefF. Machine Learning Journal 53, 23–69 (2003)

    Article  MATH  Google Scholar 

  23. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings of the Ninth International Workshop on Machine Learning, pp. 249–256. Morgan Kaufmann Publishers Inc. (1992)

    Google Scholar 

  24. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)

    Google Scholar 

  25. Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University (1974)

    Google Scholar 

  26. Parker, D.B.: Learning-logic. Technical report, TR-47, Sloan School of Management. MIT, Cambridge (1985)

    Google Scholar 

  27. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by errorpropagation in Parallel distributed processing. In: Explorations in the Microstructure of Cognition, vol. I. Bradford Books, Cambridge (1986)

    Google Scholar 

  28. Achuthsankar, S.N., Sreenadhan, S.P.: An improved digital fltering technique using nucleotide frequency indicators for locating exons. Journal of the Computer Society of India 36, 60–66 (2006)

    Google Scholar 

  29. Cherian, B.S., Nair, A.S.: Protein location prediction using atomic composition and global features of the amino acid sequence. Biochemical and Biophysical Research Communications 391, 1670–1674 (2010)

    Article  Google Scholar 

  30. Namboodiri, S., Verma, C., Dhar, P.K., Giuliani, A., Nair, A.S.: Sequence signatures of allosteric proteins towards rational design. Systems and Synthetic Biology 4, 271–280 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Aswathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aswathi, B.L., Goli, B., Nair, A.S. (2013). A Novel Algorithm for Hub Protein Identification in H.Sapiens Using Global Amino Acid Features. In: Meghanathan, N., Nagamalai, D., Chaki, N. (eds) Advances in Computing and Information Technology. Advances in Intelligent Systems and Computing, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31600-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31600-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31599-2

  • Online ISBN: 978-3-642-31600-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics