
ar
X

iv
:1

31
0.

48
56

v1
 [

cs
.F

L
]

 1
7

O
ct

 2
01

3

Implementing Computations

in Automaton (Semi)groups

Ines Klimann, Jean Mairesse, and Matthieu Picantin

Univ Paris Diderot, Sorbonne Paris Cité, LIAFA, UMR 7089 CNRS, Paris, France
{klimann,mairesse,picantin}@liafa.univ-paris-diderot.fr

Abstract. We consider the growth, order, and finiteness problems for
automaton (semi)groups. We propose new implementations and compare
them with the existing ones. As a result of extensive experimentations, we
propose some conjectures on the order of finite automaton (semi)groups.

Keywords: automaton (semi)groups, growth, order, finiteness, minimization

1 Introduction

Automaton (semi)groups — short for semigroups generated by Mealy automata
or groups generated by invertible Mealy automata — were formally introduced
a half century ago (for details, see [10,7] and references therein). Over the years,
important results have started revealing their full potential. For instance, the
article [9] constructs simple Mealy automata generating infinite torsion groups
and so contributes to the Burnside problem, and, the article [5] produces Mealy
automata generating the first examples of (semi)groups with intermediate growth
and so answers the Milnor problem.
The classical decision problems have been investigated for such (semi)groups.
The word problem is solvable using standard minimization techniques, while the
conjugacy problem is undecidable [16]. Here we concentrate on the problems
related to growth, order, and finiteness.

1 3

2

3 |2 3 |2

1 |1
2 |3

1 |1
2 |1

1 |1
2 |2
3 |2

1 2 3

1 |3
2 |2
3 |1

3 |1

1 |3
2 |2

1 |2
2 |3
3 |1

Fig. 1. A Mealy automaton and its dual

To illustrate, consider the two Mealy automata of Fig. 1. They are dual, that is,
they can be obtained one from the other by exchanging the roles of stateset and
alphabet. A (semi)group is associated in a natural way with each automaton

http://arxiv.org/abs/1310.4856v1

(formally defined below). The two Mealy automata of Fig. 1 are associated with
finite (semi)groups. Their orders are respectively: on the left a semigroup of
order 238, on the right a group of order 1 494 186 269 970 473 680 896 = 264 ·34 ≈
1.5× 1021.

Several points are illustrated by this example:
– An automaton and its dual generate (semi)groups which are either both

finite or both infinite (see [12,2]).
– The order of a finite automaton (semi)group can be amazingly large. It makes

a priori difficult to decide whether an automaton (semi)group is finite or not.
Actually, the decidability of this question is open (see [10,2]).

– The order of the (semi)groups generated by a Mealy automaton and its dual
can be strikingly different. It suggests to work with both automata together.

The contributions of the present paper are three-fold:
– We propose new implementations (in GAP [8]) of classical algorithms for the

computation of the growth function; the computation of the order (if finite);
the semidecision procedure for the finiteness.

– We compare the new implementations with the existing ones. Indeed, there
exist two GAP packages dedicated to Mealy automata and their associated
(semi)groups: FR by Bartholdi [4] and automgrp by Muntyan and Savchuk [11].

– We realize systematic experimentations on small Mealy automata as well
as randomly chosen large Mealy automata. These serve as testbeds to some
conjectures on the growth types of the associated (semi)groups, as well as
on the order of a (semi)group.

The structure of the paper is the following. In Section 2, we present basic notions
on Mealy automata and automaton (semi)groups. In Section 3, we give new
implementations and compare them with the existing ones. Section 4 is dedicated
to experimentations and to the resulting conjectures.

2 Automaton (Semi)groups

2.1 Mealy Automaton

If one forgets initial and final states, a (finite, deterministic, and complete) au-
tomaton A is a triple

(

A,Σ, δ = (δi : A → A)i∈Σ

)

, where the set of states A and
the alphabet Σ are non-empty finite sets, and where the δi’s are functions.

A Mealy automaton is a quadruple

(

A,Σ, δ = (δi : A → A)i∈Σ , ρ = (ρx : Σ → Σ)x∈A

)

,

such that both (A,Σ, δ) and (Σ,A, ρ) are automata. In other terms, a Mealy
automaton is a letter-to-letter transducer with the same input and output al-
phabets. The transitions of a Mealy automaton are

x
i|ρx(i)
−−−−→ δi(x) .

The graphical representation of a Mealy automaton is standard, see Fig. 1.

The notation x
u|v
−−→ y with u = u1 · · ·un, v = v1 · · · vn is a shorthand for the

existence of a path x
u1|v1
−−−→ x1

u2|v2
−−−→ x2 −→ · · · −→ xn−1

un|vn
−−−−→ y in A.

In a Mealy automaton (A,Σ, δ, ρ), the sets A and Σ play dual roles. So we may
consider the dual (Mealy) automaton defined by d(A) = (Σ,A, ρ, δ), that is:

i
x|y
−−→ j ∈ d(A) ⇐⇒ x

i|j
−→ y ∈ A .

It is pertinent to consider a Mealy automaton and its dual together, that is to
work with the pair {A, d(A)}, see an example in Fig. 1.

Let A = (A,Σ, δ, ρ) and B = (B,Σ, γ, π) be two Mealy automata acting on the
same alphabet; their product A × B is defined as the Mealy automaton with
stateset A×B, alphabet Σ, and transitions:

xy
i|πy(ρx(i))
−−−−−−−→ δi(x)γρx(i)(y) .

2.2 Generating (Semi)groups

Let A = (A,Σ, δ, ρ) be a Mealy automaton. We view A as an automaton with an
input and an output tape, thus defining mappings from input words over Σ to
output words over Σ. Formally, for x ∈ A, the map ρx : Σ∗ → Σ∗, extending ρx :
Σ → Σ, is defined by:

ρx(u) = v if ∃y, x
u|v
−−→ y .

By convention, the image of the empty word is itself. The mapping ρx is length-
preserving and prefix-preserving. It satisfies

∀u ∈ Σ, ∀v ∈ Σ∗, ρx(uv) = ρx(u)ρδu(x)(v) .

We say that ρx is the production function associated with (A, x). For x =
x1 · · ·xn ∈ An with n > 0, set ρx : Σ∗ → Σ∗, ρx = ρxn

◦ · · · ◦ ρx1 .
Denote dually by δi : A∗ → A∗, i ∈ Σ, the production mappings associated
with the dual Mealy automaton d(A). For v = v1 · · · vn ∈ Σn with n > 0, set
δv : A∗ → A∗, δv = δvn ◦ · · · ◦ δv1 .

Definition 1. Consider a Mealy automaton A. The semigroup of mappings
from Σ∗ to Σ∗ generated by ρx, x ∈ A, is called the semigroup generated by A

and is denoted by 〈A〉+. A semigroup G is an automaton semigroup if there
exists a Mealy automaton A such that G = 〈A〉+.

A Mealy automaton A = (A,Σ, δ, ρ) is invertible if all the mappings ρx : Σ → Σ
are permutations. Then the production functions ρx : Σ∗ → Σ∗ are invertible.

Definition 2. Let A = (A,Σ, δ, ρ) be invertible. The group generated by A is
the group generated by the mappings ρx : Σ∗ → Σ∗, x ∈ A. It is denoted by 〈A〉.

Let A = (A,Σ, δ, ρ) be an invertible Mealy automaton. Its inverse is the Mealy
automaton A−1 with stateset A−1 = {x−1, x ∈ A} and set of transitions

x−1 j|i
−→ y−1 ∈ A

−1 ⇐⇒ x
i|j
−→ y ∈ A .

A Mealy automaton is reversible if its dual is invertible. A Mealy automaton A

is bireversible if both A and A−1 are invertible and reversible.

Theorem 1 ([2,12,13]). The (semi)group generated by a Mealy automaton is
finite if and only if the (semi)group generated by its dual is finite.

2.3 Minimization and the Word Problem

Let A = (A,Σ, δ, ρ) be a Mealy automaton. The Nerode equivalence on A is the
limit of the sequence of increasingly finer equivalences (≡k) recursively defined
by:

∀x, y ∈ A, x ≡0 y ⇐⇒ ρx = ρy ,

∀k > 0, x ≡k+1 y ⇐⇒ x ≡k y and ∀i ∈ Σ, δi(x) ≡k δi(y) .

Since the set A is finite, this sequence is ultimately constant; moreover if two con-
secutive equivalences are equal, the sequence remains constant from this point.
The limit is therefore computable. For every element x in A, we denote by [x]
the class of x w.r.t. the Nerode equivalence.

Definition 3. Let A = (A,Σ, δ, ρ) be a Mealy automaton and let ≡ be the
Nerode equivalence on A. The minimization of A is the Mealy automaton m(A) =
(A/≡, Σ, δ̃, ρ̃), where for every (x, i) in A×Σ, δ̃i([x]) = [δi(x)] and ρ̃[x] = ρx.

This definition is consistent with the standard minimization of “determinis-
tic finite automata” where instead of considering the mappings (ρx : Σ →
Σ)x, the computation is initiated by the separation between terminal and non-
terminal states. Using Hopcroft algorithm, the time complexity of minization is
O(ΣA logA), see [1].

By construction, a Mealy automaton and its minimization generate the same
semigroup. Indeed, two states of a Mealy automaton belong to the same class
w.r.t the Nerode equivalence if and only if they represent the same element in
the generated (semi)group.

Consider the word problem:

Input: a Mealy automaton (A,Σ, δ, ρ); x,y ∈ A∗.
Question: (ρx : Σ∗ → Σ∗) = (ρy : Σ∗ → Σ∗)?

The word problem is solvable by extending the above minimization procedure.
FR uses this approach, while automgrp uses a method based on the wreath re-
cursion [7].

3 Fully Exploiting the Minimization

Consider the following problems for the (semi)group given by a Mealy automa-
ton: compute the growth function, compute the order (if finite), detect the finite-
ness. The packages FR and automgrp provide implementations of the three prob-
lems. Here we propose new implementations based on a simple idea which fully
uses the automaton structure.

3.1 Growth

Consider a Mealy automaton A = (A,Σ, δ, ρ) and an element x ∈ A∗. The length
of ρx, denoted by |ρx|, is defined as follows:

|ρx| = min{n | ∃y ∈ An, ρx = ρy} .

The growth series of A is the formal power series given by

∑

g∈〈A〉+

t|g| =
∑

n∈N

#{g ∈ 〈A〉+ ; |g| = n} tn .

In words, the growth series enumerates the semigroup elements according to
their length. This is an instanciation of the notion of spherical growth series for
a finitely generated semigroup. Observe that the series is a polynomial if and
only if the semigroup is finite.

Using the Generic Algorithm. Since the word problem is solvable, it is possible to
compute an arbitrary but finite number of coefficients of the growth series. Indeed
for each n, generate the set of elements of length n by multiplying elements
of length n − 1 with generators and detecting-deleting duplicated elements by
solving the word problem. The functions Growth from automgrp and WordGrowth

from FR both follow this pattern. Therefore the structure of the underlying
Mealy automaton is used only to get a solution to the word problem (in fact,
both Growth and WordGrowth are generic, in the sense that they are applicable for
any (semi)group with an implemented solution to the word problem).

New Implementation. We propose a new implementation based on a simple
observation. Knowing the elements of length n − 1, Nerode minimization can
be used in a global manner to obtain simultaneously the elements of length n.
Concretely, with each integer n ≥ 1 is associated a new Mealy automaton An

defined recursively as follows:

An = m(An−1 ×m(A)) and A1 = m(A) .

Here, we assume, without real loss of generality, that the identity element is one
of the generators (otherwise simply add a new state to the Mealy automaton
coding the identity). This way, the elements of An are exactly the elements of
length at most n.

AutomatonGrowth := function (arg)

local aut , radius , growth , sph , curr , next , r;

aut:= arg [1]; # Mealy automaton

if Length(arg)>1 then radius := arg [2];

else radius := infinity ;

fi;

r := 0; curr := TrivialMealyMachine ([1]);

next := Minimized (aut);

aut := Minimized (next +TrivialMealyMachine (Alphabet (aut)));

sph := aut !. nrstates - 1; # number of non -trivial states

growth := [next !. nrstates -sph];

while sph >0 and r<radius

do Add(growth ,sph);

r := r+1; curr := next ;

next := Minimized (next *aut);

sph := next !. nrstates -curr !. nrstates ;

od;

return growth;

end;

Note that AutomatonGrowth(aut) computes the growth of the semigroup 〈aut〉+,
while AutomatonGrowth(aut+aut^-1) computes the growth of the group 〈aut〉.

Experimental Results. First we run AutomatonGrowth and FR’s WordGrowth on the
Grigorchuk automaton, a famous Mealy automaton generating an infinite group.
For radius 10, AutomatonGrowth is much faster, 76 ms as opposed to 9 912 ms1.
The explanation is simple: WordGrowth calls the minimization procedure 57 577
times while AutomatonGrowth calls it only 12 times. Here are the details.

gap > aut := GrigorchukMachine ;; radius := 10;;

gap > ProfileFunctions ([Minimized]);

gap > WordGrowth (SCSemigroupNC (aut), radius); time ;

[1, 4, 6, 12, 17, 28, 40, 68, 95, 156, 216]

9912

gap > DisplayProfile ();

count self /ms chld /ms function

57577 7712 0 Minimized

7712 TOTAL

gap > ProfileFunctions ([Minimized]);

gap > AutomatonGrowth (aut , radius); time ;

[1, 4, 6, 12, 17, 28, 40, 68, 95, 156, 216]

76

gap > DisplayProfile ();

count self /ms chld /ms function

12 72 0 Minimized

72 TOTAL

1 All timings displayed in this paper have been obtained on an Intel Core 2 Duo
computer with clock speed 3,06 GHz.

Now we compare the running times of the implementations for the compu-
tation of the first terms of the growth series for all 335 bireversible 3-letter
3-state Mealy automata (up to equivalence). In Tab. 1, some computations
with FR’s WordGrowth or with automgrp’s Growth could not be completed in
reasonable time for radius 7.

Table 1. Average time (in ms)

radius 1 2 3 4 5 6 7

FR’s WordGrowth 3.4 29.0 555.0 8 616.5 131 091.4 2 530 170.3 ?

automgrp’s Growth 0.7 2.8 16.9 158.9 1 909.0 22 952.8 ?

AutomatonGrowth 0.6 1.8 5.9 28.9 187.3 1 005.9 7 131.4

3.2 Order of the (Semi)group

Although the finiteness problem is still open, some semidecision procedures en-
able to find the order of an expected finite (semi)group. FR and automgrp use
orthogonal approaches. Our new implementation refines the one of FR and re-
mains orthogonal to the one of automgrp.

automgrp’s Implementation. The GAP package automgrp provides the func-
tion LevelOfFaithfulAction, which allows to compute—very efficiently in some
cases—the order of the generated group. The principle is the following. Let
A = (A,Σ, δ, ρ) be an invertible Mealy automaton and let Gk be the group gen-
erated by the restrictions of the production functions to Σk. If #Gk = #Gk+1

for some k, then 〈A〉 is finite of order #Gk. This function can be easily adapted
to a non-invertible Mealy automaton.
Observe that LevelOfFaithfulAction cannot be used to compute the growth se-
ries. Indeed at each step a quotient of the (semi)group is computed. On the
other hand LevelOfFaithfulAction is a good bypass strategy for the order com-
putation. Furthermore, it takes advantage from the special ability of GAP to
manipulate permutation groups.

FR’s Implementation and the New Implementation. Any algorithm computing
the growth series can be used to compute the order of the generated (semi)group
if finite. It suffices to compute the growth series until finding a coefficient equal
to zero. This is the approach followed by FR. Since we proposed, in the previous
section, a new implementation to compute the growth series, we obtain as a
byproduct a new procedure to compute the order. We call it AutomSGrOrder.

Experimental Results. The orthogonality of the two previous approaches can be
simply illustrated by recalling the introductory example of Fig. 1. Neither FR’s
Order nor AutomSGrOrder are able to compute the order of the large group, while
automgrp via LevelOfFaithfulAction succeeds in only 14 338 ms. Conversely,
AutomSGrOrder computes the order of the small semigroup in 17 ms, while an
adaptation of LevelOfFaithfulAction (to non-invertible Mealy automata) takes
2 193 ms.

3.3 Finiteness

There exist several criteria to detect the finiteness of an automaton (semi)group,
see [2,3,6,14,15, ...]. But the decidability of the finiteness is still an open question.
Each procedure to compute the order of a (semi)group yields a semidecision
procedure for the finiteness problem. Both packages FR and automgrp apply a
number of previously known criteria of (in)finiteness and then intend to conclude
by ultimately using an order computation.
We propose an additional ingredient which uses minimization in a subtle way.
Here, the semigroup to be tested is successively replaced by new ones which are
finite if and only if the original one is finite. It is possible to incorporate this
ingredient to get two new implementations, one in the spirit of FR and one in
the spirit of automgrp. The new implementations are order of magnitudes better
than the old ones. Both are useful since the fastest one depends on the cases.

3.3.1 md-reduction of Mealy Automata and Finiteness

The md-reduction was introduced in [2] to give a sufficient condition of finiteness.
The new semidecision procedures start with this reduction.

Definition 4. A pair of dual Mealy automata is reduced if both automata are
minimal. Recall that m (resp. d) is the operation of minimization (resp. dual-
ization). The md-reduction of a Mealy automaton A consists in minimizing the
automaton or its dual until the resulting pair of dual Mealy automata is reduced.

The md-reduction is well-defined: if both a Mealy automaton and its dual au-
tomaton are non-minimal, the reduction is confluent [2]. An example of md-
reduction is given in Fig. 2.

a b
A

0 |1
2 |3

0 |3
2 |1

1 |0
3 |2

1 |0
3 |2

d

0 1

3 2

a |a
b |b

a |b

a |a
b |b

a |b

b |a b |a

m

13 02

a |a
b |b

a |b
b |a

dmdmd
ab

md∗(A)

0123 |0123

Fig. 2. The md-reduction of a pair of dual Mealy automata

The sequence of minimization-dualization can be arbitrarily long: the minimiza-
tion of a Mealy automaton with a minimal dual can make the dual automaton
non-minimal.
If A is a Mealy automaton, we denote by md∗(A) the corresponding Mealy
automaton after md-reduction.

Theorem 2 ([2]). A Mealy automaton A generates a finite (semi)group if and
only if md∗(A) generates a finite (semi)group.

This is the starting point of the new implementations. We use an additional fact.
We can prune a Mealy automaton by deleting the states which are not accessible
from a cycle. This does not change the finiteness or infiniteness of the generated
(semi)group [3].

3.3.2 The New Implementations

The design of procedure IsFinite1 is consistent with the one of AutomatonGrowth.
Hence IsFinite1 is much closer to FR than to automgrp. Here we propose a
version that works with the automaton and its dual in parallel.

IsFinite1 := function (aut , limit)

local radius , dual , curr1 , next1 , curr2 , next2;

radius := 0;

aut := MDReduced (Prune(aut)); dual := DualMachine (aut);

curr1 := MealyMachine ([[1]] ,[()]); curr2 := curr1;

next1 := aut; next2 := dual ;

while curr2!. nrstates <>next2!. nrstates and radius <limit

do radius := radius + 1; curr1 := next1;

next1 := Minimized (next1*aut);

if curr1!. nrstates <>next1!. nrstates

then curr2 := next2;

next2 := Minimized (next2*dual);

else return true ;

fi;

od;

if curr2!. nrstates = next2!. nrstates then return true ; fi;

return fail ;

end;

The procedure IsFinite2 is a refinement of automgrp’s LevelOfFaithfulAction:
the minimization is called on the dual and can be enhanced again to work in
parallel on the Mealy automaton and its dual.

IsFinite2 := function (aut ,limit)

local f1 , f2 , next , cs , ns , lev;

aut := MDReduced (Prune(aut));

if IsInvertible (aut) then f1:= Group; f2:= PermList ;

else f1:= Semigroup ; f2:= Transformation ;

fi;

lev := 0; cs := 1; ns := Size (f1(List (aut!. output ,f2)));

aut := DualMachine (aut); next := aut;

while cs <ns and lev <limit

do lev := lev +1; cs := ns; next := Minimized (next *aut);

ns := Size (f1(List (DualMachine (next)!. output ,f2)));

od;

if cs=ns then return true ; else return fail ; fi;

end;

Experimental Results. Tab. 2 presents the average time to detect finiteness of
(semi)groups generated by p-letter q-state invertible or reversible Mealy au-
tomata with p + q ∈ {5, 6}. To get a fair comparison of the implementations,
what is given is the minimum of the running times for an automaton and its
dual (see Theorem 1).

Table 2. Average time (in ms) to detect finiteness of (semi)groups

2- 3- 2- 4- 3- 3-

FR aut Fin1 Fin2 FR aut Fin1 Fin2 FR aut Fin1 Fin2

0.68 0.81 0.49 0.49 36.36 1.79 0.52 0.62 1 342.12 3.78 0.61 0.70

FR: FR’s IsFinite; aut: automgrp’s IsFinite; Fin1: IsFinite1; Fin2: IsFinite2

4 Conjectures

The efficiency of the new implementations enables to carry out extensive exper-
imentations. We propose several conjectures supported by these experiments.

Recall the example given in the introduction. The (semi)groups generated by
the Mealy automaton and its dual were strikingly different, with a very large
one and a rather small one. This seems to be a general fact that we can state as
an informal conjecture:
Whenever a Mealy automaton generates a finite (semi)group which is very large
with respect to the number of states and letters of the automaton, then its dual
generates a small one.

Observation: Any pair of finite (semi)groups can be generated by a pair of dual
Mealy automata, see [2, Prop. 9]. The standard construction leads to automata
whose sizes are related to the orders of the (semi)groups. Therefore it does not
contradict the informal conjecture.

#〈A〉+

#〈d(A)〉+

4 000

102 104 106 108 1010 1012 1014 1016 1018 1020 1022

Fig. 3. Size of 〈A〉+ vs. size of 〈d(A)〉+

Fig. 3 illustrates this informal conjecture: for A covering the set of all 3-letter
3-state invertible Mealy automata, the endpoints of each segment represent re-
spectively the order of 〈A〉+ and of 〈d(A)〉+, for all pairs detected as being finite.
To assess finiteness, the procedures IsFinite1 and IsFinite2 have been used. If
the tested Mealy automaton and its dual were both found to have more than
4000 elements, the procedures were stopped, and the (semi)groups were supposed
to be infinite. Based on the informal conjecture, we believe to have captured all
finite groups. If true:

– There are 14 089 Mealy automata generating finite (semi)groups among the
233 339 invertible or reversible 3-letter 3-state Mealy automata;

– The group generated by Fig. 1-right is the largest finite group.

x

2

2

2
2

2

1

ρx = (1, 2, . . . , p)
∀y 6= x, ρy = (1, 3, . . . , p)

4.1: among invertible automata: Mp,q

x

1

ρx = (1, 2)
∀z 6= x, ρz = ()

4.2: among 2-letter invertible automata: M2,q

y x̄

1,2
(plus p if even)

ρx̄ = t(1, 2, . . . , p)t−1

ρy = (1, 3, . . . , p)

t =

{

() for p even
(p, p+1

2) for p odd

4.3: among 2-state invertible automata: Mp,2

x
y

ρx = (1, 2, . . . , p)
ρy = (1, 3, . . . , p)

∀z 6∈ {x, y}, ρz = ()

4.4: among bireversible automata: Bp,q

Fig. 4. Automata conjectured to generate the largest finite automaton groups

Our next conjectures are concerned with the largest finite groups that can be
generated by automata of a given size.
Consider the family of p-letter q-state Mealy automata (Mp,q)p+q>5 displayed
on Fig. 4.1 for p > 2 and q > 2, while the specializations for p = 2 and q = 2
are displayed on Fig. 4.2 and Fig. 4.3. The example of Fig. 1-right is M3,3.

Conjecture 1. The group 〈Mp,q〉 is finite. Every p-letter q-state invertible Mealy
automaton generates a group which is either infinite or has an order smaller
than #〈Mp,q〉.

If true, Conjecture 1 implies the decidability of the finiteness problem for au-
tomaton groups. Without entering into the details of the experimentations, we
consider that Conj. 1 is reasonably well supported for p+ q < 9. As for actually
computing #〈Mp,q〉, here are the only cases with q > 2 for which we succeeded:

∀q, 4 ≤ q ≤ 8, #〈M2,q〉 = 22
q−1+ (q−2)(q−1)

2 −2 ,

#〈M3,3〉 = 264 · 34, #〈M3,4〉 = 2325 · 313, #〈M4,3〉 = 2288 · 3422 .

These groups are indeed huge. Incidentally, the finiteness of 〈Mp,q〉 is checked
for p + q < 11 and the informal conjecture is supported further by computing
the order of the much smaller semigroups generated by the duals:

#〈d(Mp,q)〉+ 2 3 4 5 6 7 8

2 - - 219 1 759 13 135 94 143 656 831
3 - 238 1 552 8 140 37 786 162 202 · · ·
4 89 1 381 12 309 87 125 543 061 · · · · · ·
5 131 6 056 67 906 602 656 · · · · · · · · ·
6 337 22 399 302 011 · · · · · · · · · · · ·
7 351 74 194 · · · · · · · · · · · · · · ·

Experimentally, the finite groups generated by bireversible Mealy automata seem
to be much smaller. Consider the family of bireversible automata (Bp,q)p,q of
Fig. 4.4. The group 〈Bp,q〉 is isomorphic to Sq

p, while the group 〈d(Bp,q)〉 is
isomorphic to Zq. Again, the following is reasonably well supported for p+q < 9:

Conjecture 2. Every p-letter q-state bireversible Mealy automaton generates a
group which is either infinite or has an order smaller than #〈Bp,q〉 = p!q.

Our last conjecture is of a different nature and deals with the structure of infinite
automaton semigroups.

Conjecture 3. Every 2-state reversible Mealy automaton generates a semigroup
which is either finite or free of rank 2.

The conjecture has been tested and seems correct for reversible 2-state Mealy
automata up to 6 letters. In the experiments, a semigroup generated by a p-letter
automaton is conjectured to be free if its growth series coincides with (2t)n up
to radius p2/2 and if its dual generates a seemingly infinite group.

References

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

2. A. Akhavi, I. Klimann, S. Lombardy, J. Mairesse, and M. Picantin. On the finite-
ness problem for automaton (semi)groups. Internat. J. Algebra Comput., (ac-
cepted), 2012. arXiv:cs.FL/1105.4725.

3. A. S. Antonenko. On transition functions of Mealy automata of finite growth.
Matematychni Studii., 29(1):3–17, 2008.

4. L. Bartholdi. FR Functionally recursive groups — a GAP package, v.1.2.4.2, 2011.
5. L. Bartholdi, I. I. Reznykov, and V. I. Sushchanskĭı. The smallest Mealy automaton

of intermediate growth. J. Algebra, 295(2):387–414, 2006.
6. I. V. Bondarenko, N. V. Bondarenko, S. N. Sidki, and F. R. Zapata. On

the conjugacy problem for finite-state automorphisms of regular rooted trees.
arXiv:math.GR/1011.2227.

7. A. J. Cain. Automaton semigroups. Theor. Comput. Sci., 410:5022–5038, 2009.
8. The GAP Group. GAP – Groups, Algorithms, and Programming, v.4.4.12, 2008.
9. R. I. Grigorchuk. On Burnside’s problem on periodic groups. Funktsional. Anal. i

Prilozhen., 14(1):53–54, 1980.
10. R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskĭı. Automata, dynamical

systems, and groups. Tr. Mat. Inst. Steklova, 231:134–214, 2000.
11. Y. Muntyan and D. Savchuk. automgrp Automata Groups — a GAP package,

v.1.1.4.1, 2008.
12. V. Nekrashevych. Self-similar groups, volume 117 of Mathematical Surveys and

Monographs. American Mathematical Society, Providence, RI, 2005.
13. D. M Savchuk and Y. Vorobets. Automata generating free products of groups of

order 2. J. Algebra, 336(1):53–66, 2011.
14. S. N. Sidki. Automorphisms of one-rooted trees: growth, circuit structure, and

acyclicity. J. Math. Sci. (New York), 100(1):1925–1943, 2000. Algebra, 12.
15. P. V. Silva and B. Steinberg. On a class of automata groups generalizing lamp-

lighter groups. Internat. J. Algebra Comput., 15(5-6):1213–1234, 2005.
16. Z. Šuniḱ and E. Ventura. The conjugacy problem is not solvable in automaton

groups. 2010. arXiv:math.GR/1010.1993.

	Implementing Computations in Automaton (Semi)groups

